Abstract

We demonstrate a high-energy all-fiber short wavelength gain-switched thulium-doped fiber laser for volumetric photoacoustic (PA) imaging of lipids. The laser cavity is constructed by embedding a short piece of gain fiber between a pair of fiber Bragg gratings (FBGs). Through using three pairs of FBGs with operation wavelengths at 1700, 1725, and 1750 nm, three similar lasers are realized with a cavity length of around 25 cm. Under a maximum pump energy of 300 μJ at 1560 nm, laser pulse energies of 58.2, 66.8, and 75.3 μJ are, respectively, achieved with a minimum pulse width of <16.7  ns at a repetition rate of 10 kHz. Volumetric imaging of lipids is validated through scanning a fat beef slice with a PA microscopy system incorporated with the newly developed source, and a lateral resolution of 18.8 μm and an axial resolution of 172.9 μm are achieved. Moreover, the higher shooting speed of the developed source can potentially allow for increasing at twice the frame rate of current intravascular PA imaging.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
1.7  μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging

Can Li, Jiawei Shi, Xiaojing Gong, Cihang Kong, Zhichao Luo, Liang Song, and Kenneth K. Y. Wong
Opt. Lett. 43(23) 5849-5852 (2018)

Developing high-power hybrid resonant gain-switched thulium fiber lasers

Shuo Yan, Yao Wang, Yan Zhou, Nan Yang, Yue Li, Yulong Tang, and Jianqiu Xu
Opt. Express 23(20) 25675-25687 (2015)

High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region

Manoj Kumar Dasa, Christos Markos, Michael Maria, Christian R. Petersen, Peter M. Moselund, and Ole Bang
Biomed. Opt. Express 9(4) 1762-1770 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Workman and L. Weyer, Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy (CRC Press, 2012).
  2. L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
    [Crossref]
  3. L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
    [Crossref]
  4. D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, and R. R. Alfano, “Fourth near-infrared optical window for assessment of bone and other tissues,” Proc. SPIE 9689, 96894J (2016).
    [Crossref]
  5. V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43, 470–480 (2011).
    [Crossref]
  6. V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
    [Crossref]
  7. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 μm thulium fiber laser,” Opt. Laser Technol. 44, 2095–2099 (2012).
    [Crossref]
  8. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
    [Crossref]
  9. M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6, 31715 (2016).
    [Crossref]
  10. Y. Li, J. Jing, E. Heidari, J. Zhu, Y. Qu, and Z. Chen, “Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser,” Sci. Rep. 7, 14525 (2017).
    [Crossref]
  11. P. Wang, H. W. Wang, M. Sturek, and J. X. Cheng, “Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm,” J. Biophoton. 5, 25–32 (2012).
    [Crossref]
  12. B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood,” Opt. Lett. 37, 1244–1246 (2012).
    [Crossref]
  13. M. Wu, K. Jansen, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Biomed. Opt. Express 6, 3276–3286 (2015).
    [Crossref]
  14. J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4, 11–21 (2016).
    [Crossref]
  15. L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 035001 (2016).
    [Crossref]
  16. J. Hui, Q. Yu, T. Ma, P. Wang, Y. Cao, R. S. Bruning, Y. Qu, Z. Chen, Q. Zhou, M. Sturek, J. Cheng, and W. Chen, “High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO,” Biomed. Opt. Express 6, 4557–4566 (2015).
    [Crossref]
  17. Y. Li, X. Gong, C. Liu, R. Lin, W. Hau, X. Bai, and L. Song, “High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter,” J. Biomed. Opt. 20, 065006 (2015).
    [Crossref]
  18. M. Wu, G. Springeling, M. Lovrak, F. Mastik, S. Iskander-Rizk, T. Wang, H. M. M. van Beusekom, A. F. W. van der Steen, and G. Van Soest, “Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second,” Biomed. Opt. Express 8, 943–953 (2017).
    [Crossref]
  19. Y. Cao, A. Kole, J. Hui, Y. Zhang, J. Mai, M. Alloosh, M. Sturek, and J.-X. Cheng, “Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography,” Sci. Rep. 8, 2400 (2018).
    [Crossref]
  20. T. Buma, N. C. Conley, and S. W. Choi, “Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser,” Biomed. Opt. Express 9, 276–288 (2018).
    [Crossref]
  21. M. K. Dasa, C. Markos, M. Maria, C. R. Petersen, P. M. Moselund, and O. Bang, “High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650–1850 nm region,” Biomed. Opt. Express 9, 1762–1770 (2018).
    [Crossref]
  22. C. Li, J. Shi, X. Gong, C. Kong, Z. Luo, L. Song, and K. K. Y. Wong, “1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging,” Opt. Lett. 43, 5849–5852 (2018).
    [Crossref]
  23. C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
    [Crossref]
  24. V. Daeichin, M. Wu, N. De Jong, A. F. W. van der Steen, and G. van Soest, “Frequency analysis of the photoacoustic signal generated by coronary atherosclerotic plaque,” Ultrasound Med. Biol. 42, 2017–2025 (2016).
    [Crossref]

2018 (4)

2017 (2)

M. Wu, G. Springeling, M. Lovrak, F. Mastik, S. Iskander-Rizk, T. Wang, H. M. M. van Beusekom, A. F. W. van der Steen, and G. Van Soest, “Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second,” Biomed. Opt. Express 8, 943–953 (2017).
[Crossref]

Y. Li, J. Jing, E. Heidari, J. Zhu, Y. Qu, and Z. Chen, “Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser,” Sci. Rep. 7, 14525 (2017).
[Crossref]

2016 (6)

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, and R. R. Alfano, “Fourth near-infrared optical window for assessment of bone and other tissues,” Proc. SPIE 9689, 96894J (2016).
[Crossref]

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4, 11–21 (2016).
[Crossref]

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 035001 (2016).
[Crossref]

V. Daeichin, M. Wu, N. De Jong, A. F. W. van der Steen, and G. van Soest, “Frequency analysis of the photoacoustic signal generated by coronary atherosclerotic plaque,” Ultrasound Med. Biol. 42, 2017–2025 (2016).
[Crossref]

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6, 31715 (2016).
[Crossref]

2015 (3)

2014 (2)

V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
[Crossref]

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

2013 (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

2012 (4)

P. Wang, H. W. Wang, M. Sturek, and J. X. Cheng, “Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm,” J. Biophoton. 5, 25–32 (2012).
[Crossref]

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 μm thulium fiber laser,” Opt. Laser Technol. 44, 2095–2099 (2012).
[Crossref]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood,” Opt. Lett. 37, 1244–1246 (2012).
[Crossref]

2011 (1)

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43, 470–480 (2011).
[Crossref]

Alexander, V. V.

V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
[Crossref]

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43, 470–480 (2011).
[Crossref]

Alfano, R.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

Alfano, R. R.

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, and R. R. Alfano, “Fourth near-infrared optical window for assessment of bone and other tissues,” Proc. SPIE 9689, 96894J (2016).
[Crossref]

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Alloosh, M.

Y. Cao, A. Kole, J. Hui, Y. Zhang, J. Mai, M. Alloosh, M. Sturek, and J.-X. Cheng, “Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography,” Sci. Rep. 8, 2400 (2018).
[Crossref]

Amirian, J.

Anastasio, M. A.

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 035001 (2016).
[Crossref]

Bai, X.

Y. Li, X. Gong, C. Liu, R. Lin, W. Hau, X. Bai, and L. Song, “High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter,” J. Biomed. Opt. 20, 065006 (2015).
[Crossref]

Bang, O.

Bruning, R. S.

Budansky, Y.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Buma, T.

Cao, Y.

Y. Cao, A. Kole, J. Hui, Y. Zhang, J. Mai, M. Alloosh, M. Sturek, and J.-X. Cheng, “Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography,” Sci. Rep. 8, 2400 (2018).
[Crossref]

J. Hui, Q. Yu, T. Ma, P. Wang, Y. Cao, R. S. Bruning, Y. Qu, Z. Chen, Q. Zhou, M. Sturek, J. Cheng, and W. Chen, “High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO,” Biomed. Opt. Express 6, 4557–4566 (2015).
[Crossref]

Chen, W.

Chen, Z.

Y. Li, J. Jing, E. Heidari, J. Zhu, Y. Qu, and Z. Chen, “Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser,” Sci. Rep. 7, 14525 (2017).
[Crossref]

J. Hui, Q. Yu, T. Ma, P. Wang, Y. Cao, R. S. Bruning, Y. Qu, Z. Chen, Q. Zhou, M. Sturek, J. Cheng, and W. Chen, “High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO,” Biomed. Opt. Express 6, 4557–4566 (2015).
[Crossref]

Cheng, J.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4, 11–21 (2016).
[Crossref]

J. Hui, Q. Yu, T. Ma, P. Wang, Y. Cao, R. S. Bruning, Y. Qu, Z. Chen, Q. Zhou, M. Sturek, J. Cheng, and W. Chen, “High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO,” Biomed. Opt. Express 6, 4557–4566 (2015).
[Crossref]

Cheng, J. X.

P. Wang, H. W. Wang, M. Sturek, and J. X. Cheng, “Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm,” J. Biophoton. 5, 25–32 (2012).
[Crossref]

Cheng, J.-X.

Y. Cao, A. Kole, J. Hui, Y. Zhang, J. Mai, M. Alloosh, M. Sturek, and J.-X. Cheng, “Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography,” Sci. Rep. 8, 2400 (2018).
[Crossref]

Choi, S. W.

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Conley, N. C.

Daeichin, V.

V. Daeichin, M. Wu, N. De Jong, A. F. W. van der Steen, and G. van Soest, “Frequency analysis of the photoacoustic signal generated by coronary atherosclerotic plaque,” Ultrasound Med. Biol. 42, 2017–2025 (2016).
[Crossref]

Dasa, M. K.

De Jong, N.

V. Daeichin, M. Wu, N. De Jong, A. F. W. van der Steen, and G. van Soest, “Frequency analysis of the photoacoustic signal generated by coronary atherosclerotic plaque,” Ultrasound Med. Biol. 42, 2017–2025 (2016).
[Crossref]

Emelianov, S.

Freeman, M. J.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43, 470–480 (2011).
[Crossref]

Garcia-Uribe, A.

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 035001 (2016).
[Crossref]

Goergen, C. J.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4, 11–21 (2016).
[Crossref]

Gong, X.

C. Li, J. Shi, X. Gong, C. Kong, Z. Luo, L. Song, and K. K. Y. Wong, “1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging,” Opt. Lett. 43, 5849–5852 (2018).
[Crossref]

Y. Li, X. Gong, C. Liu, R. Lin, W. Hau, X. Bai, and L. Song, “High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter,” J. Biomed. Opt. 20, 065006 (2015).
[Crossref]

Gurm, H. S.

V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
[Crossref]

Hau, W.

Y. Li, X. Gong, C. Liu, R. Lin, W. Hau, X. Bai, and L. Song, “High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter,” J. Biomed. Opt. 20, 065006 (2015).
[Crossref]

Heidari, E.

Y. Li, J. Jing, E. Heidari, J. Zhu, Y. Qu, and Z. Chen, “Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser,” Sci. Rep. 7, 14525 (2017).
[Crossref]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Hui, J.

Y. Cao, A. Kole, J. Hui, Y. Zhang, J. Mai, M. Alloosh, M. Sturek, and J.-X. Cheng, “Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography,” Sci. Rep. 8, 2400 (2018).
[Crossref]

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4, 11–21 (2016).
[Crossref]

J. Hui, Q. Yu, T. Ma, P. Wang, Y. Cao, R. S. Bruning, Y. Qu, Z. Chen, Q. Zhou, M. Sturek, J. Cheng, and W. Chen, “High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO,” Biomed. Opt. Express 6, 4557–4566 (2015).
[Crossref]

Iftekher, F.

V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
[Crossref]

Iskander-Rizk, S.

Islam, M. N.

V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
[Crossref]

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43, 470–480 (2011).
[Crossref]

Jansen, K.

Jing, J.

Y. Li, J. Jing, E. Heidari, J. Zhu, Y. Qu, and Z. Chen, “Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser,” Sci. Rep. 7, 14525 (2017).
[Crossref]

Kadwani, P.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 μm thulium fiber laser,” Opt. Laser Technol. 44, 2095–2099 (2012).
[Crossref]

Karpiouk, A.

Kawagoe, H.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6, 31715 (2016).
[Crossref]

Ke, K.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43, 470–480 (2011).
[Crossref]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Kole, A.

Y. Cao, A. Kole, J. Hui, Y. Zhang, J. Mai, M. Alloosh, M. Sturek, and J.-X. Cheng, “Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography,” Sci. Rep. 8, 2400 (2018).
[Crossref]

Kong, C.

Li, C.

Li, G.

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 035001 (2016).
[Crossref]

Li, L.

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 035001 (2016).
[Crossref]

Li, R.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4, 11–21 (2016).
[Crossref]

Li, Y.

Y. Li, J. Jing, E. Heidari, J. Zhu, Y. Qu, and Z. Chen, “Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser,” Sci. Rep. 7, 14525 (2017).
[Crossref]

Y. Li, X. Gong, C. Liu, R. Lin, W. Hau, X. Bai, and L. Song, “High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter,” J. Biomed. Opt. 20, 065006 (2015).
[Crossref]

Lin, R.

Y. Li, X. Gong, C. Liu, R. Lin, W. Hau, X. Bai, and L. Song, “High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter,” J. Biomed. Opt. 20, 065006 (2015).
[Crossref]

Litovsky, S.

Liu, C.

Y. Li, X. Gong, C. Liu, R. Lin, W. Hau, X. Bai, and L. Song, “High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter,” J. Biomed. Opt. 20, 065006 (2015).
[Crossref]

Lovrak, M.

Luo, Z.

Ma, T.

Mai, J.

Y. Cao, A. Kole, J. Hui, Y. Zhang, J. Mai, M. Alloosh, M. Sturek, and J.-X. Cheng, “Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography,” Sci. Rep. 8, 2400 (2018).
[Crossref]

Maria, M.

Markos, C.

Maslov, K.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

Mastik, F.

Mingareev, I.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 μm thulium fiber laser,” Opt. Laser Technol. 44, 2095–2099 (2012).
[Crossref]

Moselund, P. M.

Nishizawa, N.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6, 31715 (2016).
[Crossref]

Olowinsky, A.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 μm thulium fiber laser,” Opt. Laser Technol. 44, 2095–2099 (2012).
[Crossref]

Orringer, J. S.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43, 470–480 (2011).
[Crossref]

Petersen, C. R.

Phillips, E. H.

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4, 11–21 (2016).
[Crossref]

Pitt, B.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43, 470–480 (2011).
[Crossref]

Pratavieira, S.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Pu, Y.

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Qu, Y.

Y. Li, J. Jing, E. Heidari, J. Zhu, Y. Qu, and Z. Chen, “Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser,” Sci. Rep. 7, 14525 (2017).
[Crossref]

J. Hui, Q. Yu, T. Ma, P. Wang, Y. Cao, R. S. Bruning, Y. Qu, Z. Chen, Q. Zhou, M. Sturek, J. Cheng, and W. Chen, “High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO,” Biomed. Opt. Express 6, 4557–4566 (2015).
[Crossref]

Richardson, M.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 μm thulium fiber laser,” Opt. Laser Technol. 44, 2095–2099 (2012).
[Crossref]

Rising, G.

V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
[Crossref]

Rodríguez-Contreras, A.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Shah, L.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 μm thulium fiber laser,” Opt. Laser Technol. 44, 2095–2099 (2012).
[Crossref]

Sheng, Q.

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 035001 (2016).
[Crossref]

Shi, J.

Shi, L.

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

Shi, Z.

V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
[Crossref]

Smalling, R.

Song, L.

C. Li, J. Shi, X. Gong, C. Kong, Z. Luo, L. Song, and K. K. Y. Wong, “1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging,” Opt. Lett. 43, 5849–5852 (2018).
[Crossref]

Y. Li, X. Gong, C. Liu, R. Lin, W. Hau, X. Bai, and L. Song, “High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter,” J. Biomed. Opt. 20, 065006 (2015).
[Crossref]

Sordillo, D. C.

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, and R. R. Alfano, “Fourth near-infrared optical window for assessment of bone and other tissues,” Proc. SPIE 9689, 96894J (2016).
[Crossref]

Sordillo, L. A.

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, and R. R. Alfano, “Fourth near-infrared optical window for assessment of bone and other tissues,” Proc. SPIE 9689, 96894J (2016).
[Crossref]

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

Sordillo, P. P.

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, and R. R. Alfano, “Fourth near-infrared optical window for assessment of bone and other tissues,” Proc. SPIE 9689, 96894J (2016).
[Crossref]

Springeling, G.

Sturek, M.

Y. Cao, A. Kole, J. Hui, Y. Zhang, J. Mai, M. Alloosh, M. Sturek, and J.-X. Cheng, “Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography,” Sci. Rep. 8, 2400 (2018).
[Crossref]

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4, 11–21 (2016).
[Crossref]

J. Hui, Q. Yu, T. Ma, P. Wang, Y. Cao, R. S. Bruning, Y. Qu, Z. Chen, Q. Zhou, M. Sturek, J. Cheng, and W. Chen, “High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO,” Biomed. Opt. Express 6, 4557–4566 (2015).
[Crossref]

P. Wang, H. W. Wang, M. Sturek, and J. X. Cheng, “Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm,” J. Biophoton. 5, 25–32 (2012).
[Crossref]

Teranishi, T.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6, 31715 (2016).
[Crossref]

van Beusekom, H. M. M.

van der Steen, A. F. W.

Van Soest, G.

Walacavage, K.

V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
[Crossref]

Wang, B.

Wang, H. W.

P. Wang, H. W. Wang, M. Sturek, and J. X. Cheng, “Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm,” J. Biophoton. 5, 25–32 (2012).
[Crossref]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Wang, L. V.

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 035001 (2016).
[Crossref]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

Wang, P.

J. Hui, Q. Yu, T. Ma, P. Wang, Y. Cao, R. S. Bruning, Y. Qu, Z. Chen, Q. Zhou, M. Sturek, J. Cheng, and W. Chen, “High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO,” Biomed. Opt. Express 6, 4557–4566 (2015).
[Crossref]

P. Wang, H. W. Wang, M. Sturek, and J. X. Cheng, “Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm,” J. Biophoton. 5, 25–32 (2012).
[Crossref]

Wang, T.

Weirauch, F.

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 μm thulium fiber laser,” Opt. Laser Technol. 44, 2095–2099 (2012).
[Crossref]

Welsh, M. J.

V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
[Crossref]

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43, 470–480 (2011).
[Crossref]

Weyer, L.

J. Workman and L. Weyer, Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy (CRC Press, 2012).

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Wong, K. K. Y.

Workman, J.

J. Workman and L. Weyer, Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy (CRC Press, 2012).

Wu, M.

Xia, J.

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 035001 (2016).
[Crossref]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Xu, Z.

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43, 470–480 (2011).
[Crossref]

Yamanaka, M.

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6, 31715 (2016).
[Crossref]

Yanovich, A.

V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
[Crossref]

Yao, J.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

Yeager, D.

Yu, Q.

Zhang, C.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

Zhang, Y.

Y. Cao, A. Kole, J. Hui, Y. Zhang, J. Mai, M. Alloosh, M. Sturek, and J.-X. Cheng, “Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography,” Sci. Rep. 8, 2400 (2018).
[Crossref]

Zhou, Q.

Zhu, J.

Y. Li, J. Jing, E. Heidari, J. Zhu, Y. Qu, and Z. Chen, “Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser,” Sci. Rep. 7, 14525 (2017).
[Crossref]

Biomed. Opt. Express (5)

J. Biomed. Opt. (3)

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17, 116016 (2012).
[Crossref]

Y. Li, X. Gong, C. Liu, R. Lin, W. Hau, X. Bai, and L. Song, “High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter,” J. Biomed. Opt. 20, 065006 (2015).
[Crossref]

L. A. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and R. R. Alfano, “Deep optical imaging of tissue using the second and third near-infrared spectral windows,” J. Biomed. Opt. 19, 056004 (2014).
[Crossref]

J. Biophoton. (2)

L. Shi, L. A. Sordillo, A. Rodríguez-Contreras, and R. Alfano, “Transmission in near-infrared optical windows for deep brain imaging,” J. Biophoton. 9, 38–43 (2016).
[Crossref]

P. Wang, H. W. Wang, M. Sturek, and J. X. Cheng, “Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm,” J. Biophoton. 5, 25–32 (2012).
[Crossref]

Lasers Surg. Med. (2)

V. V. Alexander, K. Ke, Z. Xu, M. N. Islam, M. J. Freeman, B. Pitt, M. J. Welsh, and J. S. Orringer, “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers Surg. Med. 43, 470–480 (2011).
[Crossref]

V. V. Alexander, Z. Shi, F. Iftekher, M. J. Welsh, H. S. Gurm, G. Rising, A. Yanovich, K. Walacavage, and M. N. Islam, “Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension,” Lasers Surg. Med. 46, 689–702 (2014).
[Crossref]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7, 205–209 (2013).
[Crossref]

Neurophotonics (1)

L. Li, J. Xia, G. Li, A. Garcia-Uribe, Q. Sheng, M. A. Anastasio, and L. V. Wang, “Label-free photoacoustic tomography of whole mouse brain structures ex vivo,” Neurophotonics 3, 035001 (2016).
[Crossref]

Opt. Laser Technol. (1)

I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 μm thulium fiber laser,” Opt. Laser Technol. 44, 2095–2099 (2012).
[Crossref]

Opt. Lett. (2)

Photoacoustics (1)

J. Hui, R. Li, E. H. Phillips, C. J. Goergen, M. Sturek, and J. Cheng, “Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves,” Photoacoustics 4, 11–21 (2016).
[Crossref]

Proc. SPIE (1)

D. C. Sordillo, L. A. Sordillo, P. P. Sordillo, and R. R. Alfano, “Fourth near-infrared optical window for assessment of bone and other tissues,” Proc. SPIE 9689, 96894J (2016).
[Crossref]

Sci. Rep. (3)

M. Yamanaka, T. Teranishi, H. Kawagoe, and N. Nishizawa, “Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging,” Sci. Rep. 6, 31715 (2016).
[Crossref]

Y. Li, J. Jing, E. Heidari, J. Zhu, Y. Qu, and Z. Chen, “Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser,” Sci. Rep. 7, 14525 (2017).
[Crossref]

Y. Cao, A. Kole, J. Hui, Y. Zhang, J. Mai, M. Alloosh, M. Sturek, and J.-X. Cheng, “Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography,” Sci. Rep. 8, 2400 (2018).
[Crossref]

Ultrasound Med. Biol. (1)

V. Daeichin, M. Wu, N. De Jong, A. F. W. van der Steen, and G. van Soest, “Frequency analysis of the photoacoustic signal generated by coronary atherosclerotic plaque,” Ultrasound Med. Biol. 42, 2017–2025 (2016).
[Crossref]

Other (1)

J. Workman and L. Weyer, Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy (CRC Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup of the all-fiber gain-switched TDFL and the associated PAM system. COL, collimator.
Fig. 2.
Fig. 2. (a) Output power evolution of the lasers with regards to the enhancement of the pump power. (b) Superimposed optical spectra of the gain-switched TDFLs at 1700, 1725, and 1750 nm under the maximum pump power of 3 W; inset: zoom-in spectrum of the 1725 nm laser.
Fig. 3.
Fig. 3. (a) Pulse waveform of the 1725 nm laser with maximum output power. (b) Pulse waveform, (c) pulse train over 1 ms, and (d) histogram of around 2000 pulses after 60 MHz low-pass filtering; inset of (d): corresponding pulse train over 0.2 s.
Fig. 4.
Fig. 4. Measured (a) lateral and (b) axial resolution of the PAM system by scanning the edge of a black tape, of which the thickness is 100 μm.
Fig. 5.
Fig. 5. (a) Fat beef slice used for PAM imaging. (b) The obtained 3D imaging and (c) MAP imaging by scanning the box section in (a).