S.-L. Ma, X.-K. Li, J.-K. Xie, and F.-L. Li, “Two-mode squeezed states of two separated nitrogen-vacancy-center ensembles coupled via dissipative photons of superconducting resonators,” Phys. Rev. A 99, 012325 (2019).

[Crossref]

Y. Wang, C. Li, E. M. Sampuli, J. Song, Y. Jiang, and Y. Xia, “Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode,” Phys. Rev. A 99, 023833 (2019).

[Crossref]

A. Motazedifard, A. Dalafi, M. Naderi, and R. Roknizadeh, “Strong quadrature squeezing and quantum amplification in a coupled Bose-Einstein condensate-optomechanical cavity based on parametric modulation,” Ann. Phys. 405, 202–219 (2019).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, and H.-F. Wang, “Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system,” Sci. China Phys. Mech. Astron. 62, 970311 (2019).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, S. Liu, and H.-F. Wang, “Engineering of strong mechanical squeezing via the joint effect between duffing nonlinearity and parametric pump driving,” Photon. Res. 7, 1229–1239 (2019).

[Crossref]

R. Zhang, Y. Fang, Y.-Y. Wang, S. Chesi, and Y.-D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).

[Crossref]

W.-J. Gu, Z. Yi, L.-H. Sun, and Y. Yan, “Generation of mechanical squeezing and entanglement via mechanical modulations,” Opt. Express 26, 30773–30785 (2018).

[Crossref]

C. Li, J. Song, Y. Xia, and W. Ding, “Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control,” Opt. Express 26, 951–962 (2018).

[Crossref]

D. Ran, W.-J. Shan, Z.-C. Shi, Z.-B. Yang, J. Song, and Y. Xia, “High fidelity Dicke-state generation with Lyapunov control in circuit QED system,” Ann. Phys. 396, 44–55 (2018).

[Crossref]

Y.-X. Zeng, T. Gebremariam, M.-S. Ding, and C. Li, “Quantum optical diode based on Lyapunov control in a superconducting system,” J. Opt. Soc. Am. B 35, 2334–2341 (2018).

[Crossref]

D.-Y. Wang, C.-H. Bai, S. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).

[Crossref]

A. Dalafi, M. H. Naderi, and A. Motazedifard, “Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate,” Phys. Rev. A 97, 043619 (2018).

[Crossref]

J. Liu and K.-D. Zhu, “Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics,” Photon. Res. 6, 867–874 (2018).

[Crossref]

B. Xiong, X. Li, S.-L. Chao, and L. Zhou, “Optomechanical quadrature squeezing in the non-Markovian regime,” Opt. Lett. 43, 6053–6056 (2018).

[Crossref]

Z.-C. Zhang, Y.-P. Wang, Y.-F. Yu, and Z.-M. Zhang, “Quantum squeezing in a modulated optomechanical system,” Opt. Express 26, 11915–11927 (2018).

[Crossref]

C.-S. Hu, Z.-B. Yang, H. Wu, Y. Li, and S.-B. Zheng, “Twofold mechanical squeezing in a cavity optomechanical system,” Phys. Rev. A 98, 023807 (2018).

[Crossref]

B. Xie and S. Feng, “Squeezing-enhanced heterodyne detection of 10 Hz atto-Watt optical signals,” Opt. Lett. 43, 6073–6076 (2018).

[Crossref]

W.-Z. Zhang, Y. Han, B. Xiong, and L. Zhou, “Optomechanical force sensor in a non-Markovian regime,” New J. Phys. 19, 083022 (2017).

[Crossref]

J. Liu and K.-D. Zhu, “Coupled quantum molecular cavity optomechanics with surface plasmon enhancement,” Photon. Res. 5, 450–456 (2017).

[Crossref]

B. Xiong, X. Li, X.-Y. Wang, and L. Zhou, “Improve microwave quantum illumination via optical parametric amplifier,” Ann. Phys. 385, 757–768 (2017).

[Crossref]

X. You, Z. Li, and Y. Li, “Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback,” Phys. Rev. A 96, 063811 (2017).

[Crossref]

D. Ran, Z.-C. Shi, J. Song, and Y. Xia, “Speeding up adiabatic passage by adding Lyapunov control,” Phys. Rev. A 96, 033803 (2017).

[Crossref]

Z. C. Shi, L. C. Wang, and X. X. Yi, “Preparing entangled states by Lyapunov control,” Quantum Inform. Process. 15, 4939–4953 (2016).

[Crossref]

W. Li, C. Li, and H. Song, “Quantum synchronization in an optomechanical system based on Lyapunov control,” Phys. Rev. E 93, 062221 (2016).

[Crossref]

C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit,” Phys. Rev. Lett. 117, 100801 (2016).

[Crossref]

G. S. Agarwal and S. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93, 043844 (2016).

[Crossref]

M. Rashid, T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M. S. Kim, and H. Ulbricht, “Experimental realization of a thermal squeezed state of levitated optomechanics,” Phys. Rev. Lett. 117, 273601 (2016).

[Crossref]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]

A. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh, and D. Vitali, “Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection,” New J. Phys. 18, 073040 (2016).

[Crossref]

M. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification,” Nat. Commun. 7, 11338 (2016).

[Crossref]

B. A. Levitan, A. Metelmann, and A. A. Clerk, “Optomechanics with two-phonon driving,” New J. Phys. 18, 093014 (2016).

[Crossref]

W. Ge and M. Bhattacharya, “Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence,” New J. Phys. 18, 103002 (2016).

[Crossref]

X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

V. Peano, H. G. L. Schwefel, C. Marquardt, and F. Marquardt, “Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification,” Phys. Rev. Lett. 115, 243603 (2015).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).

[Crossref]

X.-Y. Lü, J.-Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).

[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).

[Crossref]

V. Singh, S. Bosman, B. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol. 9, 820–824 (2014).

[Crossref]

X. Xu and J. M. Taylor, “Squeezing in a coupled two-mode optomechanical system for force sensing below the standard quantum limit,” Phys. Rev. A 90, 043848 (2014).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

C. Chen, S. Lee, V. V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, “Graphene mechanical oscillators with tunable frequency,” Nat. Nanotechnol. 8, 923–927 (2013).

[Crossref]

Y.-D. Wang and A. A. Clerk, “Using interference for high fidelity quantum state transfer in optomechanics,” Phys. Rev. Lett. 108, 153603 (2012).

[Crossref]

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86, 013820 (2012).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

J.-Q. Liao and C. K. Law, “Cooling of a mirror in cavity optomechanics with a chirped pulse,” Phys. Rev. A 84, 053838 (2011).

[Crossref]

J.-Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).

[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).

[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).

[Crossref]

A. Serafini, A. Retzker, and M. B. Plenio, “Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials,” Quantum Inform. Process. 8, 619 (2009).

[Crossref]

S. Kuang and S. Cong, “Lyapunov control methods of closed quantum systems,” Automatica 44, 98–108 (2008).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]

D. Rugar and P. Grütter, “Mechanical parametric amplification and thermomechanical noise squeezing,” Phys. Rev. Lett. 67, 699–702 (1991).

[Crossref]

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991).

[Crossref]

G. Milburn and D. Walls, “Production of squeezed states in a degenerate parametric amplifier,” Opt. Commun. 39, 401–404 (1981).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

G. S. Agarwal and S. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93, 043844 (2016).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, and H.-F. Wang, “Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system,” Sci. China Phys. Mech. Astron. 62, 970311 (2019).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, S. Liu, and H.-F. Wang, “Engineering of strong mechanical squeezing via the joint effect between duffing nonlinearity and parametric pump driving,” Photon. Res. 7, 1229–1239 (2019).

[Crossref]

D.-Y. Wang, C.-H. Bai, S. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

M. Rashid, T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M. S. Kim, and H. Ulbricht, “Experimental realization of a thermal squeezed state of levitated optomechanics,” Phys. Rev. Lett. 117, 273601 (2016).

[Crossref]

A. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh, and D. Vitali, “Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection,” New J. Phys. 18, 073040 (2016).

[Crossref]

W. Ge and M. Bhattacharya, “Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence,” New J. Phys. 18, 103002 (2016).

[Crossref]

V. Singh, S. Bosman, B. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol. 9, 820–824 (2014).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]

V. Singh, S. Bosman, B. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol. 9, 820–824 (2014).

[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

V. Singh, S. Bosman, B. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol. 9, 820–824 (2014).

[Crossref]

C. Chen, S. Lee, V. V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, “Graphene mechanical oscillators with tunable frequency,” Nat. Nanotechnol. 8, 923–927 (2013).

[Crossref]

R. Zhang, Y. Fang, Y.-Y. Wang, S. Chesi, and Y.-D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit,” Phys. Rev. Lett. 117, 100801 (2016).

[Crossref]

M. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification,” Nat. Commun. 7, 11338 (2016).

[Crossref]

B. A. Levitan, A. Metelmann, and A. A. Clerk, “Optomechanics with two-phonon driving,” New J. Phys. 18, 093014 (2016).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).

[Crossref]

Y.-D. Wang and A. A. Clerk, “Using interference for high fidelity quantum state transfer in optomechanics,” Phys. Rev. Lett. 108, 153603 (2012).

[Crossref]

S. Kuang and S. Cong, “Lyapunov control methods of closed quantum systems,” Automatica 44, 98–108 (2008).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

A. Motazedifard, A. Dalafi, M. Naderi, and R. Roknizadeh, “Strong quadrature squeezing and quantum amplification in a coupled Bose-Einstein condensate-optomechanical cavity based on parametric modulation,” Ann. Phys. 405, 202–219 (2019).

[Crossref]

A. Dalafi, M. H. Naderi, and A. Motazedifard, “Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate,” Phys. Rev. A 97, 043619 (2018).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

C. Chen, S. Lee, V. V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, “Graphene mechanical oscillators with tunable frequency,” Nat. Nanotechnol. 8, 923–927 (2013).

[Crossref]

M. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification,” Nat. Commun. 7, 11338 (2016).

[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).

[Crossref]

R. Zhang, Y. Fang, Y.-Y. Wang, S. Chesi, and Y.-D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).

[Crossref]

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86, 013820 (2012).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]

W. Ge and M. Bhattacharya, “Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence,” New J. Phys. 18, 103002 (2016).

[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86, 013820 (2012).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

D. Rugar and P. Grütter, “Mechanical parametric amplification and thermomechanical noise squeezing,” Phys. Rev. Lett. 67, 699–702 (1991).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).

[Crossref]

W.-Z. Zhang, Y. Han, B. Xiong, and L. Zhou, “Optomechanical force sensor in a non-Markovian regime,” New J. Phys. 19, 083022 (2017).

[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).

[Crossref]

M. Rashid, T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M. S. Kim, and H. Ulbricht, “Experimental realization of a thermal squeezed state of levitated optomechanics,” Phys. Rev. Lett. 117, 273601 (2016).

[Crossref]

C. Chen, S. Lee, V. V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, “Graphene mechanical oscillators with tunable frequency,” Nat. Nanotechnol. 8, 923–927 (2013).

[Crossref]

C.-S. Hu, Z.-B. Yang, H. Wu, Y. Li, and S.-B. Zheng, “Twofold mechanical squeezing in a cavity optomechanical system,” Phys. Rev. A 98, 023807 (2018).

[Crossref]

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).

[Crossref]

G. S. Agarwal and S. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93, 043844 (2016).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).

[Crossref]

Y. Wang, C. Li, E. M. Sampuli, J. Song, Y. Jiang, and Y. Xia, “Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode,” Phys. Rev. A 99, 023833 (2019).

[Crossref]

X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]

X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]

M. Rashid, T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M. S. Kim, and H. Ulbricht, “Experimental realization of a thermal squeezed state of levitated optomechanics,” Phys. Rev. Lett. 117, 273601 (2016).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).

[Crossref]

C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit,” Phys. Rev. Lett. 117, 100801 (2016).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).

[Crossref]

S. Kuang and S. Cong, “Lyapunov control methods of closed quantum systems,” Automatica 44, 98–108 (2008).

[Crossref]

J.-Q. Liao and C. K. Law, “Cooling of a mirror in cavity optomechanics with a chirped pulse,” Phys. Rev. A 84, 053838 (2011).

[Crossref]

J.-Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).

[Crossref]

C. Chen, S. Lee, V. V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, “Graphene mechanical oscillators with tunable frequency,” Nat. Nanotechnol. 8, 923–927 (2013).

[Crossref]

C. Chen, S. Lee, V. V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, “Graphene mechanical oscillators with tunable frequency,” Nat. Nanotechnol. 8, 923–927 (2013).

[Crossref]

C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit,” Phys. Rev. Lett. 117, 100801 (2016).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

C. Chen, S. Lee, V. V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, “Graphene mechanical oscillators with tunable frequency,” Nat. Nanotechnol. 8, 923–927 (2013).

[Crossref]

M. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification,” Nat. Commun. 7, 11338 (2016).

[Crossref]

B. A. Levitan, A. Metelmann, and A. A. Clerk, “Optomechanics with two-phonon driving,” New J. Phys. 18, 093014 (2016).

[Crossref]

Y. Wang, C. Li, E. M. Sampuli, J. Song, Y. Jiang, and Y. Xia, “Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode,” Phys. Rev. A 99, 023833 (2019).

[Crossref]

Y.-X. Zeng, T. Gebremariam, M.-S. Ding, and C. Li, “Quantum optical diode based on Lyapunov control in a superconducting system,” J. Opt. Soc. Am. B 35, 2334–2341 (2018).

[Crossref]

C. Li, J. Song, Y. Xia, and W. Ding, “Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control,” Opt. Express 26, 951–962 (2018).

[Crossref]

W. Li, C. Li, and H. Song, “Quantum synchronization in an optomechanical system based on Lyapunov control,” Phys. Rev. E 93, 062221 (2016).

[Crossref]

S.-L. Ma, X.-K. Li, J.-K. Xie, and F.-L. Li, “Two-mode squeezed states of two separated nitrogen-vacancy-center ensembles coupled via dissipative photons of superconducting resonators,” Phys. Rev. A 99, 012325 (2019).

[Crossref]

W. Li, C. Li, and H. Song, “Quantum synchronization in an optomechanical system based on Lyapunov control,” Phys. Rev. E 93, 062221 (2016).

[Crossref]

B. Xiong, X. Li, S.-L. Chao, and L. Zhou, “Optomechanical quadrature squeezing in the non-Markovian regime,” Opt. Lett. 43, 6053–6056 (2018).

[Crossref]

B. Xiong, X. Li, X.-Y. Wang, and L. Zhou, “Improve microwave quantum illumination via optical parametric amplifier,” Ann. Phys. 385, 757–768 (2017).

[Crossref]

S.-L. Ma, X.-K. Li, J.-K. Xie, and F.-L. Li, “Two-mode squeezed states of two separated nitrogen-vacancy-center ensembles coupled via dissipative photons of superconducting resonators,” Phys. Rev. A 99, 012325 (2019).

[Crossref]

C.-S. Hu, Z.-B. Yang, H. Wu, Y. Li, and S.-B. Zheng, “Twofold mechanical squeezing in a cavity optomechanical system,” Phys. Rev. A 98, 023807 (2018).

[Crossref]

X. You, Z. Li, and Y. Li, “Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback,” Phys. Rev. A 96, 063811 (2017).

[Crossref]

X. You, Z. Li, and Y. Li, “Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback,” Phys. Rev. A 96, 063811 (2017).

[Crossref]

X.-Y. Lü, J.-Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).

[Crossref]

J.-Q. Liao and C. K. Law, “Cooling of a mirror in cavity optomechanics with a chirped pulse,” Phys. Rev. A 84, 053838 (2011).

[Crossref]

J.-Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, S. Liu, and H.-F. Wang, “Engineering of strong mechanical squeezing via the joint effect between duffing nonlinearity and parametric pump driving,” Photon. Res. 7, 1229–1239 (2019).

[Crossref]

D.-Y. Wang, C.-H. Bai, S. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).

[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

X.-Y. Lü, J.-Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).

[Crossref]

X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

S.-L. Ma, X.-K. Li, J.-K. Xie, and F.-L. Li, “Two-mode squeezed states of two separated nitrogen-vacancy-center ensembles coupled via dissipative photons of superconducting resonators,” Phys. Rev. A 99, 012325 (2019).

[Crossref]

V. Peano, H. G. L. Schwefel, C. Marquardt, and F. Marquardt, “Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification,” Phys. Rev. Lett. 115, 243603 (2015).

[Crossref]

C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit,” Phys. Rev. Lett. 117, 100801 (2016).

[Crossref]

V. Peano, H. G. L. Schwefel, C. Marquardt, and F. Marquardt, “Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification,” Phys. Rev. Lett. 115, 243603 (2015).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).

[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).

[Crossref]

B. A. Levitan, A. Metelmann, and A. A. Clerk, “Optomechanics with two-phonon driving,” New J. Phys. 18, 093014 (2016).

[Crossref]

G. Milburn and D. Walls, “Production of squeezed states in a degenerate parametric amplifier,” Opt. Commun. 39, 401–404 (1981).

[Crossref]

A. Motazedifard, A. Dalafi, M. Naderi, and R. Roknizadeh, “Strong quadrature squeezing and quantum amplification in a coupled Bose-Einstein condensate-optomechanical cavity based on parametric modulation,” Ann. Phys. 405, 202–219 (2019).

[Crossref]

A. Dalafi, M. H. Naderi, and A. Motazedifard, “Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate,” Phys. Rev. A 97, 043619 (2018).

[Crossref]

A. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh, and D. Vitali, “Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection,” New J. Phys. 18, 073040 (2016).

[Crossref]

A. Motazedifard, A. Dalafi, M. Naderi, and R. Roknizadeh, “Strong quadrature squeezing and quantum amplification in a coupled Bose-Einstein condensate-optomechanical cavity based on parametric modulation,” Ann. Phys. 405, 202–219 (2019).

[Crossref]

A. Dalafi, M. H. Naderi, and A. Motazedifard, “Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate,” Phys. Rev. A 97, 043619 (2018).

[Crossref]

A. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh, and D. Vitali, “Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection,” New J. Phys. 18, 073040 (2016).

[Crossref]

X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]

X.-Y. Lü, J.-Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

V. Peano, H. G. L. Schwefel, C. Marquardt, and F. Marquardt, “Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification,” Phys. Rev. Lett. 115, 243603 (2015).

[Crossref]

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

A. Serafini, A. Retzker, and M. B. Plenio, “Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials,” Quantum Inform. Process. 8, 619 (2009).

[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).

[Crossref]

D. Ran, W.-J. Shan, Z.-C. Shi, Z.-B. Yang, J. Song, and Y. Xia, “High fidelity Dicke-state generation with Lyapunov control in circuit QED system,” Ann. Phys. 396, 44–55 (2018).

[Crossref]

D. Ran, Z.-C. Shi, J. Song, and Y. Xia, “Speeding up adiabatic passage by adding Lyapunov control,” Phys. Rev. A 96, 033803 (2017).

[Crossref]

M. Rashid, T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M. S. Kim, and H. Ulbricht, “Experimental realization of a thermal squeezed state of levitated optomechanics,” Phys. Rev. Lett. 117, 273601 (2016).

[Crossref]

A. Serafini, A. Retzker, and M. B. Plenio, “Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials,” Quantum Inform. Process. 8, 619 (2009).

[Crossref]

A. Motazedifard, A. Dalafi, M. Naderi, and R. Roknizadeh, “Strong quadrature squeezing and quantum amplification in a coupled Bose-Einstein condensate-optomechanical cavity based on parametric modulation,” Ann. Phys. 405, 202–219 (2019).

[Crossref]

A. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh, and D. Vitali, “Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection,” New J. Phys. 18, 073040 (2016).

[Crossref]

D. Rugar and P. Grütter, “Mechanical parametric amplification and thermomechanical noise squeezing,” Phys. Rev. Lett. 67, 699–702 (1991).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

Y. Wang, C. Li, E. M. Sampuli, J. Song, Y. Jiang, and Y. Xia, “Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode,” Phys. Rev. A 99, 023833 (2019).

[Crossref]

V. Singh, S. Bosman, B. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol. 9, 820–824 (2014).

[Crossref]

C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit,” Phys. Rev. Lett. 117, 100801 (2016).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

V. Peano, H. G. L. Schwefel, C. Marquardt, and F. Marquardt, “Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification,” Phys. Rev. Lett. 115, 243603 (2015).

[Crossref]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

A. Serafini, A. Retzker, and M. B. Plenio, “Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials,” Quantum Inform. Process. 8, 619 (2009).

[Crossref]

D. Ran, W.-J. Shan, Z.-C. Shi, Z.-B. Yang, J. Song, and Y. Xia, “High fidelity Dicke-state generation with Lyapunov control in circuit QED system,” Ann. Phys. 396, 44–55 (2018).

[Crossref]

C. Chen, S. Lee, V. V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, “Graphene mechanical oscillators with tunable frequency,” Nat. Nanotechnol. 8, 923–927 (2013).

[Crossref]

Z. C. Shi, L. C. Wang, and X. X. Yi, “Preparing entangled states by Lyapunov control,” Quantum Inform. Process. 15, 4939–4953 (2016).

[Crossref]

D. Ran, W.-J. Shan, Z.-C. Shi, Z.-B. Yang, J. Song, and Y. Xia, “High fidelity Dicke-state generation with Lyapunov control in circuit QED system,” Ann. Phys. 396, 44–55 (2018).

[Crossref]

D. Ran, Z.-C. Shi, J. Song, and Y. Xia, “Speeding up adiabatic passage by adding Lyapunov control,” Phys. Rev. A 96, 033803 (2017).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

V. Singh, S. Bosman, B. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol. 9, 820–824 (2014).

[Crossref]

W. Li, C. Li, and H. Song, “Quantum synchronization in an optomechanical system based on Lyapunov control,” Phys. Rev. E 93, 062221 (2016).

[Crossref]

Y. Wang, C. Li, E. M. Sampuli, J. Song, Y. Jiang, and Y. Xia, “Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode,” Phys. Rev. A 99, 023833 (2019).

[Crossref]

D. Ran, W.-J. Shan, Z.-C. Shi, Z.-B. Yang, J. Song, and Y. Xia, “High fidelity Dicke-state generation with Lyapunov control in circuit QED system,” Ann. Phys. 396, 44–55 (2018).

[Crossref]

C. Li, J. Song, Y. Xia, and W. Ding, “Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control,” Opt. Express 26, 951–962 (2018).

[Crossref]

D. Ran, Z.-C. Shi, J. Song, and Y. Xia, “Speeding up adiabatic passage by adding Lyapunov control,” Phys. Rev. A 96, 033803 (2017).

[Crossref]

V. Singh, S. Bosman, B. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol. 9, 820–824 (2014).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit,” Phys. Rev. Lett. 117, 100801 (2016).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).

[Crossref]

X. Xu and J. M. Taylor, “Squeezing in a coupled two-mode optomechanical system for force sensing below the standard quantum limit,” Phys. Rev. A 90, 043848 (2014).

[Crossref]

X.-Y. Lü, J.-Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]

M. Rashid, T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M. S. Kim, and H. Ulbricht, “Experimental realization of a thermal squeezed state of levitated optomechanics,” Phys. Rev. Lett. 117, 273601 (2016).

[Crossref]

M. Rashid, T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M. S. Kim, and H. Ulbricht, “Experimental realization of a thermal squeezed state of levitated optomechanics,” Phys. Rev. Lett. 117, 273601 (2016).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]

A. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh, and D. Vitali, “Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection,” New J. Phys. 18, 073040 (2016).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]

M. Rashid, T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M. S. Kim, and H. Ulbricht, “Experimental realization of a thermal squeezed state of levitated optomechanics,” Phys. Rev. Lett. 117, 273601 (2016).

[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).

[Crossref]

G. Milburn and D. Walls, “Production of squeezed states in a degenerate parametric amplifier,” Opt. Commun. 39, 401–404 (1981).

[Crossref]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, and H.-F. Wang, “Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system,” Sci. China Phys. Mech. Astron. 62, 970311 (2019).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, S. Liu, and H.-F. Wang, “Engineering of strong mechanical squeezing via the joint effect between duffing nonlinearity and parametric pump driving,” Photon. Res. 7, 1229–1239 (2019).

[Crossref]

D.-Y. Wang, C.-H. Bai, S. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).

[Crossref]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, and H.-F. Wang, “Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system,” Sci. China Phys. Mech. Astron. 62, 970311 (2019).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, S. Liu, and H.-F. Wang, “Engineering of strong mechanical squeezing via the joint effect between duffing nonlinearity and parametric pump driving,” Photon. Res. 7, 1229–1239 (2019).

[Crossref]

D.-Y. Wang, C.-H. Bai, S. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).

[Crossref]

Z. C. Shi, L. C. Wang, and X. X. Yi, “Preparing entangled states by Lyapunov control,” Quantum Inform. Process. 15, 4939–4953 (2016).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

B. Xiong, X. Li, X.-Y. Wang, and L. Zhou, “Improve microwave quantum illumination via optical parametric amplifier,” Ann. Phys. 385, 757–768 (2017).

[Crossref]

Y. Wang, C. Li, E. M. Sampuli, J. Song, Y. Jiang, and Y. Xia, “Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode,” Phys. Rev. A 99, 023833 (2019).

[Crossref]

R. Zhang, Y. Fang, Y.-Y. Wang, S. Chesi, and Y.-D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).

[Crossref]

Y.-D. Wang and A. A. Clerk, “Using interference for high fidelity quantum state transfer in optomechanics,” Phys. Rev. Lett. 108, 153603 (2012).

[Crossref]

R. Zhang, Y. Fang, Y.-Y. Wang, S. Chesi, and Y.-D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).

[Crossref]

C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit,” Phys. Rev. Lett. 117, 100801 (2016).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit,” Phys. Rev. Lett. 117, 100801 (2016).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

C.-S. Hu, Z.-B. Yang, H. Wu, Y. Li, and S.-B. Zheng, “Twofold mechanical squeezing in a cavity optomechanical system,” Phys. Rev. A 98, 023807 (2018).

[Crossref]

X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]

Y. Wang, C. Li, E. M. Sampuli, J. Song, Y. Jiang, and Y. Xia, “Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode,” Phys. Rev. A 99, 023833 (2019).

[Crossref]

D. Ran, W.-J. Shan, Z.-C. Shi, Z.-B. Yang, J. Song, and Y. Xia, “High fidelity Dicke-state generation with Lyapunov control in circuit QED system,” Ann. Phys. 396, 44–55 (2018).

[Crossref]

C. Li, J. Song, Y. Xia, and W. Ding, “Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control,” Opt. Express 26, 951–962 (2018).

[Crossref]

D. Ran, Z.-C. Shi, J. Song, and Y. Xia, “Speeding up adiabatic passage by adding Lyapunov control,” Phys. Rev. A 96, 033803 (2017).

[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

S.-L. Ma, X.-K. Li, J.-K. Xie, and F.-L. Li, “Two-mode squeezed states of two separated nitrogen-vacancy-center ensembles coupled via dissipative photons of superconducting resonators,” Phys. Rev. A 99, 012325 (2019).

[Crossref]

B. Xiong, X. Li, S.-L. Chao, and L. Zhou, “Optomechanical quadrature squeezing in the non-Markovian regime,” Opt. Lett. 43, 6053–6056 (2018).

[Crossref]

B. Xiong, X. Li, X.-Y. Wang, and L. Zhou, “Improve microwave quantum illumination via optical parametric amplifier,” Ann. Phys. 385, 757–768 (2017).

[Crossref]

W.-Z. Zhang, Y. Han, B. Xiong, and L. Zhou, “Optomechanical force sensor in a non-Markovian regime,” New J. Phys. 19, 083022 (2017).

[Crossref]

X. Xu and J. M. Taylor, “Squeezing in a coupled two-mode optomechanical system for force sensing below the standard quantum limit,” Phys. Rev. A 90, 043848 (2014).

[Crossref]

D. Ran, W.-J. Shan, Z.-C. Shi, Z.-B. Yang, J. Song, and Y. Xia, “High fidelity Dicke-state generation with Lyapunov control in circuit QED system,” Ann. Phys. 396, 44–55 (2018).

[Crossref]

C.-S. Hu, Z.-B. Yang, H. Wu, Y. Li, and S.-B. Zheng, “Twofold mechanical squeezing in a cavity optomechanical system,” Phys. Rev. A 98, 023807 (2018).

[Crossref]

Z. C. Shi, L. C. Wang, and X. X. Yi, “Preparing entangled states by Lyapunov control,” Quantum Inform. Process. 15, 4939–4953 (2016).

[Crossref]

X. You, Z. Li, and Y. Li, “Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback,” Phys. Rev. A 96, 063811 (2017).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]

X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]

R. Zhang, Y. Fang, Y.-Y. Wang, S. Chesi, and Y.-D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, and H.-F. Wang, “Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system,” Sci. China Phys. Mech. Astron. 62, 970311 (2019).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, S. Liu, and H.-F. Wang, “Engineering of strong mechanical squeezing via the joint effect between duffing nonlinearity and parametric pump driving,” Photon. Res. 7, 1229–1239 (2019).

[Crossref]

D.-Y. Wang, C.-H. Bai, S. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).

[Crossref]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).

[Crossref]

W.-Z. Zhang, Y. Han, B. Xiong, and L. Zhou, “Optomechanical force sensor in a non-Markovian regime,” New J. Phys. 19, 083022 (2017).

[Crossref]

C.-S. Hu, Z.-B. Yang, H. Wu, Y. Li, and S.-B. Zheng, “Twofold mechanical squeezing in a cavity optomechanical system,” Phys. Rev. A 98, 023807 (2018).

[Crossref]

B. Xiong, X. Li, S.-L. Chao, and L. Zhou, “Optomechanical quadrature squeezing in the non-Markovian regime,” Opt. Lett. 43, 6053–6056 (2018).

[Crossref]

B. Xiong, X. Li, X.-Y. Wang, and L. Zhou, “Improve microwave quantum illumination via optical parametric amplifier,” Ann. Phys. 385, 757–768 (2017).

[Crossref]

W.-Z. Zhang, Y. Han, B. Xiong, and L. Zhou, “Optomechanical force sensor in a non-Markovian regime,” New J. Phys. 19, 083022 (2017).

[Crossref]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).

[Crossref]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991).

[Crossref]

A. Motazedifard, A. Dalafi, M. Naderi, and R. Roknizadeh, “Strong quadrature squeezing and quantum amplification in a coupled Bose-Einstein condensate-optomechanical cavity based on parametric modulation,” Ann. Phys. 405, 202–219 (2019).

[Crossref]

B. Xiong, X. Li, X.-Y. Wang, and L. Zhou, “Improve microwave quantum illumination via optical parametric amplifier,” Ann. Phys. 385, 757–768 (2017).

[Crossref]

D. Ran, W.-J. Shan, Z.-C. Shi, Z.-B. Yang, J. Song, and Y. Xia, “High fidelity Dicke-state generation with Lyapunov control in circuit QED system,” Ann. Phys. 396, 44–55 (2018).

[Crossref]

S. Kuang and S. Cong, “Lyapunov control methods of closed quantum systems,” Automatica 44, 98–108 (2008).

[Crossref]

R. A. Barton, I. R. Storch, V. P. Adiga, R. Sakakibara, B. R. Cipriany, B. Ilic, S. P. Wang, P. Ong, P. L. McEuen, J. M. Parpia, and H. G. Craighead, “Photothermal self-oscillation and laser cooling of graphene optomechanical systems,” Nano Lett. 12, 4681–4686 (2012).

[Crossref]

M. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification,” Nat. Commun. 7, 11338 (2016).

[Crossref]

C. Chen, S. Lee, V. V. Deshpande, G.-H. Lee, M. Lekas, K. Shepard, and J. Hone, “Graphene mechanical oscillators with tunable frequency,” Nat. Nanotechnol. 8, 923–927 (2013).

[Crossref]

V. Singh, S. Bosman, B. Schneider, Y. M. Blanter, A. Castellanos-Gomez, and G. Steele, “Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity,” Nat. Nanotechnol. 9, 820–824 (2014).

[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, and R. X. Adhikari, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).

[Crossref]

A. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh, and D. Vitali, “Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection,” New J. Phys. 18, 073040 (2016).

[Crossref]

W. Ge and M. Bhattacharya, “Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence,” New J. Phys. 18, 103002 (2016).

[Crossref]

W.-Z. Zhang, Y. Han, B. Xiong, and L. Zhou, “Optomechanical force sensor in a non-Markovian regime,” New J. Phys. 19, 083022 (2017).

[Crossref]

B. A. Levitan, A. Metelmann, and A. A. Clerk, “Optomechanics with two-phonon driving,” New J. Phys. 18, 093014 (2016).

[Crossref]

G. Milburn and D. Walls, “Production of squeezed states in a degenerate parametric amplifier,” Opt. Commun. 39, 401–404 (1981).

[Crossref]

Z.-C. Zhang, Y.-P. Wang, Y.-F. Yu, and Z.-M. Zhang, “Quantum squeezing in a modulated optomechanical system,” Opt. Express 26, 11915–11927 (2018).

[Crossref]

W.-J. Gu, Z. Yi, L.-H. Sun, and Y. Yan, “Generation of mechanical squeezing and entanglement via mechanical modulations,” Opt. Express 26, 30773–30785 (2018).

[Crossref]

C. Li, J. Song, Y. Xia, and W. Ding, “Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control,” Opt. Express 26, 951–962 (2018).

[Crossref]

J. Liu and K.-D. Zhu, “Coupled quantum molecular cavity optomechanics with surface plasmon enhancement,” Photon. Res. 5, 450–456 (2017).

[Crossref]

J. Liu and K.-D. Zhu, “Room temperature optical mass sensor with an artificial molecular structure based on surface plasmon optomechanics,” Photon. Res. 6, 867–874 (2018).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, S. Liu, and H.-F. Wang, “Engineering of strong mechanical squeezing via the joint effect between duffing nonlinearity and parametric pump driving,” Photon. Res. 7, 1229–1239 (2019).

[Crossref]

G. S. Agarwal and S. Huang, “Strong mechanical squeezing and its detection,” Phys. Rev. A 93, 043844 (2016).

[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).

[Crossref]

A. Dalafi, M. H. Naderi, and A. Motazedifard, “Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate,” Phys. Rev. A 97, 043619 (2018).

[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).

[Crossref]

X. Xu and J. M. Taylor, “Squeezing in a coupled two-mode optomechanical system for force sensing below the standard quantum limit,” Phys. Rev. A 90, 043848 (2014).

[Crossref]

J.-Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).

[Crossref]

Y. Wang, C. Li, E. M. Sampuli, J. Song, Y. Jiang, and Y. Xia, “Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode,” Phys. Rev. A 99, 023833 (2019).

[Crossref]

C.-S. Hu, Z.-B. Yang, H. Wu, Y. Li, and S.-B. Zheng, “Twofold mechanical squeezing in a cavity optomechanical system,” Phys. Rev. A 98, 023807 (2018).

[Crossref]

S.-L. Ma, X.-K. Li, J.-K. Xie, and F.-L. Li, “Two-mode squeezed states of two separated nitrogen-vacancy-center ensembles coupled via dissipative photons of superconducting resonators,” Phys. Rev. A 99, 012325 (2019).

[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).

[Crossref]

X. You, Z. Li, and Y. Li, “Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback,” Phys. Rev. A 96, 063811 (2017).

[Crossref]

R. Zhang, Y. Fang, Y.-Y. Wang, S. Chesi, and Y.-D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).

[Crossref]

D.-Y. Wang, C.-H. Bai, S. Liu, S. Zhang, and H.-F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).

[Crossref]

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86, 013820 (2012).

[Crossref]

D. Ran, Z.-C. Shi, J. Song, and Y. Xia, “Speeding up adiabatic passage by adding Lyapunov control,” Phys. Rev. A 96, 033803 (2017).

[Crossref]

J.-Q. Liao and C. K. Law, “Cooling of a mirror in cavity optomechanics with a chirped pulse,” Phys. Rev. A 84, 053838 (2011).

[Crossref]

X.-Y. Lü, J.-Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).

[Crossref]

Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong, “Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” Phys. Rev. A 91, 033818 (2015).

[Crossref]

W. Li, C. Li, and H. Song, “Quantum synchronization in an optomechanical system based on Lyapunov control,” Phys. Rev. E 93, 062221 (2016).

[Crossref]

J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and M. A. Sillanpää, “Squeezing of quantum noise of motion in a micromechanical resonator,” Phys. Rev. Lett. 115, 243601 (2015).

[Crossref]

C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum nondemolition measurement of a quantum squeezed state beyond the 3 dB limit,” Phys. Rev. Lett. 117, 100801 (2016).

[Crossref]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007).

[Crossref]

Y.-D. Wang and A. A. Clerk, “Using interference for high fidelity quantum state transfer in optomechanics,” Phys. Rev. Lett. 108, 153603 (2012).

[Crossref]

V. Peano, H. G. L. Schwefel, C. Marquardt, and F. Marquardt, “Intracavity squeezing can enhance quantum-limited optomechanical position detection through deamplification,” Phys. Rev. Lett. 115, 243603 (2015).

[Crossref]

X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” Phys. Rev. Lett. 114, 093602 (2015).

[Crossref]

D. Rugar and P. Grütter, “Mechanical parametric amplification and thermomechanical noise squeezing,” Phys. Rev. Lett. 67, 699–702 (1991).

[Crossref]

M. Rashid, T. Tufarelli, J. Bateman, J. Vovrosh, D. Hempston, M. S. Kim, and H. Ulbricht, “Experimental realization of a thermal squeezed state of levitated optomechanics,” Phys. Rev. Lett. 117, 273601 (2016).

[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).

[Crossref]

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991).

[Crossref]

A. Serafini, A. Retzker, and M. B. Plenio, “Generation of continuous variable squeezing and entanglement of trapped ions in time-varying potentials,” Quantum Inform. Process. 8, 619 (2009).

[Crossref]

Z. C. Shi, L. C. Wang, and X. X. Yi, “Preparing entangled states by Lyapunov control,” Quantum Inform. Process. 15, 4939–4953 (2016).

[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).

[Crossref]

C.-H. Bai, D.-Y. Wang, S. Zhang, and H.-F. Wang, “Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system,” Sci. China Phys. Mech. Astron. 62, 970311 (2019).

[Crossref]

D. Y. Wang, C. H. Bai, H. F. Wang, A. D. Zhu, and S. Zhang, “Steady-state mechanical squeezing in a double-cavity optomechanical system,” Sci. Rep. 6, 38559 (2016).

[Crossref]

E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, “Quantum squeezing of motion in a mechanical resonator,” Science 349, 952–955 (2015).

[Crossref]

W.-M. Zhang, K.-M. Hu, Z.-K. Peng, and G. Meng, “Tunable micro- and nanomechanical resonators,” Sensors 15, 26478–26566 (2015).

[Crossref]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).