Abstract

We propose what we believe is a novel optical thermometry strategy (FIR-Ex) based on the fluorescence intensity ratio (FIR) between two radiations associated with the same emission peak but different excitation wavelengths, in contrast to the traditional approach (FIR-Em), which depends on the FIR at varying emission wavelengths. The temperature-dependent FIR within the FIR-Ex strategy arises from the different charge/energy evolution routes, rather than the distribution of thermally coupled levels within the FIR-Em strategy. Considerable diversity in thermal behaviors and luminescence mechanisms was demonstrated by analyzing the 618 nm red emission in Pr3+-doped congruent LiNbO3 (Pr:CLN) under 360 and 463 nm excitations. The temperature sensitivity was further improved via Mg2+ codoping due to the optimization of charge dynamics and energy transfer processes. Given its wide detection scope, relatively high absolute sensitivity at low temperature, and high tunability of temperature sensitivity, the FIR-Ex strategy is promising for developing optical temperature-sensing materials with high performance.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Optical thermometry based on cooperation of temperature-induced shift of charge transfer band edge and thermal coupling

Shaoshuai Zhou, Changkui Duan, Min Yin, Xiaoli Liu, Shuo Han, Shoubao Zhang, and Xiaoman Li
Opt. Express 26(21) 27339-27345 (2018)

Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior

Wei Xu, Xiaoyang Gao, Longjiang Zheng, Zhiguo Zhang, and Wenwu Cao
Opt. Express 20(16) 18127-18137 (2012)

Near-infrared to short-wavelength upconversion temperature sensing in transparent bulk glass ceramics containing hexagonal NaGdF4: Yb3+/Ho3+ nanocrystals

XinYue Li, Shuo Yuan, Fangfang Hu, Siqi Lu, Daqin Chen, and Min Yin
Opt. Mater. Express 7(8) 3023-3033 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Hertle, L. Chepyga, M. Batentschuk, and L. Zigan, “Influence of codoping on the luminescence properties of YAG:Dy for high temperature phosphor thermometry,” J. Lumin. 182, 200–207 (2017).
    [Crossref]
  2. F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
    [Crossref]
  3. S. S. Zhou, C. K. Duan, M. Yin, X. L. Liu, S. Han, S. B. Zhang, and X. M. Li, “Optical thermometry based on cooperation of temperature-induced shift of charge transfer band edge and thermal coupling,” Opt. Express 26, 27339–27345 (2018).
    [Crossref]
  4. D. Y. Wang, P. P. Zhang, Q. Ma, J. C. Zhang, and Y. H. Wang, “Synthesis, optical properties and application of Y7O6F9:Er3+ for sensing the chip temperature of a light emitting diode,” J. Mater. Chem. C 6, 13352–13358 (2018).
    [Crossref]
  5. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
    [Crossref]
  6. X. N. Tian, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4:Nd3+,” Opt. Express 22, 30333–30345 (2014).
    [Crossref]
  7. S. S. Zhou, X. T. Wei, X. Y. Li, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
    [Crossref]
  8. F. Huang and D. Q. Chen, “Synthesis of Mn2+: Zn2SiO4-Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions,” J. Mater. Chem. C 5, 5176–5182 (2017).
    [Crossref]
  9. R. Shi, L. T. Lin, P. Dorenbos, and H. B. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C 5, 10737–10745 (2017).
    [Crossref]
  10. Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26, 3139–3145 (2016).
    [Crossref]
  11. L. L. Xing, Y. L. Xu, R. Wang, W. Xu, and Z. G. Zhang, “Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal,” Opt. Lett. 39, 454–457 (2014).
    [Crossref]
  12. Z. Liang, F. Qin, Y. D. Zheng, Z. G. Zhang, and W. W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sens. Actuators A Phys. 238, 215–219 (2016).
    [Crossref]
  13. C. D. S. Brites, K. Fiaczyk, J. Ramalho, M. Sojka, L. D. Carlos, and E. Zych, “Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+,” Adv. Opt. Mater. 6, 1701318 (2018).
    [Crossref]
  14. X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
    [Crossref]
  15. P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28, 9–13 (2006).
    [Crossref]
  16. R. S. Lei, X. Y. Luo, Z. Y. Yuan, H. P. Wang, F. F. Huang, D. G. Deng, and S. Q. Xu, “Ultrahigh-sensitive optical temperature sensing in Pr3+: Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence,” J. Lumin. 205, 440–445 (2019).
    [Crossref]
  17. W. Gryk, B. Kuklinski, M. Grinberg, and M. Malinowski, “High pressure spectroscopy of Pr3+ in LiNbO3,” J. Alloy. Compd. 380, 230–234 (2004).
    [Crossref]
  18. S. W. Long, M. M. Yang, D. C. Ma, Y. Z. Zhu, S. P. Lin, and B. Wang, “Enhanced red emissions and higher quenching temperature based on the intervalence charge transfer in Pr3+ doped LiNbO3 with Mg2+ incorporation,” Opt. Mater. Express 9, 1062–1071 (2019).
    [Crossref]
  19. C. Koepke, K. Wisniewski, D. Dyl, M. Grinberg, and M. Malinowski, “Evidence for existence of the trapped exciton states in Pr3+-doped LiNbO3 crystal,” Opt. Mater. 28, 137–142 (2006).
    [Crossref]
  20. S. Hu, C. H. Lu, X. X. Liu, and Z. Z. Xu, “Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics,” Opt. Mater. 60, 394–397 (2016).
    [Crossref]
  21. H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C 5, 1501–1507 (2017).
    [Crossref]
  22. C. W. Struck and W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515–4516 (1971).
    [Crossref]
  23. P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19, 386230 (2007).
    [Crossref]
  24. S. Zhang, H. B. Liang, and C. M. Liu, “Increased 1D2 red emission of Pr3+ in NaGdTiO4:Pr3+ due to temperature-assisted host sensitization and its color variation,” J. Phys. Chem. C 117, 2216–2221 (2013).
    [Crossref]
  25. O. A. Savchuk, J. J. Carvajal, C. D. S. Brites, L. D. Carlos, M. Aguilo, and F. Diaz, “Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles,” Nanoscale 10, 6602–6610 (2018).
    [Crossref]
  26. P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
    [Crossref]
  27. S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7, 17261–17267 (2015).
    [Crossref]

2019 (3)

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

R. S. Lei, X. Y. Luo, Z. Y. Yuan, H. P. Wang, F. F. Huang, D. G. Deng, and S. Q. Xu, “Ultrahigh-sensitive optical temperature sensing in Pr3+: Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence,” J. Lumin. 205, 440–445 (2019).
[Crossref]

S. W. Long, M. M. Yang, D. C. Ma, Y. Z. Zhu, S. P. Lin, and B. Wang, “Enhanced red emissions and higher quenching temperature based on the intervalence charge transfer in Pr3+ doped LiNbO3 with Mg2+ incorporation,” Opt. Mater. Express 9, 1062–1071 (2019).
[Crossref]

2018 (5)

C. D. S. Brites, K. Fiaczyk, J. Ramalho, M. Sojka, L. D. Carlos, and E. Zych, “Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+,” Adv. Opt. Mater. 6, 1701318 (2018).
[Crossref]

S. S. Zhou, C. K. Duan, M. Yin, X. L. Liu, S. Han, S. B. Zhang, and X. M. Li, “Optical thermometry based on cooperation of temperature-induced shift of charge transfer band edge and thermal coupling,” Opt. Express 26, 27339–27345 (2018).
[Crossref]

D. Y. Wang, P. P. Zhang, Q. Ma, J. C. Zhang, and Y. H. Wang, “Synthesis, optical properties and application of Y7O6F9:Er3+ for sensing the chip temperature of a light emitting diode,” J. Mater. Chem. C 6, 13352–13358 (2018).
[Crossref]

O. A. Savchuk, J. J. Carvajal, C. D. S. Brites, L. D. Carlos, M. Aguilo, and F. Diaz, “Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles,” Nanoscale 10, 6602–6610 (2018).
[Crossref]

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

2017 (5)

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C 5, 1501–1507 (2017).
[Crossref]

E. Hertle, L. Chepyga, M. Batentschuk, and L. Zigan, “Influence of codoping on the luminescence properties of YAG:Dy for high temperature phosphor thermometry,” J. Lumin. 182, 200–207 (2017).
[Crossref]

S. S. Zhou, X. T. Wei, X. Y. Li, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

F. Huang and D. Q. Chen, “Synthesis of Mn2+: Zn2SiO4-Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions,” J. Mater. Chem. C 5, 5176–5182 (2017).
[Crossref]

R. Shi, L. T. Lin, P. Dorenbos, and H. B. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C 5, 10737–10745 (2017).
[Crossref]

2016 (4)

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26, 3139–3145 (2016).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
[Crossref]

S. Hu, C. H. Lu, X. X. Liu, and Z. Z. Xu, “Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics,” Opt. Mater. 60, 394–397 (2016).
[Crossref]

Z. Liang, F. Qin, Y. D. Zheng, Z. G. Zhang, and W. W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sens. Actuators A Phys. 238, 215–219 (2016).
[Crossref]

2015 (1)

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7, 17261–17267 (2015).
[Crossref]

2014 (2)

2013 (1)

S. Zhang, H. B. Liang, and C. M. Liu, “Increased 1D2 red emission of Pr3+ in NaGdTiO4:Pr3+ due to temperature-assisted host sensitization and its color variation,” J. Phys. Chem. C 117, 2216–2221 (2013).
[Crossref]

2007 (1)

P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19, 386230 (2007).
[Crossref]

2006 (2)

C. Koepke, K. Wisniewski, D. Dyl, M. Grinberg, and M. Malinowski, “Evidence for existence of the trapped exciton states in Pr3+-doped LiNbO3 crystal,” Opt. Mater. 28, 137–142 (2006).
[Crossref]

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28, 9–13 (2006).
[Crossref]

2004 (1)

W. Gryk, B. Kuklinski, M. Grinberg, and M. Malinowski, “High pressure spectroscopy of Pr3+ in LiNbO3,” J. Alloy. Compd. 380, 230–234 (2004).
[Crossref]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[Crossref]

1971 (1)

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515–4516 (1971).
[Crossref]

Aguilo, M.

O. A. Savchuk, J. J. Carvajal, C. D. S. Brites, L. D. Carlos, M. Aguilo, and F. Diaz, “Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles,” Nanoscale 10, 6602–6610 (2018).
[Crossref]

Balabhadra, S.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7, 17261–17267 (2015).
[Crossref]

Batentschuk, M.

E. Hertle, L. Chepyga, M. Batentschuk, and L. Zigan, “Influence of codoping on the luminescence properties of YAG:Dy for high temperature phosphor thermometry,” J. Lumin. 182, 200–207 (2017).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[Crossref]

Benayas, A.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

Bettinelli, M.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7, 17261–17267 (2015).
[Crossref]

P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19, 386230 (2007).
[Crossref]

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28, 9–13 (2006).
[Crossref]

Boutinaud, P.

P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19, 386230 (2007).
[Crossref]

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28, 9–13 (2006).
[Crossref]

Brites, C. D. S.

C. D. S. Brites, K. Fiaczyk, J. Ramalho, M. Sojka, L. D. Carlos, and E. Zych, “Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+,” Adv. Opt. Mater. 6, 1701318 (2018).
[Crossref]

O. A. Savchuk, J. J. Carvajal, C. D. S. Brites, L. D. Carlos, M. Aguilo, and F. Diaz, “Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles,” Nanoscale 10, 6602–6610 (2018).
[Crossref]

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7, 17261–17267 (2015).
[Crossref]

Cai, J. J.

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
[Crossref]

Cao, J. K.

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
[Crossref]

Cao, W. W.

Z. Liang, F. Qin, Y. D. Zheng, Z. G. Zhang, and W. W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sens. Actuators A Phys. 238, 215–219 (2016).
[Crossref]

Caputo, G.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

Carlos, L. D.

O. A. Savchuk, J. J. Carvajal, C. D. S. Brites, L. D. Carlos, M. Aguilo, and F. Diaz, “Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles,” Nanoscale 10, 6602–6610 (2018).
[Crossref]

C. D. S. Brites, K. Fiaczyk, J. Ramalho, M. Sojka, L. D. Carlos, and E. Zych, “Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+,” Adv. Opt. Mater. 6, 1701318 (2018).
[Crossref]

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7, 17261–17267 (2015).
[Crossref]

Carvajal, J. J.

O. A. Savchuk, J. J. Carvajal, C. D. S. Brites, L. D. Carlos, M. Aguilo, and F. Diaz, “Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles,” Nanoscale 10, 6602–6610 (2018).
[Crossref]

Cavalli, E.

P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19, 386230 (2007).
[Crossref]

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28, 9–13 (2006).
[Crossref]

Chen, D. Q.

F. Huang and D. Q. Chen, “Synthesis of Mn2+: Zn2SiO4-Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions,” J. Mater. Chem. C 5, 5176–5182 (2017).
[Crossref]

Chen, Y. H.

S. S. Zhou, X. T. Wei, X. Y. Li, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
[Crossref]

X. N. Tian, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4:Nd3+,” Opt. Express 22, 30333–30345 (2014).
[Crossref]

Chen, Z. J.

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

Chepyga, L.

E. Hertle, L. Chepyga, M. Batentschuk, and L. Zigan, “Influence of codoping on the luminescence properties of YAG:Dy for high temperature phosphor thermometry,” J. Lumin. 182, 200–207 (2017).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[Crossref]

Cortelletti, P.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

Debasu, M. L.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7, 17261–17267 (2015).
[Crossref]

Deng, D. G.

R. S. Lei, X. Y. Luo, Z. Y. Yuan, H. P. Wang, F. F. Huang, D. G. Deng, and S. Q. Xu, “Ultrahigh-sensitive optical temperature sensing in Pr3+: Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence,” J. Lumin. 205, 440–445 (2019).
[Crossref]

Diaz, F.

O. A. Savchuk, J. J. Carvajal, C. D. S. Brites, L. D. Carlos, M. Aguilo, and F. Diaz, “Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles,” Nanoscale 10, 6602–6610 (2018).
[Crossref]

Dorenbos, P.

R. Shi, L. T. Lin, P. Dorenbos, and H. B. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C 5, 10737–10745 (2017).
[Crossref]

Duan, C. K.

S. S. Zhou, C. K. Duan, M. Yin, X. L. Liu, S. Han, S. B. Zhang, and X. M. Li, “Optical thermometry based on cooperation of temperature-induced shift of charge transfer band edge and thermal coupling,” Opt. Express 26, 27339–27345 (2018).
[Crossref]

S. S. Zhou, X. T. Wei, X. Y. Li, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C 5, 1501–1507 (2017).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
[Crossref]

X. N. Tian, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4:Nd3+,” Opt. Express 22, 30333–30345 (2014).
[Crossref]

Dyl, D.

C. Koepke, K. Wisniewski, D. Dyl, M. Grinberg, and M. Malinowski, “Evidence for existence of the trapped exciton states in Pr3+-doped LiNbO3 crystal,” Opt. Mater. 28, 137–142 (2006).
[Crossref]

Facciotti, C.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

Fiaczyk, K.

C. D. S. Brites, K. Fiaczyk, J. Ramalho, M. Sojka, L. D. Carlos, and E. Zych, “Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+,” Adv. Opt. Mater. 6, 1701318 (2018).
[Crossref]

Fonger, W. H.

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515–4516 (1971).
[Crossref]

Gao, Y.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26, 3139–3145 (2016).
[Crossref]

Grinberg, M.

C. Koepke, K. Wisniewski, D. Dyl, M. Grinberg, and M. Malinowski, “Evidence for existence of the trapped exciton states in Pr3+-doped LiNbO3 crystal,” Opt. Mater. 28, 137–142 (2006).
[Crossref]

W. Gryk, B. Kuklinski, M. Grinberg, and M. Malinowski, “High pressure spectroscopy of Pr3+ in LiNbO3,” J. Alloy. Compd. 380, 230–234 (2004).
[Crossref]

Gryk, W.

W. Gryk, B. Kuklinski, M. Grinberg, and M. Malinowski, “High pressure spectroscopy of Pr3+ in LiNbO3,” J. Alloy. Compd. 380, 230–234 (2004).
[Crossref]

Guo, C. F.

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C 5, 1501–1507 (2017).
[Crossref]

Guo, H.

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
[Crossref]

Han, S.

Hertle, E.

E. Hertle, L. Chepyga, M. Batentschuk, and L. Zigan, “Influence of codoping on the luminescence properties of YAG:Dy for high temperature phosphor thermometry,” J. Lumin. 182, 200–207 (2017).
[Crossref]

Hu, F. F.

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C 5, 1501–1507 (2017).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
[Crossref]

Hu, J. L.

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

Hu, S.

S. Hu, C. H. Lu, X. X. Liu, and Z. Z. Xu, “Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics,” Opt. Mater. 60, 394–397 (2016).
[Crossref]

Huang, F.

F. Huang and D. Q. Chen, “Synthesis of Mn2+: Zn2SiO4-Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions,” J. Mater. Chem. C 5, 5176–5182 (2017).
[Crossref]

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26, 3139–3145 (2016).
[Crossref]

Huang, F. F.

R. S. Lei, X. Y. Luo, Z. Y. Yuan, H. P. Wang, F. F. Huang, D. G. Deng, and S. Q. Xu, “Ultrahigh-sensitive optical temperature sensing in Pr3+: Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence,” J. Lumin. 205, 440–445 (2019).
[Crossref]

Huang, Z.

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

Ji, C. Y.

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

Koepke, C.

C. Koepke, K. Wisniewski, D. Dyl, M. Grinberg, and M. Malinowski, “Evidence for existence of the trapped exciton states in Pr3+-doped LiNbO3 crystal,” Opt. Mater. 28, 137–142 (2006).
[Crossref]

Kuklinski, B.

W. Gryk, B. Kuklinski, M. Grinberg, and M. Malinowski, “High pressure spectroscopy of Pr3+ in LiNbO3,” J. Alloy. Compd. 380, 230–234 (2004).
[Crossref]

Lei, R. S.

R. S. Lei, X. Y. Luo, Z. Y. Yuan, H. P. Wang, F. F. Huang, D. G. Deng, and S. Q. Xu, “Ultrahigh-sensitive optical temperature sensing in Pr3+: Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence,” J. Lumin. 205, 440–445 (2019).
[Crossref]

Li, J.

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

Li, T.

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C 5, 1501–1507 (2017).
[Crossref]

Li, X. M.

Li, X. Y.

S. S. Zhou, X. T. Wei, X. Y. Li, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
[Crossref]

Lian, S. X.

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

Liang, H. B.

R. Shi, L. T. Lin, P. Dorenbos, and H. B. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C 5, 10737–10745 (2017).
[Crossref]

S. Zhang, H. B. Liang, and C. M. Liu, “Increased 1D2 red emission of Pr3+ in NaGdTiO4:Pr3+ due to temperature-assisted host sensitization and its color variation,” J. Phys. Chem. C 117, 2216–2221 (2013).
[Crossref]

Liang, Z.

Z. Liang, F. Qin, Y. D. Zheng, Z. G. Zhang, and W. W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sens. Actuators A Phys. 238, 215–219 (2016).
[Crossref]

Lin, H.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26, 3139–3145 (2016).
[Crossref]

Lin, L. T.

R. Shi, L. T. Lin, P. Dorenbos, and H. B. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C 5, 10737–10745 (2017).
[Crossref]

Lin, S. P.

Liu, C. M.

S. Zhang, H. B. Liang, and C. M. Liu, “Increased 1D2 red emission of Pr3+ in NaGdTiO4:Pr3+ due to temperature-assisted host sensitization and its color variation,” J. Phys. Chem. C 117, 2216–2221 (2013).
[Crossref]

Liu, X. L.

Liu, X. X.

S. Hu, C. H. Lu, X. X. Liu, and Z. Z. Xu, “Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics,” Opt. Mater. 60, 394–397 (2016).
[Crossref]

Long, S. W.

Lu, C. H.

S. Hu, C. H. Lu, X. X. Liu, and Z. Z. Xu, “Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics,” Opt. Mater. 60, 394–397 (2016).
[Crossref]

Luo, X. Y.

R. S. Lei, X. Y. Luo, Z. Y. Yuan, H. P. Wang, F. F. Huang, D. G. Deng, and S. Q. Xu, “Ultrahigh-sensitive optical temperature sensing in Pr3+: Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence,” J. Lumin. 205, 440–445 (2019).
[Crossref]

Ma, D. C.

Ma, Q.

D. Y. Wang, P. P. Zhang, Q. Ma, J. C. Zhang, and Y. H. Wang, “Synthesis, optical properties and application of Y7O6F9:Er3+ for sensing the chip temperature of a light emitting diode,” J. Mater. Chem. C 6, 13352–13358 (2018).
[Crossref]

Mahiou, R.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28, 9–13 (2006).
[Crossref]

Malinowski, M.

C. Koepke, K. Wisniewski, D. Dyl, M. Grinberg, and M. Malinowski, “Evidence for existence of the trapped exciton states in Pr3+-doped LiNbO3 crystal,” Opt. Mater. 28, 137–142 (2006).
[Crossref]

W. Gryk, B. Kuklinski, M. Grinberg, and M. Malinowski, “High pressure spectroscopy of Pr3+ in LiNbO3,” J. Alloy. Compd. 380, 230–234 (2004).
[Crossref]

Malta, O. L.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7, 17261–17267 (2015).
[Crossref]

Nunes, L. A. O.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7, 17261–17267 (2015).
[Crossref]

Oubaha, M.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28, 9–13 (2006).
[Crossref]

Pedroni, M.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

Peng, H. X.

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

Peng, Y. X.

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

Pinel, E.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28, 9–13 (2006).
[Crossref]

Pinna, N.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

Qin, F.

Z. Liang, F. Qin, Y. D. Zheng, Z. G. Zhang, and W. W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sens. Actuators A Phys. 238, 215–219 (2016).
[Crossref]

Quintanilla, M.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

Ramalho, J.

C. D. S. Brites, K. Fiaczyk, J. Ramalho, M. Sojka, L. D. Carlos, and E. Zych, “Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+,” Adv. Opt. Mater. 6, 1701318 (2018).
[Crossref]

Rocha, J.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7, 17261–17267 (2015).
[Crossref]

Savchuk, O. A.

O. A. Savchuk, J. J. Carvajal, C. D. S. Brites, L. D. Carlos, M. Aguilo, and F. Diaz, “Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles,” Nanoscale 10, 6602–6610 (2018).
[Crossref]

Shi, R.

R. Shi, L. T. Lin, P. Dorenbos, and H. B. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C 5, 10737–10745 (2017).
[Crossref]

Skripka, A.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

Sojka, M.

C. D. S. Brites, K. Fiaczyk, J. Ramalho, M. Sojka, L. D. Carlos, and E. Zych, “Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+,” Adv. Opt. Mater. 6, 1701318 (2018).
[Crossref]

Speghini, A.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

Struck, C. W.

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515–4516 (1971).
[Crossref]

Suo, H.

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C 5, 1501–1507 (2017).
[Crossref]

Tian, X. N.

Tian, X. Y.

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

Vetrone, F.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[Crossref]

Wang, B.

Wang, D. Y.

D. Y. Wang, P. P. Zhang, Q. Ma, J. C. Zhang, and Y. H. Wang, “Synthesis, optical properties and application of Y7O6F9:Er3+ for sensing the chip temperature of a light emitting diode,” J. Mater. Chem. C 6, 13352–13358 (2018).
[Crossref]

Wang, H. P.

R. S. Lei, X. Y. Luo, Z. Y. Yuan, H. P. Wang, F. F. Huang, D. G. Deng, and S. Q. Xu, “Ultrahigh-sensitive optical temperature sensing in Pr3+: Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence,” J. Lumin. 205, 440–445 (2019).
[Crossref]

Wang, R.

Wang, S. M.

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

Wang, Y. H.

D. Y. Wang, P. P. Zhang, Q. Ma, J. C. Zhang, and Y. H. Wang, “Synthesis, optical properties and application of Y7O6F9:Er3+ for sensing the chip temperature of a light emitting diode,” J. Mater. Chem. C 6, 13352–13358 (2018).
[Crossref]

Wang, Y. S.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26, 3139–3145 (2016).
[Crossref]

Wei, X. T.

S. S. Zhou, X. T. Wei, X. Y. Li, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
[Crossref]

X. N. Tian, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4:Nd3+,” Opt. Express 22, 30333–30345 (2014).
[Crossref]

Wen, J.

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

Wisniewski, K.

C. Koepke, K. Wisniewski, D. Dyl, M. Grinberg, and M. Malinowski, “Evidence for existence of the trapped exciton states in Pr3+-doped LiNbO3 crystal,” Opt. Mater. 28, 137–142 (2006).
[Crossref]

Xing, L. L.

Xu, J.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26, 3139–3145 (2016).
[Crossref]

Xu, S. Q.

R. S. Lei, X. Y. Luo, Z. Y. Yuan, H. P. Wang, F. F. Huang, D. G. Deng, and S. Q. Xu, “Ultrahigh-sensitive optical temperature sensing in Pr3+: Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence,” J. Lumin. 205, 440–445 (2019).
[Crossref]

Xu, W.

Xu, Y. L.

Xu, Z. Z.

S. Hu, C. H. Lu, X. X. Liu, and Z. Z. Xu, “Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics,” Opt. Mater. 60, 394–397 (2016).
[Crossref]

Yang, M. M.

Yin, M.

S. S. Zhou, C. K. Duan, M. Yin, X. L. Liu, S. Han, S. B. Zhang, and X. M. Li, “Optical thermometry based on cooperation of temperature-induced shift of charge transfer band edge and thermal coupling,” Opt. Express 26, 27339–27345 (2018).
[Crossref]

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C 5, 1501–1507 (2017).
[Crossref]

S. S. Zhou, X. T. Wei, X. Y. Li, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
[Crossref]

X. N. Tian, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4:Nd3+,” Opt. Express 22, 30333–30345 (2014).
[Crossref]

Yuan, Z. Y.

R. S. Lei, X. Y. Luo, Z. Y. Yuan, H. P. Wang, F. F. Huang, D. G. Deng, and S. Q. Xu, “Ultrahigh-sensitive optical temperature sensing in Pr3+: Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence,” J. Lumin. 205, 440–445 (2019).
[Crossref]

Zhang, J. C.

D. Y. Wang, P. P. Zhang, Q. Ma, J. C. Zhang, and Y. H. Wang, “Synthesis, optical properties and application of Y7O6F9:Er3+ for sensing the chip temperature of a light emitting diode,” J. Mater. Chem. C 6, 13352–13358 (2018).
[Crossref]

Zhang, P. P.

D. Y. Wang, P. P. Zhang, Q. Ma, J. C. Zhang, and Y. H. Wang, “Synthesis, optical properties and application of Y7O6F9:Er3+ for sensing the chip temperature of a light emitting diode,” J. Mater. Chem. C 6, 13352–13358 (2018).
[Crossref]

Zhang, S.

S. Zhang, H. B. Liang, and C. M. Liu, “Increased 1D2 red emission of Pr3+ in NaGdTiO4:Pr3+ due to temperature-assisted host sensitization and its color variation,” J. Phys. Chem. C 117, 2216–2221 (2013).
[Crossref]

Zhang, S. B.

Zhang, Z. G.

Z. Liang, F. Qin, Y. D. Zheng, Z. G. Zhang, and W. W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sens. Actuators A Phys. 238, 215–219 (2016).
[Crossref]

L. L. Xing, Y. L. Xu, R. Wang, W. Xu, and Z. G. Zhang, “Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal,” Opt. Lett. 39, 454–457 (2014).
[Crossref]

Zhang, Z. Y.

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C 5, 1501–1507 (2017).
[Crossref]

Zhao, X. Q.

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C 5, 1501–1507 (2017).
[Crossref]

Zheng, Y. D.

Z. Liang, F. Qin, Y. D. Zheng, Z. G. Zhang, and W. W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sens. Actuators A Phys. 238, 215–219 (2016).
[Crossref]

Zhou, J. C.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26, 3139–3145 (2016).
[Crossref]

Zhou, S. S.

S. S. Zhou, C. K. Duan, M. Yin, X. L. Liu, S. Han, S. B. Zhang, and X. M. Li, “Optical thermometry based on cooperation of temperature-induced shift of charge transfer band edge and thermal coupling,” Opt. Express 26, 27339–27345 (2018).
[Crossref]

S. S. Zhou, X. T. Wei, X. Y. Li, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

Zhu, Y. Z.

Zigan, L.

E. Hertle, L. Chepyga, M. Batentschuk, and L. Zigan, “Influence of codoping on the luminescence properties of YAG:Dy for high temperature phosphor thermometry,” J. Lumin. 182, 200–207 (2017).
[Crossref]

Zych, E.

C. D. S. Brites, K. Fiaczyk, J. Ramalho, M. Sojka, L. D. Carlos, and E. Zych, “Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+,” Adv. Opt. Mater. 6, 1701318 (2018).
[Crossref]

Adv. Funct. Mater. (1)

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states,” Adv. Funct. Mater. 26, 3139–3145 (2016).
[Crossref]

Adv. Opt. Mater. (1)

C. D. S. Brites, K. Fiaczyk, J. Ramalho, M. Sojka, L. D. Carlos, and E. Zych, “Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+,” Adv. Opt. Mater. 6, 1701318 (2018).
[Crossref]

J. Alloy. Compd. (2)

X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, and Y. X. Peng, “Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor,” J. Alloy. Compd. 784, 628–640 (2019).
[Crossref]

W. Gryk, B. Kuklinski, M. Grinberg, and M. Malinowski, “High pressure spectroscopy of Pr3+ in LiNbO3,” J. Alloy. Compd. 380, 230–234 (2004).
[Crossref]

J. Appl. Phys. (2)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
[Crossref]

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S,” J. Appl. Phys. 42, 4515–4516 (1971).
[Crossref]

J. Lumin. (2)

E. Hertle, L. Chepyga, M. Batentschuk, and L. Zigan, “Influence of codoping on the luminescence properties of YAG:Dy for high temperature phosphor thermometry,” J. Lumin. 182, 200–207 (2017).
[Crossref]

R. S. Lei, X. Y. Luo, Z. Y. Yuan, H. P. Wang, F. F. Huang, D. G. Deng, and S. Q. Xu, “Ultrahigh-sensitive optical temperature sensing in Pr3+: Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence,” J. Lumin. 205, 440–445 (2019).
[Crossref]

J. Mater. Chem. C (5)

D. Y. Wang, P. P. Zhang, Q. Ma, J. C. Zhang, and Y. H. Wang, “Synthesis, optical properties and application of Y7O6F9:Er3+ for sensing the chip temperature of a light emitting diode,” J. Mater. Chem. C 6, 13352–13358 (2018).
[Crossref]

F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, and M. Yin, “Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion,” J. Mater. Chem. C 4, 9976–9985 (2016).
[Crossref]

F. Huang and D. Q. Chen, “Synthesis of Mn2+: Zn2SiO4-Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions,” J. Mater. Chem. C 5, 5176–5182 (2017).
[Crossref]

R. Shi, L. T. Lin, P. Dorenbos, and H. B. Liang, “Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6,” J. Mater. Chem. C 5, 10737–10745 (2017).
[Crossref]

H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, and C. F. Guo, “All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window,” J. Mater. Chem. C 5, 1501–1507 (2017).
[Crossref]

J. Phys. Chem. C (1)

S. Zhang, H. B. Liang, and C. M. Liu, “Increased 1D2 red emission of Pr3+ in NaGdTiO4:Pr3+ due to temperature-assisted host sensitization and its color variation,” J. Phys. Chem. C 117, 2216–2221 (2013).
[Crossref]

J. Phys. Condens. Matter (1)

P. Boutinaud, E. Cavalli, and M. Bettinelli, “Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6,” J. Phys. Condens. Matter 19, 386230 (2007).
[Crossref]

Nanoscale (3)

O. A. Savchuk, J. J. Carvajal, C. D. S. Brites, L. D. Carlos, M. Aguilo, and F. Diaz, “Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles,” Nanoscale 10, 6602–6610 (2018).
[Crossref]

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10, 2568–2576 (2018).
[Crossref]

S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, and L. D. Carlos, “Boosting the sensitivity of Nd3+-based luminescent nanothermometers,” Nanoscale 7, 17261–17267 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (3)

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28, 9–13 (2006).
[Crossref]

C. Koepke, K. Wisniewski, D. Dyl, M. Grinberg, and M. Malinowski, “Evidence for existence of the trapped exciton states in Pr3+-doped LiNbO3 crystal,” Opt. Mater. 28, 137–142 (2006).
[Crossref]

S. Hu, C. H. Lu, X. X. Liu, and Z. Z. Xu, “Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics,” Opt. Mater. 60, 394–397 (2016).
[Crossref]

Opt. Mater. Express (1)

Sens. Actuators A Phys. (1)

Z. Liang, F. Qin, Y. D. Zheng, Z. G. Zhang, and W. W. Cao, “Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal,” Sens. Actuators A Phys. 238, 215–219 (2016).
[Crossref]

Sens. Actuators B Chem. (1)

S. S. Zhou, X. T. Wei, X. Y. Li, Y. H. Chen, C. K. Duan, and M. Yin, “Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles,” Sens. Actuators B Chem. 246, 352–357 (2017).
[Crossref]

Supplementary Material (1)

NameDescription
» Data File 1       The constant A and energy gap ?E between TCELs in various crystals derived based on the results in relevant literature and formula

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Comparison between FIR-Em and FIR-Ex thermometry strategies. Schematic diagrams for (a) FIR-Em and (b) FIR-Ex strategies applied to doped LN materials (doped LN structure: gray-O2, cyan-Nb5+, orange-Li+, magenta-Pr3+). Schematic configurational coordinate diagrams for (c) the FIR-Em strategy in Pr:CLN, and (d), (e) the FIR-Ex strategy in Pr:CLN. The excitation wavelengths associated with (c) and (d) are 463 nm, while that with (e) is 360 nm. The solid lines present the crucial radiative processes, while the dashed curves illustrate the nonradiative processes Rx (x=1 to 6). IVCT1/2 represents the two relevant Pr3+–Nb5+ IVCT states.
Fig. 2.
Fig. 2. Temperature-dependent excitation and emission spectra. The normalized fluorescence (a) excitation spectra monitored at 618 nm and (b) emission spectra under 360 and 463 nm excitations at room temperature for Pr:CLN and Pr:Mg:CLN. The temperature-dependent excitation spectra of (c) Pr:CLN and (d) Pr:Mg:CLN monitored at 618 nm at temperatures ranging from 20 to 430 K. The spectra are normalized with respect to the (c), (d) 463 nm excitation peaks.
Fig. 3.
Fig. 3. Thermal sensitivity of rationally doped CLN employing the FIR-Ex strategy. The temperature dependences of normalized intensity of 618 nm red emission under 360 and 463 nm excitations along with the fitting curves (solid line) for (a) Pr:CLN and (b) Pr:Mg:CLN. The temperature dependences of the emission intensity ratio R360/463 (left vertical axis) and the absolute/relative temperature sensitivity SA/SR (right vertical axis) for (c) Pr:CLN and (d) Pr:Mg:CLN. The notation “fitting curves x” means the function is obtained by implementing the Eq. (x).
Fig. 4.
Fig. 4. (a) Comparison of absolute temperature sensitivities SA in different thermometry strategies, including FIR-Ex strategies: Pr:CLN (360 and 463 nm excitations) (this work); Pr:Mg:CLN (360 and 463 nm excitations) (this work); Pr:Mg:CLN#2 (280 and 463 nm excitations) (this work); and FIR-Em strategies: Pr:CaTiO3 (Ref. [14]); Nd:NaYF4#1 (740 and 864 nm emissions) (Ref. [6]); Nd:NaYF4#2 (740 and 803 nm emissions) (Ref. [6]); Er:Y7O6F9 (Ref. [4]); Er:NaYb2F7 (Ref. [2]); Pr:YAG (Ref. [20]); Tm:YF3 (Ref. [21]); and Dy:YAG (Ref. [1]). As for absolute sensitivities of FIR-Em strategies, the solid line represents data reported in reference papers, while the dashed line represents fitting results based on the principle of FIR-Em scheme (See Data File 1). (b) Comparison of relative temperature sensitivities SR in different thermometry strategies. In the inset, the temperature dependences of normalized intensity of 618 nm red emission under 280 nm excitation (left vertical axis) and emission intensity ratio R280/463 (right vertical axis) for Pr:Mg:CLN.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R=I1I2=Aexp(ΔEkBT)+C,
SA=|RT|×100%,
SR=|1R×RT|×100%.
IN=I(T)I0=[1+Aexp(ΔEact,1kBT)]1,
IN=I(T)I0=[1+Bexp(ΔEact,1kBT)+Cexp(ΔEact,2kBT)]1,
R360/463=I(λex=360  nm)I(λex=463  nm)=[1+Bexp(ΔEact,1kBT)+Cexp(ΔEact,2kBT)]/[1+Aexp(ΔEact,1kBT)]+D.
δT=1SR×δRR,