Abstract

We demonstrate 5 dB net gain in an erbium-doped tellurium-oxide-coated silicon nitride waveguide. The amplifier design leverages the high refractive index and high gain in erbium-doped tellurite glass as well as the ultra-low losses and mature, reliable, and low-cost fabrication methods of silicon nitride waveguide technology. We show that the waveguide platform demonstrates low background propagation losses of 0.25 dB/cm based on a ring resonator device with a Q factor of 1.3×106 at 1640 nm. We measure 5 dB peak net gain at 1558 nm and >3  dB of net gain across the C band in a 6.7 cm long waveguide for 35 mW of launched 1470 nm pump power. Gain per unit length of 1.7 and 1.4 dB/cm is measured in a 2.2 cm long waveguide for 970 and 1470 nm pump wavelengths, respectively. Amplifier simulations predict that >10  dB gain can be achieved across the C band simply by optimizing waveguide length and fiber-chip coupling. These results demonstrate a promising approach for the monolithic integration of compact erbium-doped waveguide amplifiers on silicon nitride chips and within silicon-based photonic integrated circuits.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss TeO2-coated Si3N4 waveguides for application in photonic integrated circuits

Henry C. Frankis, Khadijeh Miarabbas Kiani, Dawson B. Bonneville, Chenglin Zhang, Samuel Norris, Richard Mateman, Arne Leinse, Nabil D. Bassim, Andrew P. Knights, and Jonathan D. B. Bradley
Opt. Express 27(9) 12529-12540 (2019)

Erbium-doped spiral amplifiers with 20 dB of net gain on silicon

Sergio A. Vázquez-Córdova, Meindert Dijkstra, Edward H. Bernhardi, Feridun Ay, Kerstin Wörhoff, Jennifer L. Herek, Sonia M. García-Blanco, and Markus Pollnau
Opt. Express 22(21) 25993-26004 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
    [Crossref]
  2. C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
    [Crossref]
  3. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
    [Crossref]
  4. E. Shah Hosseini, S. Yegnanarayanan, A. Hossein Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009).
    [Crossref]
  5. D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
    [Crossref]
  6. C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
    [Crossref]
  7. R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
    [Crossref]
  8. A. Fernández Gavela, D. Grajales García, J. Ramirez, and L. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
    [Crossref]
  9. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  10. W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
    [Crossref]
  11. E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R. J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “AIM process design kit (AIMPDKv2. 0): silicon photonics passive and active component libraries on a 300  mm wafer,” in Optical Fiber Communications Conference and Exposition (2018), pp. 1–3.
  12. Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
    [Crossref]
  13. D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159–1175 (2015).
    [Crossref]
  14. Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
    [Crossref]
  15. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54  μm,” Electron. Lett. 23, 1026–1028 (1987).
    [Crossref]
  16. C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High-gain broad spectral bandwidth erbium-doped fibre amplifier pumped near 1.5  μm,” Electron. Lett. 25, 910–911 (1989).
    [Crossref]
  17. Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
    [Crossref]
  18. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
    [Crossref]
  19. S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20  dB of net gain on silicon,” Opt. Express 22, 25993–26004 (2014).
    [Crossref]
  20. J. Mu, M. Dijkstra, and S. M. García-Blanco, “Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4,” IEEE Photon. Technol. Lett. 31, 771–774 (2019).
    [Crossref]
  21. J. Mu, M. Dijkstra, Y. Yong, M. de Goede, L. Chang, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform,” IEEE J. Sel. Top. Quantum Electron. 25, 8200911 (2019).
    [Crossref]
  22. Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. S. Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38, 1760–1762 (2013).
    [Crossref]
  23. M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, and D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38, 4825–4828 (2013).
    [Crossref]
  24. M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22, 10655–10660 (2014).
    [Crossref]
  25. E. S. Hosseini, Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75  mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014).
    [Crossref]
  26. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
    [Crossref]
  27. E. S. Magden, N. Li, Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25, 18058–18065 (2017).
    [Crossref]
  28. N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-μm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26, 2220–2230 (2018).
    [Crossref]
  29. J. D. B. Bradley, E. S. Hosseini, Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium-and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22, 12226–12237 (2014).
    [Crossref]
  30. Z. Su, N. Li, E. S. Magden, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41, 5708–5711 (2016).
    [Crossref]
  31. N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
    [Crossref]
  32. L. Wang, R. Guo, B. Wang, X. Wang, and Z. Zhou, “Hybrid Si3N4-Er/Yb silicate waveguides for amplifier application,” IEEE Photon. Technol. Lett. 24, 900–902 (2012).
    [Crossref]
  33. J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
    [Crossref]
  34. R. A. H. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data, 2nd ed. (CRC Press, 2012).
  35. V. A. G. Rivera and D. Manzani, Technological Advances in Tellurite Glasses: Properties, Processing, and Applications (Springer, 2017).
  36. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
    [Crossref]
  37. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
    [Crossref]
  38. S. J. Madden and K. T. Vu, “Very low loss reactively ion etched tellurium dioxide planar rib waveguides for linear and non-linear optics,” Opt. Express 17, 17645–17651 (2009).
    [Crossref]
  39. K. Vu and S. Madden, “Tellurium dioxide erbium doped planar rib waveguide amplifiers with net gain and 2.8  dB/cm internal gain,” Opt. Express 18, 19192–19200 (2010).
    [Crossref]
  40. K. Vu, S. Farahani, and S. Madden, “980  nm pumped erbium doped tellurium oxide planar rib waveguide laser and amplifier with gain in S, C and L band,” Opt. Express 23, 747–755 (2015).
    [Crossref]
  41. H. C. Frankis, K. Miarabbas Kiani, D. B. Bonneville, C. Zhang, S. Norris, R. Mateman, A. Leinse, N. D. Bassim, A. P. Knights, and J. D. B. Bradley, “Low-loss TeO2-coated Si3N4 waveguides for application in photonic integrated circuits,” Opt. Express 27, 12529–12540 (2019).
    [Crossref]
  42. H. C. Frankis, K. Miarabbas Kiani, D. Su, R. Mateman, A. Leinse, and J. D. B. Bradley, “High-Q tellurium-oxide-coated silicon nitride microring resonators,” Opt. Lett. 44, 118–121 (2019).
    [Crossref]
  43. S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH-content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354, 1357–1360 (2008).
    [Crossref]
  44. L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117, 6759–6776 (2013).
    [Crossref]
  45. Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. Hwang, J. Kim, H. Seo, and N. Peyghambarian, “Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass,” J. Opt. Soc. Am. B 18, 1928–1934 (2001).
    [Crossref]
  46. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53  μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
    [Crossref]

2019 (5)

J. Mu, M. Dijkstra, and S. M. García-Blanco, “Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4,” IEEE Photon. Technol. Lett. 31, 771–774 (2019).
[Crossref]

J. Mu, M. Dijkstra, Y. Yong, M. de Goede, L. Chang, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform,” IEEE J. Sel. Top. Quantum Electron. 25, 8200911 (2019).
[Crossref]

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

H. C. Frankis, K. Miarabbas Kiani, D. Su, R. Mateman, A. Leinse, and J. D. B. Bradley, “High-Q tellurium-oxide-coated silicon nitride microring resonators,” Opt. Lett. 44, 118–121 (2019).
[Crossref]

H. C. Frankis, K. Miarabbas Kiani, D. B. Bonneville, C. Zhang, S. Norris, R. Mateman, A. Leinse, N. D. Bassim, A. P. Knights, and J. D. B. Bradley, “Low-loss TeO2-coated Si3N4 waveguides for application in photonic integrated circuits,” Opt. Express 27, 12529–12540 (2019).
[Crossref]

2018 (5)

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-μm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26, 2220–2230 (2018).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
[Crossref]

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

2017 (2)

2016 (3)

Z. Su, N. Li, E. S. Magden, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41, 5708–5711 (2016).
[Crossref]

A. Fernández Gavela, D. Grajales García, J. Ramirez, and L. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref]

Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
[Crossref]

2015 (3)

2014 (4)

2013 (6)

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. S. Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38, 1760–1762 (2013).
[Crossref]

C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

M. Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, and D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38, 4825–4828 (2013).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117, 6759–6776 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[Crossref]

2012 (2)

L. Wang, R. Guo, B. Wang, X. Wang, and Z. Zhou, “Hybrid Si3N4-Er/Yb silicate waveguides for amplifier application,” IEEE Photon. Technol. Lett. 24, 900–902 (2012).
[Crossref]

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (2)

2008 (1)

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH-content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354, 1357–1360 (2008).
[Crossref]

2001 (1)

1998 (1)

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

1997 (1)

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

1996 (1)

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53  μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[Crossref]

1989 (1)

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High-gain broad spectral bandwidth erbium-doped fibre amplifier pumped near 1.5  μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

1987 (1)

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54  μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

Adam, T. N.

Adibi, A.

Agazzi, L.

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117, 6759–6776 (2013).
[Crossref]

Ainslie, B. J.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High-gain broad spectral bandwidth erbium-doped fibre amplifier pumped near 1.5  μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Albers, H.

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

Alippi, A.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Alonso-Ramos, C.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Armitage, J. R.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High-gain broad spectral bandwidth erbium-doped fibre amplifier pumped near 1.5  μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Atkins, C. G.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High-gain broad spectral bandwidth erbium-doped fibre amplifier pumped near 1.5  μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Autere, A.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Ay, F.

Baiocco, C.

Baldycheva, A.

Barton, J. S.

Bassim, N. D.

Bauters, J. F.

Belt, M.

Benelajla, M.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Bergman, K.

Bernardus Timens, R.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Bernhardi, E. H.

Bernier, E.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Blumenthal, D. J.

Boller, K. J.

Boller, K.-J.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
[Crossref]

Bonneville, D. B.

Bowers, J. E.

Bradley, J. D. B.

H. C. Frankis, K. Miarabbas Kiani, D. Su, R. Mateman, A. Leinse, and J. D. B. Bradley, “High-Q tellurium-oxide-coated silicon nitride microring resonators,” Opt. Lett. 44, 118–121 (2019).
[Crossref]

H. C. Frankis, K. Miarabbas Kiani, D. B. Bonneville, C. Zhang, S. Norris, R. Mateman, A. Leinse, N. D. Bassim, A. P. Knights, and J. D. B. Bradley, “Low-loss TeO2-coated Si3N4 waveguides for application in photonic integrated circuits,” Opt. Express 27, 12529–12540 (2019).
[Crossref]

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-μm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26, 2220–2230 (2018).
[Crossref]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

E. S. Magden, N. Li, Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25, 18058–18065 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41, 5708–5711 (2016).
[Crossref]

E. S. Hosseini, Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75  mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014).
[Crossref]

J. D. B. Bradley, E. S. Hosseini, Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium-and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22, 12226–12237 (2014).
[Crossref]

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. S. Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38, 1760–1762 (2013).
[Crossref]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[Crossref]

Bruinink, C. M.

Burla, M.

Byrd, M.

Byrd, M. J.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R. J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “AIM process design kit (AIMPDKv2. 0): silicon photonics passive and active component libraries on a 300  mm wafer,” in Optical Fiber Communications Conference and Exposition (2018), pp. 1–3.

Calhoun, D.

Callahan, P. T.

Cassan, E.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Chang, L.

J. Mu, M. Dijkstra, Y. Yong, M. de Goede, L. Chang, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform,” IEEE J. Sel. Top. Quantum Electron. 25, 8200911 (2019).
[Crossref]

Chen, Q. Y.

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[Crossref]

Coolbaugh, D.

Coolbaugh, D. D.

Craig-Ryan, S. P.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High-gain broad spectral bandwidth erbium-doped fibre amplifier pumped near 1.5  μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Dai, S.

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH-content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354, 1357–1360 (2008).
[Crossref]

Davenport, M. L.

de Goede, M.

J. Mu, M. Dijkstra, Y. Yong, M. de Goede, L. Chang, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform,” IEEE J. Sel. Top. Quantum Electron. 25, 8200911 (2019).
[Crossref]

De Ridder, R. M.

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

Dekker, R.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
[Crossref]

Dijkstra, M.

J. Mu, M. Dijkstra, and S. M. García-Blanco, “Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4,” IEEE Photon. Technol. Lett. 31, 771–774 (2019).
[Crossref]

J. Mu, M. Dijkstra, Y. Yong, M. de Goede, L. Chang, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform,” IEEE J. Sel. Top. Quantum Electron. 25, 8200911 (2019).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20  dB of net gain on silicon,” Opt. Express 22, 25993–26004 (2014).
[Crossref]

Ding, Y.

Driessen, A.

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

Dumais, P.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

El-Mallawany, R. A. H.

R. A. H. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data, 2nd ed. (CRC Press, 2012).

Epping, J. P.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
[Crossref]

Espindola, R. P.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Fan, Y.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
[Crossref]

Fang, Z.

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[Crossref]

Farahani, S.

Fernández Gavela, A.

A. Fernández Gavela, D. Grajales García, J. Ramirez, and L. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref]

Frankis, H. C.

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

García-Blanco, S. M.

J. Mu, M. Dijkstra, and S. M. García-Blanco, “Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4,” IEEE Photon. Technol. Lett. 31, 771–774 (2019).
[Crossref]

J. Mu, M. Dijkstra, Y. Yong, M. de Goede, L. Chang, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform,” IEEE J. Sel. Top. Quantum Electron. 25, 8200911 (2019).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20  dB of net gain on silicon,” Opt. Express 22, 25993–26004 (2014).
[Crossref]

Geskus, D.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Geuzebroek, D.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Goodwill, D.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Grajales García, D.

A. Fernández Gavela, D. Grajales García, J. Ramirez, and L. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref]

Grootjans, R.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Guo, R.

L. Wang, R. Guo, B. Wang, X. Wang, and Z. Zhou, “Hybrid Si3N4-Er/Yb silicate waveguides for amplifier application,” IEEE Photon. Technol. Lett. 24, 900–902 (2012).
[Crossref]

Heck, M. J. R.

Heideman, R.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Heideman, R. G.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
[Crossref]

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
[Crossref]

C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]

Hendry, R.

Herek, J. L.

Hoekman, M.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
[Crossref]

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
[Crossref]

Hossein Atabaki, A.

Hosseini, E. S.

Hu, Y.

Huang, Y.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Huffman, T.

Hwang, B.

Ippen, E. P.

Jauncey, I. M.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54  μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

Jha, A.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Jiang, J.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Jiang, S.

Jiang, X.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

John, D. D.

Jose, G.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Joshi, P.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Judkins, J. B.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Kim, J.

Klein, E. J.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Knights, A. P.

Kolodziejski, L. A.

Koper, R. J. I. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53  μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

Lambeck, P. V.

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

Leake, G.

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

E. S. Magden, N. Li, Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25, 18058–18065 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41, 5708–5711 (2016).
[Crossref]

J. D. B. Bradley, E. S. Hosseini, Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium-and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22, 12226–12237 (2014).
[Crossref]

E. S. Hosseini, Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75  mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014).
[Crossref]

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. S. Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38, 1760–1762 (2013).
[Crossref]

Lechuga, L.

A. Fernández Gavela, D. Grajales García, J. Ramirez, and L. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref]

Leinse, A.

H. C. Frankis, K. Miarabbas Kiani, D. Su, R. Mateman, A. Leinse, and J. D. B. Bradley, “High-Q tellurium-oxide-coated silicon nitride microring resonators,” Opt. Lett. 44, 118–121 (2019).
[Crossref]

H. C. Frankis, K. Miarabbas Kiani, D. B. Bonneville, C. Zhang, S. Norris, R. Mateman, A. Leinse, N. D. Bassim, A. P. Knights, and J. D. B. Bradley, “Low-loss TeO2-coated Si3N4 waveguides for application in photonic integrated circuits,” Opt. Express 27, 12529–12540 (2019).
[Crossref]

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
[Crossref]

C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]

Leroux, X.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Li, N.

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-μm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26, 2220–2230 (2018).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
[Crossref]

E. S. Magden, N. Li, Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25, 18058–18065 (2017).
[Crossref]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41, 5708–5711 (2016).
[Crossref]

Li, Q.

Li, W.

Li, Y.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Lipsanen, H.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Liu, Y.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Lo, P. G. Q.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Lousteau, J.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Luo, T.

Luo, X.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Madden, S.

Madden, S. J.

Magden, E. S.

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-μm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26, 2220–2230 (2018).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
[Crossref]

E. S. Magden, N. Li, Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25, 18058–18065 (2017).
[Crossref]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41, 5708–5711 (2016).
[Crossref]

Mak, J. C.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Manzani, D.

V. A. G. Rivera and D. Manzani, Technological Advances in Tellurite Glasses: Properties, Processing, and Applications (Springer, 2017).

Marchenko, D.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Marpaung, D.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Marpaung, D. A.

Massicott, J. F.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High-gain broad spectral bandwidth erbium-doped fibre amplifier pumped near 1.5  μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Mateman, R.

Mears, R. J.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54  μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

Miarabbas Kiani, K.

Mikkelsen, J. C.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Moresco, M.

Moss, B. R.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R. J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “AIM process design kit (AIMPDKv2. 0): silicon photonics passive and active component libraries on a 300  mm wafer,” in Optical Fiber Communications Conference and Exposition (2018), pp. 1–3.

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Mu, J.

J. Mu, M. Dijkstra, and S. M. García-Blanco, “Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4,” IEEE Photon. Technol. Lett. 31, 771–774 (2019).
[Crossref]

J. Mu, M. Dijkstra, Y. Yong, M. de Goede, L. Chang, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform,” IEEE J. Sel. Top. Quantum Electron. 25, 8200911 (2019).
[Crossref]

Nikolova, D.

Norris, S.

Notaros, J.

Oldenbeuving, R. M.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
[Crossref]

C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

Pakarinen, L.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Payne, D. N.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54  μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

Pedrazzani, J. R.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Petrich, G. S.

Peyghambarian, N.

Pollnau, M.

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20  dB of net gain on silicon,” Opt. Express 22, 25993–26004 (2014).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117, 6759–6776 (2013).
[Crossref]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[Crossref]

Polman, A.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53  μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

Poon, J. K. S.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Poulton, C. V.

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
[Crossref]

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R. J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “AIM process design kit (AIMPDKv2. 0): silicon photonics passive and active component libraries on a 300  mm wafer,” in Optical Fiber Communications Conference and Exposition (2018), pp. 1–3.

Purnawirman,

E. S. Magden, N. Li, Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25, 18058–18065 (2017).
[Crossref]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41, 5708–5711 (2016).
[Crossref]

E. S. Hosseini, Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75  mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014).
[Crossref]

J. D. B. Bradley, E. S. Hosseini, Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium-and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22, 12226–12237 (2014).
[Crossref]

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. S. Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38, 1760–1762 (2013).
[Crossref]

Ramirez, J.

A. Fernández Gavela, D. Grajales García, J. Ramirez, and L. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref]

Reekie, L.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54  μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

Richards, B.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Rivera, V. A. G.

V. A. G. Rivera and D. Manzani, Technological Advances in Tellurite Glasses: Properties, Processing, and Applications (Springer, 2017).

Roeloffzen, C.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Roeloffzen, C. G.

Roeloffzen, C. G. H.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
[Crossref]

Rönn, J.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Rumley, S.

Ruocco, A.

Sacher, W. D.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Samadi, P.

Säynätjoki, A.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Schreuder, E.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Seo, H.

Shah Hosseini, E.

Shiue, R. J.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R. J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “AIM process design kit (AIMPDKv2. 0): silicon photonics passive and active component libraries on a 300  mm wafer,” in Optical Fiber Communications Conference and Exposition (2018), pp. 1–3.

Singh, G.

Singh, N.

Smit, M. K.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53  μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[Crossref]

Soltani, M.

Sorbello, G.

Srivastava, A. K.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Strasser, T. A.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Su, D.

Su, Z.

Sulhoff, J. W.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Sun, J.

Sun, Y.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Sun, Z.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Taballione, C.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Taddei, C.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

Teddy-Fernandez, T.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Timurdogan, E.

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
[Crossref]

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R. J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “AIM process design kit (AIMPDKv2. 0): silicon photonics passive and active component libraries on a 300  mm wafer,” in Optical Fiber Communications Conference and Exposition (2018), pp. 1–3.

van Dam, C.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53  μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

van den Hoven, G. N.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53  μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

van der Slot, P. J. M.

Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
[Crossref]

van Dijk, P. W.

van Dijk, P. W. L.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

van Rees, A.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

van Uffelen, J. W. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53  μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

Vázquez-Córdova, S. A.

Vengsarkar, A. M.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Vermeulen, D.

Visscher, I.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Vivien, L.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[Crossref]

Vu, K.

Vu, K. T.

Wang, B.

L. Wang, R. Guo, B. Wang, X. Wang, and Z. Zhou, “Hybrid Si3N4-Er/Yb silicate waveguides for amplifier application,” IEEE Photon. Technol. Lett. 24, 900–902 (2012).
[Crossref]

Wang, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH-content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354, 1357–1360 (2008).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[Crossref]

Wang, L.

L. Wang, R. Guo, B. Wang, X. Wang, and Z. Zhou, “Hybrid Si3N4-Er/Yb silicate waveguides for amplifier application,” IEEE Photon. Technol. Lett. 24, 900–902 (2012).
[Crossref]

Wang, X.

L. Wang, R. Guo, B. Wang, X. Wang, and Z. Zhou, “Hybrid Si3N4-Er/Yb silicate waveguides for amplifier application,” IEEE Photon. Technol. Lett. 24, 900–902 (2012).
[Crossref]

Warhoff, K.

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

Watts, M. R.

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-μm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26, 2220–2230 (2018).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
[Crossref]

E. S. Magden, N. Li, Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25, 18058–18065 (2017).
[Crossref]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

Z. Su, N. Li, E. S. Magden, M. Byrd, Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-compact and low-threshold thulium microcavity laser monolithically integrated on silicon,” Opt. Lett. 41, 5708–5711 (2016).
[Crossref]

E. S. Hosseini, Purnawirman, J. D. B. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75  mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014).
[Crossref]

J. D. B. Bradley, E. S. Hosseini, Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium-and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22, 12226–12237 (2014).
[Crossref]

Purnawirman, J. Sun, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, E. S. Hosseini, and M. R. Watts, “C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities,” Opt. Lett. 38, 1760–1762 (2013).
[Crossref]

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R. J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “AIM process design kit (AIMPDKv2. 0): silicon photonics passive and active component libraries on a 300  mm wafer,” in Optical Fiber Communications Conference and Exposition (2018), pp. 1–3.

Wevers, L. S.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

Wolf, C.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Wörhoff, K.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20  dB of net gain on silicon,” Opt. Express 22, 25993–26004 (2014).
[Crossref]

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117, 6759–6776 (2013).
[Crossref]

Wyatt, R.

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High-gain broad spectral bandwidth erbium-doped fibre amplifier pumped near 1.5  μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Xin, M.

Xin, S.

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R. J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “AIM process design kit (AIMPDKv2. 0): silicon photonics passive and active component libraries on a 300  mm wafer,” in Optical Fiber Communications Conference and Exposition (2018), pp. 1–3.

Yegnanarayanan, S.

Yong, Y.

J. Mu, M. Dijkstra, Y. Yong, M. de Goede, L. Chang, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform,” IEEE J. Sel. Top. Quantum Electron. 25, 8200911 (2019).
[Crossref]

Yong, Z.

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Yu, C.

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH-content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354, 1357–1360 (2008).
[Crossref]

Zhang, C.

Zhang, J.

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH-content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354, 1357–1360 (2008).
[Crossref]

Zhang, W.

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Zhao, C. Z.

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[Crossref]

Zhou, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH-content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354, 1357–1360 (2008).
[Crossref]

Zhou, J.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Zhou, Z.

L. Wang, R. Guo, B. Wang, X. Wang, and Z. Zhou, “Hybrid Si3N4-Er/Yb silicate waveguides for amplifier application,” IEEE Photon. Technol. Lett. 24, 900–902 (2012).
[Crossref]

Zhuang, L.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

Zyskind, J. L.

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

Adv. Opt. Technol. (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
[Crossref]

Appl. Phys. Lett. (1)

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen, and M. K. Smit, “Net optical gain at 1.53  μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68, 1886–1888 (1996).
[Crossref]

Electron. Lett. (3)

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54  μm,” Electron. Lett. 23, 1026–1028 (1987).
[Crossref]

C. G. Atkins, J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High-gain broad spectral bandwidth erbium-doped fibre amplifier pumped near 1.5  μm,” Electron. Lett. 25, 910–911 (1989).
[Crossref]

Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, T. A. Strasser, J. R. Pedrazzani, C. Wolf, J. Zhou, J. B. Judkins, R. P. Espindola, and A. M. Vengsarkar, “80  nm ultra-wideband erbium-doped silica fibre amplifier,” Electron. Lett. 33, 1965–1967 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. Bernardus Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).
[Crossref]

R. M. De Ridder, K. Warhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Sel. Top. Quantum Electron. 4, 930–937 (1998).
[Crossref]

J. Mu, M. Dijkstra, Y. Yong, M. de Goede, L. Chang, and S. M. García-Blanco, “Monolithic integration of Al2O3 and Si3N4 toward double-layer active-passive platform,” IEEE J. Sel. Top. Quantum Electron. 25, 8200911 (2019).
[Crossref]

IEEE Photon. J. (1)

Y. Fan, J. P. Epping, R. M. Oldenbeuving, C. G. H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P. J. M. van der Slot, and K.-J. Boller, “Optically integrated InP-Si3N4 hybrid laser,” IEEE Photon. J. 8, 1505111 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

L. Wang, R. Guo, B. Wang, X. Wang, and Z. Zhou, “Hybrid Si3N4-Er/Yb silicate waveguides for amplifier application,” IEEE Photon. Technol. Lett. 24, 900–902 (2012).
[Crossref]

J. Mu, M. Dijkstra, and S. M. García-Blanco, “Resonant coupling for active-passive monolithic integration of Al2O3 and Si3N4,” IEEE Photon. Technol. Lett. 31, 771–774 (2019).
[Crossref]

J. Non-Cryst. Solids (1)

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH-content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354, 1357–1360 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

L. Agazzi, K. Wörhoff, and M. Pollnau, “Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: a case study in amorphous Al2O3:Er3+,” J. Phys. Chem. C 117, 6759–6776 (2013).
[Crossref]

Laser Photon. Rev. (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[Crossref]

Nat. Commun. (1)

J. Rönn, W. Zhang, A. Autere, X. Leroux, L. Pakarinen, C. Alonso-Ramos, A. Säynätjoki, H. Lipsanen, L. Vivien, E. Cassan, and Z. Sun, “Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides,” Nat. Commun. 10, 432 (2019).
[Crossref]

Nat. Photonics (1)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Opt. Express (15)

J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref]

E. Shah Hosseini, S. Yegnanarayanan, A. Hossein Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009).
[Crossref]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20  dB of net gain on silicon,” Opt. Express 22, 25993–26004 (2014).
[Crossref]

D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159–1175 (2015).
[Crossref]

C. G. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21, 22937–22961 (2013).
[Crossref]

N. Li, D. Vermeulen, Z. Su, E. S. Magden, M. Xin, N. Singh, A. Ruocco, J. Notaros, C. V. Poulton, E. Timurdogan, C. Baiocco, and M. R. Watts, “Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform,” Opt. Express 26, 16200–16211 (2018).
[Crossref]

M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22, 10655–10660 (2014).
[Crossref]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

E. S. Magden, N. Li, Purnawirman, J. D. B. Bradley, N. Singh, A. Ruocco, G. S. Petrich, G. Leake, D. D. Coolbaugh, E. P. Ippen, M. R. Watts, and L. A. Kolodziejski, “Monolithically-integrated distributed feedback laser compatible with CMOS processing,” Opt. Express 25, 18058–18065 (2017).
[Crossref]

N. Li, E. S. Magden, Z. Su, N. Singh, A. Ruocco, M. Xin, M. Byrd, P. T. Callahan, J. D. B. Bradley, C. Baiocco, D. Vermeulen, and M. R. Watts, “Broadband 2-μm emission on silicon chips: monolithically integrated holmium lasers,” Opt. Express 26, 2220–2230 (2018).
[Crossref]

J. D. B. Bradley, E. S. Hosseini, Purnawirman, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium-and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22, 12226–12237 (2014).
[Crossref]

S. J. Madden and K. T. Vu, “Very low loss reactively ion etched tellurium dioxide planar rib waveguides for linear and non-linear optics,” Opt. Express 17, 17645–17651 (2009).
[Crossref]

K. Vu and S. Madden, “Tellurium dioxide erbium doped planar rib waveguide amplifiers with net gain and 2.8  dB/cm internal gain,” Opt. Express 18, 19192–19200 (2010).
[Crossref]

K. Vu, S. Farahani, and S. Madden, “980  nm pumped erbium doped tellurium oxide planar rib waveguide laser and amplifier with gain in S, C and L band,” Opt. Express 23, 747–755 (2015).
[Crossref]

H. C. Frankis, K. Miarabbas Kiani, D. B. Bonneville, C. Zhang, S. Norris, R. Mateman, A. Leinse, N. D. Bassim, A. P. Knights, and J. D. B. Bradley, “Low-loss TeO2-coated Si3N4 waveguides for application in photonic integrated circuits,” Opt. Express 27, 12529–12540 (2019).
[Crossref]

Opt. Laser Technol. (1)

Z. Fang, Q. Y. Chen, and C. Z. Zhao, “A review of recent progress in lasers on silicon,” Opt. Laser Technol. 46, 103–110 (2013).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
[Crossref]

Proc. IEEE (2)

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

W. D. Sacher, J. C. Mikkelsen, Y. Huang, J. C. Mak, Z. Yong, X. Luo, Y. Li, P. Dumais, J. Jiang, D. Goodwill, E. Bernier, P. G. Q. Lo, and J. K. S. Poon, “Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices,” Proc. IEEE 106, 2232–2245 (2018).
[Crossref]

Prog. Mater. Sci. (1)

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Sensors (1)

A. Fernández Gavela, D. Grajales García, J. Ramirez, and L. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors 16, 285 (2016).
[Crossref]

Other (3)

E. Timurdogan, Z. Su, C. V. Poulton, M. J. Byrd, S. Xin, R. J. Shiue, B. R. Moss, E. S. Hosseini, and M. R. Watts, “AIM process design kit (AIMPDKv2. 0): silicon photonics passive and active component libraries on a 300  mm wafer,” in Optical Fiber Communications Conference and Exposition (2018), pp. 1–3.

R. A. H. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data, 2nd ed. (CRC Press, 2012).

V. A. G. Rivera and D. Manzani, Technological Advances in Tellurite Glasses: Properties, Processing, and Applications (Springer, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Diagram of the TeO2:Er3+-coated Si3N4 waveguide structure. (b) Calculated optical electric-field profile for the fundamental 1550 and 970 nm TE waveguide modes. (c) Resonance spectrum of a TeO2:Er3+-coated Si3N4 waveguide ring resonator with a 400 μm radius and 2.6 μm nominal gap at a wavelength of 1637 nm. The data is fit using coupled mode theory to extract an intrinsic Q factor of 1.3×106 corresponding to 0.25 dB/cm waveguide loss.
Fig. 2.
Fig. 2. (a) Diagram of the double-side pumping setup used to measure gain on the TeO2:Er3+-coated Si3N4 chips. (b) Image of the chip showing the characteristic green light emission of erbium when pumping the paperclip waveguide.
Fig. 3.
Fig. 3. (a) Erbium absorption loss from 1460 to 1640 nm measured in 2.2 and 6.7 cm long TeO2:Er3+-coated Si3N4 waveguides. Inset: Erbium absorption loss from 940 to 980 nm in a 2.2 cm long TeO2:Er3+-coated Si3N4 waveguide. (b) Measured back-collected photoluminescence intensity from the waveguide after the 1470 nm pump source has been turned off, fit to have an excited-state lifetime of 480 μs. Inset: Amplified spontaneous emission spectrum measured in a TeO2:Er3+-coated Si3N4 waveguide.
Fig. 4.
Fig. 4. Gain measurements in a 2.2 cm long TeO2:Er3+-coated Si3N4 straight waveguide. (a) Internal net gain dependence on launched pump power for 970 and 1470 nm pump wavelengths and 1533 nm signal wavelength. (b) Internal net gain versus wavelength at maximum pump power for 970 and 1470 nm pump wavelengths.
Fig. 5.
Fig. 5. Gain measurements in a 6.7 cm long TeO2:Er3+-coated Si3N4 paperclip waveguide. (a) Measured (dashed lines/circles) and simulated (solid lines) internal net gain versus launched pump power for 970 and 1470 nm pump wavelengths and 1558 nm signal wavelength. (b) Internal net gain versus wavelength at maximum pump power for 970 and 1470 nm pump wavelengths.
Fig. 6.
Fig. 6. (a) Three-level rate equation model diagram, showing processes of stimulated transitions (S), spontaneous decay (t), and energy transfer upconversion (W). (b) Measured net gain in 6.7 cm long waveguide, compared to simulated gain with 0%, 22.5%, and 40% quenched ions.
Fig. 7.
Fig. 7. Simulated net gain for TeO2:Er3+-coated Si3N4 waveguides of 5, 10, and 15 cm length versus (a) launched 1470 nm pump power at a 1558 nm signal wavelength and (b) signal wavelength for 150 mW of launched 1470 nm pump power.

Tables (1)

Tables Icon

Table 1. Parameters Used for the TeO2:Er3+ Rate Equation Model