Abstract

Highly confining waveguides (Δne>0.1) without a degraded nonlinear coefficient and low propagation losses have been fabricated in lithium niobate (LN) by a new process that we called high vacuum vapor-phase proton exchange (HiVac-VPE). Index contrast, index profile, nonlinearity, and crystallographic phases are carefully investigated. Original analysis of index profiles indicates that the waveguides contain sub-layers whose depths depend on the exchange durations. Propagation behavior, propagation losses, and second-harmonic generation response of HiVac-VPE channel waveguides are investigated at telecom wavelength. The results recommend HiVac-VPE as a very promising technique for fabricating efficient nonlinear photonic integrated circuits in LN crystals.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear diffusion model for annealed proton-exchanged waveguides in zirconium-doped lithium niobate

Carsten Langrock, Rostislav V. Roussev, Giovanni Nava, Paolo Minzioni, Nicola Argiolas, Cinzia Sada, and Martin M. Fejer
Appl. Opt. 55(24) 6559-6563 (2016)

Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell
J. Opt. Soc. Am. B 14(11) 3197-3203 (1997)

Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate

Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras
Appl. Opt. 35(36) 7056-7060 (1996)

References

  • View by:
  • |
  • |
  • |

  1. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
    [Crossref]
  2. G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
    [Crossref]
  3. M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguide,” IEEE Photonics Technol. Lett. 12, 82–84 (2000).
    [Crossref]
  4. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41, 1540–1547 (2005).
    [Crossref]
  5. I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160  Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron Lett. 36, 1788–1790 (2000).
    [Crossref]
  6. J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
    [Crossref]
  7. L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient non-linear interactions,” Appl. Phys. Lett. 76, 1089–1091 (2000).
    [Crossref]
  8. Y. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva, T. V. Morozova, F. Caccavale, F. Segato, C. Sada, and S. M. Kostritskii, “Characterization of alpha-phase soft proton-exchanged LiNbO3 optical waveguides,” J. Opt. Soc. Am. A 18, 1186–1191 (2001).
    [Crossref]
  9. D. Castaldini, P. Bassi, P. Aschieri, S. Tascu, M. De Micheli, and P. Baldi, “High performance mode adapters based on segmented SPE:LiNbO3 waveguides,” Opt. Express 17, 17868–17873 (2009).
    [Crossref]
  10. D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. De Micheli, and P. Baldi, “Soft proton exchange tapers for low insertion loss LiNbO3 devices,” J. Lightwave Technol. 25, 1588–1593 (2007).
    [Crossref]
  11. F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
    [Crossref]
  12. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
    [Crossref]
  13. F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
    [Crossref]
  14. O. Stepanenko, E. Quillier, H. Tronche, P. Baldi, and M. De Micheli, “Crystallographic and optical properties of Z-cut high index soft proton exchange (HISoPE) LiNbO3 waveguides,” J. Lightwave Technol. 34, 2206–2212 (2016).
    [Crossref]
  15. A. P. Rambu, A. M. Apetrei, F. Doutre, H. Tronche, M. De Micheli, and S. Tascu, “Analysis of high-index contrast lithium niobate waveguides fabricated by high vacuum proton exchange,” J. Lightwave Technol. 36, 2675–2684 (2018).
    [Crossref]
  16. A. P. Rambu, A. M. Apetrei, and S. Tascu, “Role of the high vacuum in the precise control of index contrasts and index profiles of LiNbO3 waveguides fabricated by high vacuum proton exchange,” Opt. Laser Technol. 118, 109–114 (2019).
    [Crossref]
  17. T. Lunghi, F. Doutre, A. P. Rambu, M. Bellec, M. P. de Micheli, A. M. Apetrei, O. Alibart, N. Belabas, S. Tascu, and S. Tanzilli, “Broadband integrated beam splitter using spatial adiabatic passage,” Opt. Express 26, 27058–27063 (2018).
    [Crossref]
  18. P. J. Masalkar, M. Fujimura, T. Suhara, and H. Nishihara, “Vapour phase proton-exchange: technique for waveguide fabrication in LiNbO3,” Electron. Lett. 33, 519–520 (1997).
    [Crossref]
  19. J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in Z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
    [Crossref]
  20. J. Rams, F. Agulló-Rueda, and J. M. Cabrera, “Structure of high index proton exchange LiNbO3 waveguides with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 71, 3356–3358 (1997).
    [Crossref]
  21. J. Rams and J. M. Cabrera, “Nonlinear optical efficient LiNbO3 waveguides proton exchanged in benzoic acid vapor: effect of the vapor pressure,” J. Appl. Phys. 85, 1322–1328 (1999).
    [Crossref]
  22. J. Rams and J. M. Cabrera, “Preparation of proton-exchange LiNbO3 waveguides in benzoic acid vapor,” J. Opt. Soc. Am. B 16, 401–406 (1999).
    [Crossref]
  23. R. Osellame, R. Ramponi, M. Maramgoni, and V. Russo, “Waveguide fabrication in LiTaO3 by vapour-phase proton-exchange,” Electron. Lett. 36, 431–433 (2000).
    [Crossref]
  24. R. Ramponi, R. Osellame, M. Maramgoni, and V. Russo, “Vapor-phase proton-exchange in lithium tantalate for high-quality waveguides fabrication,” Proc. SPIE 4277, 125–132 (2001).
    [Crossref]
  25. D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, and Y. C. Huang, “Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides,” Mater. Chem. Phys. 78, 474–479 (2002).
    [Crossref]
  26. M. K. Kuneva, S. H. Tonchev, and P. S. Dimitrova, “Planar optical waveguides obtained in Z-cut LiNbO3 and LiTaO3 by proton exchange in LiHSO4,” J. Mater. Sci.: Mater. Electron. 14, 859–861 (2003).
    [Crossref]
  27. O. Stepanenko, “Towards proton exchanged quantum wires and highly confining integrated circuits on LiNbO3,” Ph.D. dissertation (Sophia Antipolis Univ. Nice, 2013).
  28. L. Chanvillard, “Interactions paramétriques guides de grand efficacité: utilisation de l’échange protonique doux sur niobate de lithium inversé périodiquement,” Ph.D. dissertation (Sophia Antipolis Univ. Nice, 1999).
  29. C. E. Rice, “The structure and properties of Li1-xHxNbO3,” J. Solid State Chem. 64, 188–199 (1986).
    [Crossref]
  30. Yu. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
    [Crossref]
  31. Y. Korkishko, V. Fedorov, M. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
    [Crossref]
  32. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [Crossref]
  33. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15, 151–155 (1976).
    [Crossref]
  34. S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
    [Crossref]
  35. K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997).
    [Crossref]
  36. J. Kaneshiro, S. Kawado, H. Yokota, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
    [Crossref]
  37. Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
    [Crossref]
  38. J. D. Webb, “Fabrication of annealed proton-exchanged waveguides for vertical integration,” Master of Science dissertation (Texas A&M University, 2011).
  39. D. Castaldini, P. Bassi, S. Tascu, G. Sauder, P. Aschieri, M. de Micheli, P. Baldi, K. Thyagarajan, and M. R. Shenoy, “All-in-one measurement setup for fast and accurate characterization of linear guided-wave optical devices,” Opt. Eng. 46, 124601 (2007).
    [Crossref]
  40. S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, and P. Bassi, “Loss mechanisms and hybrid modes in high-δne proton-exchanged planar waveguides,” Opt. Lett. 18, 1314–1316 (1993).
    [Crossref]
  41. A. Knoesen, T. K. Gaylord, and M. G. Moharam, “Hybrid guided modes in uniaxial dielectric planar waveguides,” J. Lightwave Technol. 6, 1083–1104 (1988).
    [Crossref]

2019 (1)

A. P. Rambu, A. M. Apetrei, and S. Tascu, “Role of the high vacuum in the precise control of index contrasts and index profiles of LiNbO3 waveguides fabricated by high vacuum proton exchange,” Opt. Laser Technol. 118, 109–114 (2019).
[Crossref]

2018 (2)

2016 (1)

2011 (1)

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

2009 (1)

2008 (2)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

J. Kaneshiro, S. Kawado, H. Yokota, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[Crossref]

2007 (2)

D. Castaldini, P. Bassi, S. Tascu, G. Sauder, P. Aschieri, M. de Micheli, P. Baldi, K. Thyagarajan, and M. R. Shenoy, “All-in-one measurement setup for fast and accurate characterization of linear guided-wave optical devices,” Opt. Eng. 46, 124601 (2007).
[Crossref]

D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. De Micheli, and P. Baldi, “Soft proton exchange tapers for low insertion loss LiNbO3 devices,” J. Lightwave Technol. 25, 1588–1593 (2007).
[Crossref]

2005 (1)

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41, 1540–1547 (2005).
[Crossref]

2003 (1)

M. K. Kuneva, S. H. Tonchev, and P. S. Dimitrova, “Planar optical waveguides obtained in Z-cut LiNbO3 and LiTaO3 by proton exchange in LiHSO4,” J. Mater. Sci.: Mater. Electron. 14, 859–861 (2003).
[Crossref]

2002 (1)

D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, and Y. C. Huang, “Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides,” Mater. Chem. Phys. 78, 474–479 (2002).
[Crossref]

2001 (3)

R. Ramponi, R. Osellame, M. Maramgoni, and V. Russo, “Vapor-phase proton-exchange in lithium tantalate for high-quality waveguides fabrication,” Proc. SPIE 4277, 125–132 (2001).
[Crossref]

G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Y. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva, T. V. Morozova, F. Caccavale, F. Segato, C. Sada, and S. M. Kostritskii, “Characterization of alpha-phase soft proton-exchanged LiNbO3 optical waveguides,” J. Opt. Soc. Am. A 18, 1186–1191 (2001).
[Crossref]

2000 (4)

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient non-linear interactions,” Appl. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguide,” IEEE Photonics Technol. Lett. 12, 82–84 (2000).
[Crossref]

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160  Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron Lett. 36, 1788–1790 (2000).
[Crossref]

R. Osellame, R. Ramponi, M. Maramgoni, and V. Russo, “Waveguide fabrication in LiTaO3 by vapour-phase proton-exchange,” Electron. Lett. 36, 431–433 (2000).
[Crossref]

1999 (2)

J. Rams and J. M. Cabrera, “Nonlinear optical efficient LiNbO3 waveguides proton exchanged in benzoic acid vapor: effect of the vapor pressure,” J. Appl. Phys. 85, 1322–1328 (1999).
[Crossref]

J. Rams and J. M. Cabrera, “Preparation of proton-exchange LiNbO3 waveguides in benzoic acid vapor,” J. Opt. Soc. Am. B 16, 401–406 (1999).
[Crossref]

1997 (4)

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997).
[Crossref]

P. J. Masalkar, M. Fujimura, T. Suhara, and H. Nishihara, “Vapour phase proton-exchange: technique for waveguide fabrication in LiNbO3,” Electron. Lett. 33, 519–520 (1997).
[Crossref]

J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in Z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
[Crossref]

J. Rams, F. Agulló-Rueda, and J. M. Cabrera, “Structure of high index proton exchange LiNbO3 waveguides with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 71, 3356–3358 (1997).
[Crossref]

1996 (2)

Yu. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[Crossref]

Y. Korkishko, V. Fedorov, M. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
[Crossref]

1995 (1)

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
[Crossref]

1993 (1)

1992 (2)

Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
[Crossref]

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[Crossref]

1991 (1)

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

1988 (1)

A. Knoesen, T. K. Gaylord, and M. G. Moharam, “Hybrid guided modes in uniaxial dielectric planar waveguides,” J. Lightwave Technol. 6, 1083–1104 (1988).
[Crossref]

1986 (1)

C. E. Rice, “The structure and properties of Li1-xHxNbO3,” J. Solid State Chem. 64, 188–199 (1986).
[Crossref]

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

1976 (1)

1970 (1)

Agulló-Rueda, F.

J. Rams, F. Agulló-Rueda, and J. M. Cabrera, “Structure of high index proton exchange LiNbO3 waveguides with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 71, 3356–3358 (1997).
[Crossref]

Alibart, O.

Apetrei, A. M.

Armani, F.

Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
[Crossref]

Aschieri, P.

D. Castaldini, P. Bassi, P. Aschieri, S. Tascu, M. De Micheli, and P. Baldi, “High performance mode adapters based on segmented SPE:LiNbO3 waveguides,” Opt. Express 17, 17868–17873 (2009).
[Crossref]

D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. De Micheli, and P. Baldi, “Soft proton exchange tapers for low insertion loss LiNbO3 devices,” J. Lightwave Technol. 25, 1588–1593 (2007).
[Crossref]

D. Castaldini, P. Bassi, S. Tascu, G. Sauder, P. Aschieri, M. de Micheli, P. Baldi, K. Thyagarajan, and M. R. Shenoy, “All-in-one measurement setup for fast and accurate characterization of linear guided-wave optical devices,” Opt. Eng. 46, 124601 (2007).
[Crossref]

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient non-linear interactions,” Appl. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997).
[Crossref]

Asobe, M.

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41, 1540–1547 (2005).
[Crossref]

Baldi, P.

O. Stepanenko, E. Quillier, H. Tronche, P. Baldi, and M. De Micheli, “Crystallographic and optical properties of Z-cut high index soft proton exchange (HISoPE) LiNbO3 waveguides,” J. Lightwave Technol. 34, 2206–2212 (2016).
[Crossref]

D. Castaldini, P. Bassi, P. Aschieri, S. Tascu, M. De Micheli, and P. Baldi, “High performance mode adapters based on segmented SPE:LiNbO3 waveguides,” Opt. Express 17, 17868–17873 (2009).
[Crossref]

D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. De Micheli, and P. Baldi, “Soft proton exchange tapers for low insertion loss LiNbO3 devices,” J. Lightwave Technol. 25, 1588–1593 (2007).
[Crossref]

D. Castaldini, P. Bassi, S. Tascu, G. Sauder, P. Aschieri, M. de Micheli, P. Baldi, K. Thyagarajan, and M. R. Shenoy, “All-in-one measurement setup for fast and accurate characterization of linear guided-wave optical devices,” Opt. Eng. 46, 124601 (2007).
[Crossref]

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient non-linear interactions,” Appl. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997).
[Crossref]

Y. Korkishko, V. Fedorov, M. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
[Crossref]

S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, and P. Bassi, “Loss mechanisms and hybrid modes in high-δne proton-exchanged planar waveguides,” Opt. Lett. 18, 1314–1316 (1993).
[Crossref]

Bamford, D. J.

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient non-linear interactions,” Appl. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

Baranov, E. A.

Barnes, E.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

Bassi, P.

Belabas, N.

Bellec, M.

Bosso, S.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
[Crossref]

Brener, I.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160  Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron Lett. 36, 1788–1790 (2000).
[Crossref]

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguide,” IEEE Photonics Technol. Lett. 12, 82–84 (2000).
[Crossref]

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

Cabrera, J. M.

J. Rams and J. M. Cabrera, “Nonlinear optical efficient LiNbO3 waveguides proton exchanged in benzoic acid vapor: effect of the vapor pressure,” J. Appl. Phys. 85, 1322–1328 (1999).
[Crossref]

J. Rams and J. M. Cabrera, “Preparation of proton-exchange LiNbO3 waveguides in benzoic acid vapor,” J. Opt. Soc. Am. B 16, 401–406 (1999).
[Crossref]

J. Rams, F. Agulló-Rueda, and J. M. Cabrera, “Structure of high index proton exchange LiNbO3 waveguides with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 71, 3356–3358 (1997).
[Crossref]

J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in Z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
[Crossref]

Caccavale, F.

Y. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva, T. V. Morozova, F. Caccavale, F. Segato, C. Sada, and S. M. Kostritskii, “Characterization of alpha-phase soft proton-exchanged LiNbO3 optical waveguides,” J. Opt. Soc. Am. A 18, 1186–1191 (2001).
[Crossref]

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
[Crossref]

Castaldini, D.

Chaban, E. E.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguide,” IEEE Photonics Technol. Lett. 12, 82–84 (2000).
[Crossref]

Chakraborty, P.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
[Crossref]

Chanvillard, L.

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient non-linear interactions,” Appl. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

L. Chanvillard, “Interactions paramétriques guides de grand efficacité: utilisation de l’échange protonique doux sur niobate de lithium inversé périodiquement,” Ph.D. dissertation (Sophia Antipolis Univ. Nice, 1999).

Chen, S.

Chen, Y. H.

D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, and Y. C. Huang, “Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides,” Mater. Chem. Phys. 78, 474–479 (2002).
[Crossref]

Chou, M. H.

D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, and Y. C. Huang, “Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides,” Mater. Chem. Phys. 78, 474–479 (2002).
[Crossref]

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguide,” IEEE Photonics Technol. Lett. 12, 82–84 (2000).
[Crossref]

Corsini, R.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
[Crossref]

De Micheli, M.

A. P. Rambu, A. M. Apetrei, F. Doutre, H. Tronche, M. De Micheli, and S. Tascu, “Analysis of high-index contrast lithium niobate waveguides fabricated by high vacuum proton exchange,” J. Lightwave Technol. 36, 2675–2684 (2018).
[Crossref]

O. Stepanenko, E. Quillier, H. Tronche, P. Baldi, and M. De Micheli, “Crystallographic and optical properties of Z-cut high index soft proton exchange (HISoPE) LiNbO3 waveguides,” J. Lightwave Technol. 34, 2206–2212 (2016).
[Crossref]

D. Castaldini, P. Bassi, P. Aschieri, S. Tascu, M. De Micheli, and P. Baldi, “High performance mode adapters based on segmented SPE:LiNbO3 waveguides,” Opt. Express 17, 17868–17873 (2009).
[Crossref]

D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. De Micheli, and P. Baldi, “Soft proton exchange tapers for low insertion loss LiNbO3 devices,” J. Lightwave Technol. 25, 1588–1593 (2007).
[Crossref]

D. Castaldini, P. Bassi, S. Tascu, G. Sauder, P. Aschieri, M. de Micheli, P. Baldi, K. Thyagarajan, and M. R. Shenoy, “All-in-one measurement setup for fast and accurate characterization of linear guided-wave optical devices,” Opt. Eng. 46, 124601 (2007).
[Crossref]

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient non-linear interactions,” Appl. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

Y. Korkishko, V. Fedorov, M. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
[Crossref]

de Micheli, M. P.

Delacourt, D.

Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
[Crossref]

Denev, S. A.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

Dimitrova, P. S.

M. K. Kuneva, S. H. Tonchev, and P. S. Dimitrova, “Planar optical waveguides obtained in Z-cut LiNbO3 and LiTaO3 by proton exchange in LiHSO4,” J. Mater. Sci.: Mater. Electron. 14, 859–861 (2003).
[Crossref]

Doutre, F.

El Hadi, K.

Fedorov, V.

Fedorov, V. A.

Y. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva, T. V. Morozova, F. Caccavale, F. Segato, C. Sada, and S. M. Kostritskii, “Characterization of alpha-phase soft proton-exchanged LiNbO3 optical waveguides,” J. Opt. Soc. Am. A 18, 1186–1191 (2001).
[Crossref]

Yu. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[Crossref]

Fejer, M. M.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160  Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron Lett. 36, 1788–1790 (2000).
[Crossref]

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguide,” IEEE Photonics Technol. Lett. 12, 82–84 (2000).
[Crossref]

Fujimura, M.

P. J. Masalkar, M. Fujimura, T. Suhara, and H. Nishihara, “Vapour phase proton-exchange: technique for waveguide fabrication in LiNbO3,” Electron. Lett. 33, 519–520 (1997).
[Crossref]

Fukui, T.

J. Kaneshiro, S. Kawado, H. Yokota, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[Crossref]

Gaylord, T. K.

A. Knoesen, T. K. Gaylord, and M. G. Moharam, “Hybrid guided modes in uniaxial dielectric planar waveguides,” J. Lightwave Technol. 6, 1083–1104 (1988).
[Crossref]

Gianello, G.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
[Crossref]

Gopalan, V.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

Grezes-Besset, C.

Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
[Crossref]

Grundkoetter, W.

G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

Harel, R.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160  Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron Lett. 36, 1788–1790 (2000).
[Crossref]

He, Q.

Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
[Crossref]

Heidrich, P. F.

Herrmann, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

Hofmann, D.

G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Hsiung, H.

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[Crossref]

Hu, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

Huang, L.

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient non-linear interactions,” Appl. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

Huang, Y. C.

D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, and Y. C. Huang, “Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides,” Mater. Chem. Phys. 78, 474–479 (2002).
[Crossref]

Jackel, J. L.

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

Johnson, J. J.

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

Kaneshiro, J.

J. Kaneshiro, S. Kawado, H. Yokota, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[Crossref]

Kawado, S.

J. Kaneshiro, S. Kawado, H. Yokota, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[Crossref]

Knoesen, A.

A. Knoesen, T. K. Gaylord, and M. G. Moharam, “Hybrid guided modes in uniaxial dielectric planar waveguides,” J. Lightwave Technol. 6, 1083–1104 (1988).
[Crossref]

Korkishko, Y.

Korkishko, Y. N.

Korkishko, Yu. N.

Yu. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[Crossref]

Kostritskii, S. M.

Kumar, A.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

Kuneva, M. K.

M. K. Kuneva, S. H. Tonchev, and P. S. Dimitrova, “Planar optical waveguides obtained in Z-cut LiNbO3 and LiTaO3 by proton exchange in LiHSO4,” J. Mater. Sci.: Mater. Electron. 14, 859–861 (2003).
[Crossref]

Kurz, J. R.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160  Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron Lett. 36, 1788–1790 (2000).
[Crossref]

Lallier, E.

Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
[Crossref]

Laurell, F.

Lee, Y. L.

G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Lenz, G.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguide,” IEEE Photonics Technol. Lett. 12, 82–84 (2000).
[Crossref]

Leycuras, A.

Lummen, T. T. A.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

Lunghi, T.

Mansour, I.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
[Crossref]

Maramgoni, M.

R. Ramponi, R. Osellame, M. Maramgoni, and V. Russo, “Vapor-phase proton-exchange in lithium tantalate for high-quality waveguides fabrication,” Proc. SPIE 4277, 125–132 (2001).
[Crossref]

R. Osellame, R. Ramponi, M. Maramgoni, and V. Russo, “Waveguide fabrication in LiTaO3 by vapour-phase proton-exchange,” Electron. Lett. 36, 431–433 (2000).
[Crossref]

Masalkar, P. J.

P. J. Masalkar, M. Fujimura, T. Suhara, and H. Nishihara, “Vapour phase proton-exchange: technique for waveguide fabrication in LiNbO3,” Electron. Lett. 33, 519–520 (1997).
[Crossref]

Mikkelsen, B.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160  Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron Lett. 36, 1788–1790 (2000).
[Crossref]

Min, Y.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

Miyazawa, H.

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41, 1540–1547 (2005).
[Crossref]

Moharam, M. G.

A. Knoesen, T. K. Gaylord, and M. G. Moharam, “Hybrid guided modes in uniaxial dielectric planar waveguides,” J. Lightwave Technol. 6, 1083–1104 (1988).
[Crossref]

Morozova, T. V.

Mussi, G.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
[Crossref]

Nishida, Y.

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41, 1540–1547 (2005).
[Crossref]

Nishihara, H.

P. J. Masalkar, M. Fujimura, T. Suhara, and H. Nishihara, “Vapour phase proton-exchange: technique for waveguide fabrication in LiNbO3,” Electron. Lett. 33, 519–520 (1997).
[Crossref]

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

Olivares, J.

J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in Z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
[Crossref]

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

Osellame, R.

R. Ramponi, R. Osellame, M. Maramgoni, and V. Russo, “Vapor-phase proton-exchange in lithium tantalate for high-quality waveguides fabrication,” Proc. SPIE 4277, 125–132 (2001).
[Crossref]

R. Osellame, R. Ramponi, M. Maramgoni, and V. Russo, “Waveguide fabrication in LiTaO3 by vapour-phase proton-exchange,” Electron. Lett. 36, 431–433 (2000).
[Crossref]

Ostrowsky, D. B.

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient non-linear interactions,” Appl. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997).
[Crossref]

S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, and P. Bassi, “Loss mechanisms and hybrid modes in high-δne proton-exchanged planar waveguides,” Opt. Lett. 18, 1314–1316 (1993).
[Crossref]

Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
[Crossref]

Papuchon, M.

Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
[Crossref]

Parameswaran, K.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160  Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron Lett. 36, 1788–1790 (2000).
[Crossref]

Pelletier, E.

Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
[Crossref]

Pocholle, J. P.

Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
[Crossref]

Proyaeva, M. V.

Quaranta, A.

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
[Crossref]

Quillier, E.

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Rambu, A. P.

Ramponi, R.

R. Ramponi, R. Osellame, M. Maramgoni, and V. Russo, “Vapor-phase proton-exchange in lithium tantalate for high-quality waveguides fabrication,” Proc. SPIE 4277, 125–132 (2001).
[Crossref]

R. Osellame, R. Ramponi, M. Maramgoni, and V. Russo, “Waveguide fabrication in LiTaO3 by vapour-phase proton-exchange,” Electron. Lett. 36, 431–433 (2000).
[Crossref]

Rams, J.

J. Rams and J. M. Cabrera, “Preparation of proton-exchange LiNbO3 waveguides in benzoic acid vapor,” J. Opt. Soc. Am. B 16, 401–406 (1999).
[Crossref]

J. Rams and J. M. Cabrera, “Nonlinear optical efficient LiNbO3 waveguides proton exchanged in benzoic acid vapor: effect of the vapor pressure,” J. Appl. Phys. 85, 1322–1328 (1999).
[Crossref]

J. Rams, F. Agulló-Rueda, and J. M. Cabrera, “Structure of high index proton exchange LiNbO3 waveguides with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 71, 3356–3358 (1997).
[Crossref]

J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in Z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
[Crossref]

Raybon, G.

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160  Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron Lett. 36, 1788–1790 (2000).
[Crossref]

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

Rice, C. E.

C. E. Rice, “The structure and properties of Li1-xHxNbO3,” J. Solid State Chem. 64, 188–199 (1986).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

Ricken, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Roelofs, M. G.

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[Crossref]

Russo, V.

R. Ramponi, R. Osellame, M. Maramgoni, and V. Russo, “Vapor-phase proton-exchange in lithium tantalate for high-quality waveguides fabrication,” Proc. SPIE 4277, 125–132 (2001).
[Crossref]

R. Osellame, R. Ramponi, M. Maramgoni, and V. Russo, “Waveguide fabrication in LiTaO3 by vapour-phase proton-exchange,” Electron. Lett. 36, 431–433 (2000).
[Crossref]

Sada, C.

Santhanaraghavan, P.

D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, and Y. C. Huang, “Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides,” Mater. Chem. Phys. 78, 474–479 (2002).
[Crossref]

Sauder, G.

D. Castaldini, P. Bassi, S. Tascu, G. Sauder, P. Aschieri, M. de Micheli, P. Baldi, K. Thyagarajan, and M. R. Shenoy, “All-in-one measurement setup for fast and accurate characterization of linear guided-wave optical devices,” Opt. Eng. 46, 124601 (2007).
[Crossref]

Schreiber, G.

G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Scotti, R.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguide,” IEEE Photonics Technol. Lett. 12, 82–84 (2000).
[Crossref]

Segato, F.

Shenoy, M. R.

D. Castaldini, P. Bassi, S. Tascu, G. Sauder, P. Aschieri, M. de Micheli, P. Baldi, K. Thyagarajan, and M. R. Shenoy, “All-in-one measurement setup for fast and accurate characterization of linear guided-wave optical devices,” Opt. Eng. 46, 124601 (2007).
[Crossref]

Shmulovich, J.

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguide,” IEEE Photonics Technol. Lett. 12, 82–84 (2000).
[Crossref]

Sohler, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Stepanenko, O.

O. Stepanenko, E. Quillier, H. Tronche, P. Baldi, and M. De Micheli, “Crystallographic and optical properties of Z-cut high index soft proton exchange (HISoPE) LiNbO3 waveguides,” J. Lightwave Technol. 34, 2206–2212 (2016).
[Crossref]

O. Stepanenko, “Towards proton exchanged quantum wires and highly confining integrated circuits on LiNbO3,” Ph.D. dissertation (Sophia Antipolis Univ. Nice, 2013).

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

Suhara, T.

P. J. Masalkar, M. Fujimura, T. Suhara, and H. Nishihara, “Vapour phase proton-exchange: technique for waveguide fabrication in LiNbO3,” Electron. Lett. 33, 519–520 (1997).
[Crossref]

Sundheimer, M.

Suzuki, H.

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41, 1540–1547 (2005).
[Crossref]

Tadanaga, O.

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41, 1540–1547 (2005).
[Crossref]

Tanzilli, S.

Tartarini, G.

Tascu, S.

Thyagarajan, K.

D. Castaldini, P. Bassi, S. Tascu, G. Sauder, P. Aschieri, M. de Micheli, P. Baldi, K. Thyagarajan, and M. R. Shenoy, “All-in-one measurement setup for fast and accurate characterization of linear guided-wave optical devices,” Opt. Eng. 46, 124601 (2007).
[Crossref]

Tien, P. K.

Tonchev, S. H.

M. K. Kuneva, S. H. Tonchev, and P. S. Dimitrova, “Planar optical waveguides obtained in Z-cut LiNbO3 and LiTaO3 by proton exchange in LiHSO4,” J. Mater. Sci.: Mater. Electron. 14, 859–861 (2003).
[Crossref]

Tronche, H.

Tsou, D. H.

D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, and Y. C. Huang, “Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides,” Mater. Chem. Phys. 78, 474–479 (2002).
[Crossref]

Uesu, Y.

J. Kaneshiro, S. Kawado, H. Yokota, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[Crossref]

Ulrich, R.

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

Webb, J. D.

J. D. Webb, “Fabrication of annealed proton-exchanged waveguides for vertical integration,” Master of Science dissertation (Texas A&M University, 2011).

White, J. M.

Yokota, H.

J. Kaneshiro, S. Kawado, H. Yokota, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on PPLN: a simple waveguide fabrication process for highly efficient non-linear interactions,” Appl. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[Crossref]

F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
[Crossref]

J. Rams, J. Olivares, and J. M. Cabrera, “High-index proton-exchanged waveguides in Z-cut LiNbO3 with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 70, 2076–2078 (1997).
[Crossref]

J. Rams, F. Agulló-Rueda, and J. M. Cabrera, “Structure of high index proton exchange LiNbO3 waveguides with undegraded nonlinear optical coefficients,” Appl. Phys. Lett. 71, 3356–3358 (1997).
[Crossref]

Electron Lett. (1)

I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160  Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron Lett. 36, 1788–1790 (2000).
[Crossref]

Electron. Lett. (3)

J. L. Jackel and J. J. Johnson, “Reverse exchange method for burying proton exchanged waveguides,” Electron. Lett. 27, 1360–1361 (1991).
[Crossref]

P. J. Masalkar, M. Fujimura, T. Suhara, and H. Nishihara, “Vapour phase proton-exchange: technique for waveguide fabrication in LiNbO3,” Electron. Lett. 33, 519–520 (1997).
[Crossref]

R. Osellame, R. Ramponi, M. Maramgoni, and V. Russo, “Waveguide fabrication in LiTaO3 by vapour-phase proton-exchange,” Electron. Lett. 36, 431–433 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched device using continuous phase modulation of χ(2) grating and its application to variable wavelength conversion,” IEEE J. Quantum Electron. 41, 1540–1547 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Yu. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. H. Chou, I. Brener, G. Lenz, R. Scotti, E. E. Chaban, J. Shmulovich, and M. M. Fejer, “Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguide,” IEEE Photonics Technol. Lett. 12, 82–84 (2000).
[Crossref]

J. Am. Ceram. Soc. (1)

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

J. Appl. Phys. (3)

J. Kaneshiro, S. Kawado, H. Yokota, Y. Uesu, and T. Fukui, “Three-dimensional observations of polar domain structures using a confocal second harmonic generation interference microscope,” J. Appl. Phys. 104, 054112 (2008).
[Crossref]

F. Caccavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-ion-mass spectrometry and near-field studies of Ti:LiNbO3 optical waveguides,” J. Appl. Phys. 78, 5345–5350 (1995).
[Crossref]

J. Rams and J. M. Cabrera, “Nonlinear optical efficient LiNbO3 waveguides proton exchanged in benzoic acid vapor: effect of the vapor pressure,” J. Appl. Phys. 85, 1322–1328 (1999).
[Crossref]

J. Lightwave Technol. (4)

J. Mater. Sci.: Mater. Electron. (1)

M. K. Kuneva, S. H. Tonchev, and P. S. Dimitrova, “Planar optical waveguides obtained in Z-cut LiNbO3 and LiTaO3 by proton exchange in LiHSO4,” J. Mater. Sci.: Mater. Electron. 14, 859–861 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Solid State Chem. (1)

C. E. Rice, “The structure and properties of Li1-xHxNbO3,” J. Solid State Chem. 64, 188–199 (1986).
[Crossref]

Mater. Chem. Phys. (1)

D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, and Y. C. Huang, “Structural and optical characterization for vapor-phase proton exchanged lithium niobate waveguides,” Mater. Chem. Phys. 78, 474–479 (2002).
[Crossref]

Opt. Commun. (1)

Q. He, M. P. De Micheli, D. B. Ostrowsky, E. Lallier, J. P. Pocholle, M. Papuchon, F. Armani, D. Delacourt, C. Grezes-Besset, and E. Pelletier, “Self-frequency-doubled high Δn proton exchanged Nd:LiNbO3 waveguide laser,” Opt. Commun. 89, 54–58 (1992).
[Crossref]

Opt. Eng. (1)

D. Castaldini, P. Bassi, S. Tascu, G. Sauder, P. Aschieri, M. de Micheli, P. Baldi, K. Thyagarajan, and M. R. Shenoy, “All-in-one measurement setup for fast and accurate characterization of linear guided-wave optical devices,” Opt. Eng. 46, 124601 (2007).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

A. P. Rambu, A. M. Apetrei, and S. Tascu, “Role of the high vacuum in the precise control of index contrasts and index profiles of LiNbO3 waveguides fabricated by high vacuum proton exchange,” Opt. Laser Technol. 118, 109–114 (2019).
[Crossref]

Opt. Lett. (1)

Opt. Photonics News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19, 24–31 (2008).
[Crossref]

Proc. SPIE (2)

G. Schreiber, D. Hofmann, W. Grundkoetter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides,” Proc. SPIE 4277, 144–160 (2001).
[Crossref]

R. Ramponi, R. Osellame, M. Maramgoni, and V. Russo, “Vapor-phase proton-exchange in lithium tantalate for high-quality waveguides fabrication,” Proc. SPIE 4277, 125–132 (2001).
[Crossref]

Other (3)

O. Stepanenko, “Towards proton exchanged quantum wires and highly confining integrated circuits on LiNbO3,” Ph.D. dissertation (Sophia Antipolis Univ. Nice, 2013).

L. Chanvillard, “Interactions paramétriques guides de grand efficacité: utilisation de l’échange protonique doux sur niobate de lithium inversé périodiquement,” Ph.D. dissertation (Sophia Antipolis Univ. Nice, 1999).

J. D. Webb, “Fabrication of annealed proton-exchanged waveguides for vertical integration,” Master of Science dissertation (Texas A&M University, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. X-ray rocking curves from (00.12) reflection of Z-cut HiVac-VPE planar waveguides: (a) logarithmic-type representation of vertical scale and (b) linear-type representation of vertical scale. The waveguides were fabricated with different exchange periods t(h) at T=350°C.
Fig. 2.
Fig. 2. Extraordinary refractive index profile at λ=633  nm reconstructed by IWKB for planar waveguides fabricated in Z-cut LN by HiVac-VPE at 350°C with different exchange durations. The symbols represent the measured Neff of the propagating modes, except those on the ordinate that represent the raw surface indices calculated by IWKB. Dashed lines are guides for the eye.
Fig. 3.
Fig. 3. Corrected refractive index profiles at λ=633  nm for planar waveguides fabricated in Z-cut LN by HiVac-VPE at 350°C for different durations. For t=24  h is the raw index profile. The symbols represent the measured Neff of the propagating modes, except those on the ordinate that represent the corrected surface indices. Solid lines are guides for the eye.
Fig. 4.
Fig. 4. Top: index profiles of Z-cut HiVac-VPE waveguides fabricated for different exchange durations. The symbols represent the measured Neff of the propagating modes, except the IWKB corrected surface indices on the ordinate. The solid lines are the fits obtained by using Eq. (1). Bottom: derivative of the fits. Inset: sub-layers structures of the waveguides. The intensity of the red color suggests the refractive index value in the waveguides.
Fig. 5.
Fig. 5. SHG profiles and reflected fundamental signal of Z-cut HiVac-VPE waveguides superimposed with index profiles (region in gray color) for (a) t=1  h and (b) t=5  h.
Fig. 6.
Fig. 6. Near-field imaging of the modes at the output of channel waveguides fabricated at T=350°C for 1 h through the silica mask with openings of (a) 1 μm and (b) 1.5 μm width, respectively.
Fig. 7.
Fig. 7. Near-field imaging of the modes at the output of channel waveguides fabricated at T=350°C for 1 h through the silica mask with an opening of 2 μm width. (a) Fundamental mode and (b) superior mode + fundamental.
Fig. 8.
Fig. 8. Far-field picture on a screen of TE-polarized hybrid modes in HiVac-VPE channel waveguide at λ=633  nm for (a) 1 μm width and (b) 1.5 μm width, respectively.

Tables (1)

Tables Icon

Table 1. Index Contrast Δne at λ=633  nm of Planar Waveguides Fabricated by the HiVac-VPE Processa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n(d)=ne+A1exp[(d/w1)a1]+A2exp[(d/w2)a2],

Metrics