Abstract

We demonstrate for the first time to our knowledge the use of Fe3O4 nanoparticles for Q-switching a tunable mid-infrared (Mid-IR) Dy3+-doped ZBLAN fiber laser around 3 μm. The Q-switcher was fabricated by depositing the prepared Fe3O4 nanoparticles solution onto an Au mirror. Its nonlinear optical response was characterized using a mode locked Ho3+/Pr3+-codoped ZBLAN fiber laser at 2.87 μm, and showed a modulation depth of 11.9% as well as a saturation intensity of 1.44  MW/cm2. Inserting the device into a tunable Dy3+-doped ZBLAN fiber laser, stable Q-switched pulses within the tunable range of 2812.4–3031.6 nm were obtained. When tuning the wavelength to 2931.2 nm, a maximum Q-switching output power of 111.0 mW was achieved with a repetition rate of 123.0 kHz and a pulse width of 1.25 μs. The corresponding pulse energy was 0.90 μJ. This demonstration suggests that Fe3O4 nanoparticles are a promising broadband saturable absorption material for mid-infrared operation.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm

Jianfeng Li, Hongyu Luo, Lele Wang, Bo Zhai, Heping Li, and Yong Liu
Opt. Express 23(17) 22362-22370 (2015)

Passively Q-switched Nd:YVO4 laser based on Fe3O4 nanoparticles saturable absorber

Xi Wang, Yonggang Wang, Dong Mao, Lu Li, and Zhendong Chen
Opt. Mater. Express 7(8) 2913-2921 (2017)

Gain-switched dysprosium fiber laser tunable from 2.8 to 3.1 μm

Hongyu Luo, Yao Xu, Jianfeng Li, and Yong Liu
Opt. Express 27(19) 27151-27158 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
    [Crossref]
  2. A. Kilpela, J. Ylitalo, K. Maatta, and J. Kostamovaara, “Timing discriminator for pulsed time-of-flight laser rangefinding measurements,” Rev. Sci. Instrum. 69, 1978–1984 (1998).
    [Crossref]
  3. M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).
    [Crossref]
  4. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6, 423–431 (2012).
    [Crossref]
  5. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
    [Crossref]
  6. O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980–1070-nm spectral range,” Opt. Lett. 28, 1522–1524 (2003).
    [Crossref]
  7. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53  μm,” Opt. Lett. 24, 388–390 (1999).
    [Crossref]
  8. J. F. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
    [Crossref]
  9. J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
    [Crossref]
  10. X. F. Liu, Q. B. Guo, and J. R. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
    [Crossref]
  11. X. Jiang, S. Gross, M. J. Withford, H. Zhang, D. Yeom, F. Rotermund, and A. Fuerbach, “Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers,” Opt. Mater. Express 8, 3055–3071 (2018).
    [Crossref]
  12. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.
  13. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
    [Crossref]
  14. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17, 2358–2363 (2009).
    [Crossref]
  15. C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, and Y. Liu, “Mid-Infrared Q-switched and mode-locked fiber lasers at 2.87  μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum 25, 1100206 (2019).
    [Crossref]
  16. Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
    [Crossref]
  17. J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
    [Crossref]
  18. H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3  μm,” Opt. Express 27, 4886–4896 (2019).
    [Crossref]
  19. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  20. M. S. Xu, T. Liang, M. M. Shi, and H. Z. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
    [Crossref]
  21. F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramsubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
    [Crossref]
  22. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [Crossref]
  23. C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and B. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
    [Crossref]
  24. H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
    [Crossref]
  25. J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
    [Crossref]
  26. Y. Chen, G. B. Jiang, S. Q. Chen, Z. N. Guo, X. F. Yu, C. J. Zhao, H. Zhang, Q. L. Bao, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
    [Crossref]
  27. J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
    [Crossref]
  28. Z. P. Qin, T. Hai, G. Q. Xie, J. G. Ma, P. Yuan, L. J. Qian, L. Li, L. M. Zhao, and D. Y. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5  μm wavelength,” Opt. Express 26, 8224–8231 (2018).
    [Crossref]
  29. B. H. Chen, X. Y. Zhang, K. Wu, H. Wang, J. Wang, and J. P. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
    [Crossref]
  30. R. Woodward and E. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
    [Crossref]
  31. C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
    [Crossref]
  32. C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
    [Crossref]
  33. S. K. M. Al-Hayali, D. Z. Mohammed, W. A. Khaleel, and A. H. Al-Janabi, “Aluminum oxide nanoparticles as saturable absorber for C-band passively Q-switched fiber laser,” Appl. Opt. 56, 4720–4726 (2017).
    [Crossref]
  34. H. Ahmad, S. N. Aidit, and N. Yusoff, “Bismuth oxide nanoflakes for passive Q-switching in a C-band erbium doped fiber laser,” Infrared Phys. Technol. 95, 19–26 (2018).
    [Crossref]
  35. A. Nady, M. H. M. Ahmed, A. A. Latiff, A. Numan, C. H. R. Ooi, and S. W. Harun, “Nickel oxide nanoparticles as a saturable absorber for an all-fiber passively Q-switched erbium-doped fiber laser,” Laser Phys. 27, 065105 (2017).
    [Crossref]
  36. H. Ahmad, M. A. M. Salim, Z. A. Ali, M. F. Ismail, K. Thambiratnam, A. A. Latif, N. Nayan, and S. W. Harun, “Titanium dioxide-based Q-switched dual wavelength in the 1 micron region,” Chin. Opt. Lett. 14, 091403 (2016).
    [Crossref]
  37. H. Ahmad, C. S. J. Lee, M. A. Ismail, Z. A. Ali, S. A. Reduan, N. E. Ruslan, and S. W. Harun, “Tunable Q-switched fiber laser using zinc oxide nanoparticles as a saturable absorber,” Appl. Opt. 55, 4277–4281 (2016).
    [Crossref]
  38. X. K. Bai, C. B. Mou, L. X. Xu, S. F. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9, 042701 (2016).
    [Crossref]
  39. T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol-gel derived α-Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80, 3184–3190 (1996).
    [Crossref]
  40. G. Xing, J. Jiang, J. Y. Ying, and W. Ji, “Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold,” Opt. Express 18, 6183–6190 (2010).
    [Crossref]
  41. I. Balberg and J. I. Pankove, “Optical measurements on magnetite single crystals,” Phys. Rev. Lett. 27, 596–599 (1971).
    [Crossref]
  42. P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez- Carreno, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D 36, R182–R197 (2003).
    [Crossref]
  43. F. El-Diasty, H. M. El-Sayed, F. I. El-Hosiny, and M. I. M. Ismail, “Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles,” Curr. Opin. Solid State Mater. Sci. 13, 28–34 (2009).
    [Crossref]
  44. X. Wang, Y. G. Wang, D. Mao, L. Li, and Z. D. Chen, “Passively Q-switched Nd:YVO4 laser based on Fe3O4 nanoparticles saturable absorber,” Opt. Mater. Express 7, 2913–2921 (2017).
    [Crossref]
  45. S. K. M. Al-Hayali and A. H. Al-Janabi, “Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization,” Laser Phys. 28, 035103 (2018).
    [Crossref]
  46. L. Li, R. D. Lv, S. C. Liu, Z. D. Chen, J. Wang, Y. G. Wang, W. Ren, and W. J. Liu, “Ferroferric-oxide nanoparticle based Q-switcher for a 1  μm region,” Opt. Mater. Express 9, 731–738 (2019).
    [Crossref]
  47. D. Mao, X. Q. Cui, W. D. Zhang, M. K. Li, T. X. Feng, B. B. Du, H. Lu, and J. L. Zhao, “Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles,” Photon. Res. 5, 52–56 (2017).
    [Crossref]
  48. Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-wavelength and multiwavelength Q-switched fiber laser using Fe3O4 nanoparticles,” IEEE Photon. J. 9, 1501009 (2017).
    [Crossref]
  49. L. Li, Y. G. Wang, X. Wang, R. D. Lv, S. C. Liu, Z. D. Chen, and J. Wang, “Generation of dark solitons in Er-doped fiber laser based on ferroferric-oxide nanoparticles,” Opt. Laser Technol. 103, 354–358 (2018).
    [Crossref]
  50. N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, and W. P. Qin, “Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm,” Laser Phys. Lett. 16, 065102 (2019).
    [Crossref]
  51. H. S. Wang, F. Y. Zhao, Z. J. Yan, X. H. Hu, K. M. Zhou, T. Zhang, W. Zhang, Y. S. Wang, W. Zhao, L. Zhang, and C. D. Sun, “Excessively tilted fiber grating based Fe3O4 saturable absorber for passively mode-locked fiber laser,” Opt. Express 27, 15693–15700 (2019).
    [Crossref]
  52. J. H. Koo, J. S. Lee, J. H. Kim, and J. H. Lee, “A Q-switched 1.89  μm fiber laser using an Fe3O4-based saturable absorber,” J. Lumin. 195, 181–186 (2018).
    [Crossref]
  53. X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
    [Crossref]
  54. J. H. Koo, K. H. Jeong, B.-A. Yu, and W. J. Shin, “Evanescent field interaction with Fe3O4 nano-particle for passively Q-switched thulium-doped fiber laser at 1.94  μm,” Opt. Laser Technol. 119, 105579 (2019).
    [Crossref]
  55. P. H. Tang, Y. Tao, Y. L. Mao, M. Wu, Z. Y. Huang, S. N. Liang, X. H. Chen, X. Qi, B. Huang, J. Liu, and C. J. Zhao, “Graphene/MoS2 heterostructure: a robust mid-infrared optical modulator for Er3+-doped ZBLAN fiber laser,” Chin. Opt. Lett. 16, 020012 (2018).
    [Crossref]
  56. P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
    [Crossref]
  57. Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
    [Crossref]
  58. L. Gomes, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass,” J. Appl. Phys. 107, 053103 (2010).
    [Crossref]
  59. M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8  μm to 3.4  μm, pumped at 1.7  μm,” Opt. Lett. 43, 971–974 (2018).
    [Crossref]
  60. V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, “10-W-level monolithic dysprosium-doped fiber laser at 3.24  μm,” Opt. Lett. 44, 491–494 (2019).
    [Crossref]
  61. R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm,” APL Photon. 3, 116106 (2018).
    [Crossref]
  62. Y. H. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, and R. Vallée, “Ultrafast Dy3+: fluoride fiber laser beyond 3  μm,” Opt. Lett. 44, 395–398 (2019).
    [Crossref]
  63. H. Y. Luo, J. F. Li, Y. Gao, Y. Xu, X. H. Li, and Y. Liu, “Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08  μm using PbS nanoparticles,” Opt. Lett. 44, 2322–2325 (2019).
    [Crossref]
  64. R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, and S. D. Jackson, “Q-switched Dy:ZBLAN fiber lasers beyond 3  μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus,” Opt. Express 27, 15032–15045 (2019).
    [Crossref]
  65. C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
    [Crossref]
  66. T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78  μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
    [Crossref]
  67. Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
    [Crossref]
  68. H. Yu, X. Zheng, K. Yin, X. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6, 603–609 (2016).
    [Crossref]
  69. K. A. Khatri, V. Ross, J. M. Grevelink, C. M. Magro, and R. R. Anderson, “Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides,” Arch. Dermatol. 135, 391–397 (1999).
    [Crossref]
  70. S. Stübinger, J. P. Dissmann, N. C. Pinho, B. Saldamli, O. Seitz, and R. Sader, “A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er:YAG laser ablation,” Lasers Surg. Med. 41, 26–30 (2009).
    [Crossref]
  71. L. S. Bass, “Erbium:YAG laser skin resurfacing: preliminary clinical evaluation,” Ann. Plast. Surg. 40, 328–334 (1998).
    [Crossref]
  72. S. Karsai, A. Czarnecka, M. Jünger, and C. Raulin, “Ablative fractional lasers (CO2 and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides,” Lasers Surg. Med. 42, 160–167 (2010).
    [Crossref]

2019 (10)

C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, and Y. Liu, “Mid-Infrared Q-switched and mode-locked fiber lasers at 2.87  μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum 25, 1100206 (2019).
[Crossref]

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3  μm,” Opt. Express 27, 4886–4896 (2019).
[Crossref]

L. Li, R. D. Lv, S. C. Liu, Z. D. Chen, J. Wang, Y. G. Wang, W. Ren, and W. J. Liu, “Ferroferric-oxide nanoparticle based Q-switcher for a 1  μm region,” Opt. Mater. Express 9, 731–738 (2019).
[Crossref]

N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, and W. P. Qin, “Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm,” Laser Phys. Lett. 16, 065102 (2019).
[Crossref]

H. S. Wang, F. Y. Zhao, Z. J. Yan, X. H. Hu, K. M. Zhou, T. Zhang, W. Zhang, Y. S. Wang, W. Zhao, L. Zhang, and C. D. Sun, “Excessively tilted fiber grating based Fe3O4 saturable absorber for passively mode-locked fiber laser,” Opt. Express 27, 15693–15700 (2019).
[Crossref]

J. H. Koo, K. H. Jeong, B.-A. Yu, and W. J. Shin, “Evanescent field interaction with Fe3O4 nano-particle for passively Q-switched thulium-doped fiber laser at 1.94  μm,” Opt. Laser Technol. 119, 105579 (2019).
[Crossref]

Y. H. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, and R. Vallée, “Ultrafast Dy3+: fluoride fiber laser beyond 3  μm,” Opt. Lett. 44, 395–398 (2019).
[Crossref]

H. Y. Luo, J. F. Li, Y. Gao, Y. Xu, X. H. Li, and Y. Liu, “Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08  μm using PbS nanoparticles,” Opt. Lett. 44, 2322–2325 (2019).
[Crossref]

R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, and S. D. Jackson, “Q-switched Dy:ZBLAN fiber lasers beyond 3  μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus,” Opt. Express 27, 15032–15045 (2019).
[Crossref]

V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, “10-W-level monolithic dysprosium-doped fiber laser at 3.24  μm,” Opt. Lett. 44, 491–494 (2019).
[Crossref]

2018 (10)

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm,” APL Photon. 3, 116106 (2018).
[Crossref]

P. H. Tang, Y. Tao, Y. L. Mao, M. Wu, Z. Y. Huang, S. N. Liang, X. H. Chen, X. Qi, B. Huang, J. Liu, and C. J. Zhao, “Graphene/MoS2 heterostructure: a robust mid-infrared optical modulator for Er3+-doped ZBLAN fiber laser,” Chin. Opt. Lett. 16, 020012 (2018).
[Crossref]

J. H. Koo, J. S. Lee, J. H. Kim, and J. H. Lee, “A Q-switched 1.89  μm fiber laser using an Fe3O4-based saturable absorber,” J. Lumin. 195, 181–186 (2018).
[Crossref]

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

S. K. M. Al-Hayali and A. H. Al-Janabi, “Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization,” Laser Phys. 28, 035103 (2018).
[Crossref]

L. Li, Y. G. Wang, X. Wang, R. D. Lv, S. C. Liu, Z. D. Chen, and J. Wang, “Generation of dark solitons in Er-doped fiber laser based on ferroferric-oxide nanoparticles,” Opt. Laser Technol. 103, 354–358 (2018).
[Crossref]

Z. P. Qin, T. Hai, G. Q. Xie, J. G. Ma, P. Yuan, L. J. Qian, L. Li, L. M. Zhao, and D. Y. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5  μm wavelength,” Opt. Express 26, 8224–8231 (2018).
[Crossref]

H. Ahmad, S. N. Aidit, and N. Yusoff, “Bismuth oxide nanoflakes for passive Q-switching in a C-band erbium doped fiber laser,” Infrared Phys. Technol. 95, 19–26 (2018).
[Crossref]

X. Jiang, S. Gross, M. J. Withford, H. Zhang, D. Yeom, F. Rotermund, and A. Fuerbach, “Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers,” Opt. Mater. Express 8, 3055–3071 (2018).
[Crossref]

M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8  μm to 3.4  μm, pumped at 1.7  μm,” Opt. Lett. 43, 971–974 (2018).
[Crossref]

2017 (6)

X. F. Liu, Q. B. Guo, and J. R. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

A. Nady, M. H. M. Ahmed, A. A. Latiff, A. Numan, C. H. R. Ooi, and S. W. Harun, “Nickel oxide nanoparticles as a saturable absorber for an all-fiber passively Q-switched erbium-doped fiber laser,” Laser Phys. 27, 065105 (2017).
[Crossref]

D. Mao, X. Q. Cui, W. D. Zhang, M. K. Li, T. X. Feng, B. B. Du, H. Lu, and J. L. Zhao, “Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles,” Photon. Res. 5, 52–56 (2017).
[Crossref]

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-wavelength and multiwavelength Q-switched fiber laser using Fe3O4 nanoparticles,” IEEE Photon. J. 9, 1501009 (2017).
[Crossref]

S. K. M. Al-Hayali, D. Z. Mohammed, W. A. Khaleel, and A. H. Al-Janabi, “Aluminum oxide nanoparticles as saturable absorber for C-band passively Q-switched fiber laser,” Appl. Opt. 56, 4720–4726 (2017).
[Crossref]

X. Wang, Y. G. Wang, D. Mao, L. Li, and Z. D. Chen, “Passively Q-switched Nd:YVO4 laser based on Fe3O4 nanoparticles saturable absorber,” Opt. Mater. Express 7, 2913–2921 (2017).
[Crossref]

2016 (9)

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78  μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

H. Yu, X. Zheng, K. Yin, X. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6, 603–609 (2016).
[Crossref]

H. Ahmad, M. A. M. Salim, Z. A. Ali, M. F. Ismail, K. Thambiratnam, A. A. Latif, N. Nayan, and S. W. Harun, “Titanium dioxide-based Q-switched dual wavelength in the 1 micron region,” Chin. Opt. Lett. 14, 091403 (2016).
[Crossref]

H. Ahmad, C. S. J. Lee, M. A. Ismail, Z. A. Ali, S. A. Reduan, N. E. Ruslan, and S. W. Harun, “Tunable Q-switched fiber laser using zinc oxide nanoparticles as a saturable absorber,” Appl. Opt. 55, 4277–4281 (2016).
[Crossref]

X. K. Bai, C. B. Mou, L. X. Xu, S. F. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9, 042701 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

J. Lee, J. Koo, J. Lee, and J. H. Lee, “End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber,” J. Lightwave Technol. 34, 5250–5257 (2016).
[Crossref]

2015 (5)

2014 (3)

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramsubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

2013 (4)

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

M. S. Xu, T. Liang, M. M. Shi, and H. Z. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

2012 (4)

2010 (3)

L. Gomes, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass,” J. Appl. Phys. 107, 053103 (2010).
[Crossref]

G. Xing, J. Jiang, J. Y. Ying, and W. Ji, “Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold,” Opt. Express 18, 6183–6190 (2010).
[Crossref]

S. Karsai, A. Czarnecka, M. Jünger, and C. Raulin, “Ablative fractional lasers (CO2 and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides,” Lasers Surg. Med. 42, 160–167 (2010).
[Crossref]

2009 (4)

F. El-Diasty, H. M. El-Sayed, F. I. El-Hosiny, and M. I. M. Ismail, “Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles,” Curr. Opin. Solid State Mater. Sci. 13, 28–34 (2009).
[Crossref]

S. Stübinger, J. P. Dissmann, N. C. Pinho, B. Saldamli, O. Seitz, and R. Sader, “A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er:YAG laser ablation,” Lasers Surg. Med. 41, 26–30 (2009).
[Crossref]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17, 2358–2363 (2009).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

2008 (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

2005 (1)

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).
[Crossref]

2003 (2)

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980–1070-nm spectral range,” Opt. Lett. 28, 1522–1524 (2003).
[Crossref]

P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez- Carreno, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D 36, R182–R197 (2003).
[Crossref]

2000 (1)

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

1999 (2)

R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53  μm,” Opt. Lett. 24, 388–390 (1999).
[Crossref]

K. A. Khatri, V. Ross, J. M. Grevelink, C. M. Magro, and R. R. Anderson, “Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides,” Arch. Dermatol. 135, 391–397 (1999).
[Crossref]

1998 (2)

L. S. Bass, “Erbium:YAG laser skin resurfacing: preliminary clinical evaluation,” Ann. Plast. Surg. 40, 328–334 (1998).
[Crossref]

A. Kilpela, J. Ylitalo, K. Maatta, and J. Kostamovaara, “Timing discriminator for pulsed time-of-flight laser rangefinding measurements,” Rev. Sci. Instrum. 69, 1978–1984 (1998).
[Crossref]

1996 (2)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol-gel derived α-Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80, 3184–3190 (1996).
[Crossref]

1971 (1)

I. Balberg and J. I. Pankove, “Optical measurements on magnetite single crystals,” Phys. Rev. Lett. 27, 596–599 (1971).
[Crossref]

Achiba, Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.

Ahmad, H.

Ahmed, M. H. M.

A. Nady, M. H. M. Ahmed, A. A. Latiff, A. Numan, C. H. R. Ooi, and S. W. Harun, “Nickel oxide nanoparticles as a saturable absorber for an all-fiber passively Q-switched erbium-doped fiber laser,” Laser Phys. 27, 065105 (2017).
[Crossref]

Aidit, S. N.

H. Ahmad, S. N. Aidit, and N. Yusoff, “Bismuth oxide nanoflakes for passive Q-switching in a C-band erbium doped fiber laser,” Infrared Phys. Technol. 95, 19–26 (2018).
[Crossref]

Aitchison, B.

Albrow-Owen, T.

Al-Hayali, S. K. M.

S. K. M. Al-Hayali and A. H. Al-Janabi, “Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization,” Laser Phys. 28, 035103 (2018).
[Crossref]

S. K. M. Al-Hayali, D. Z. Mohammed, W. A. Khaleel, and A. H. Al-Janabi, “Aluminum oxide nanoparticles as saturable absorber for C-band passively Q-switched fiber laser,” Appl. Opt. 56, 4720–4726 (2017).
[Crossref]

Ali, Z. A.

Al-Janabi, A. H.

S. K. M. Al-Hayali and A. H. Al-Janabi, “Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization,” Laser Phys. 28, 035103 (2018).
[Crossref]

S. K. M. Al-Hayali, D. Z. Mohammed, W. A. Khaleel, and A. H. Al-Janabi, “Aluminum oxide nanoparticles as saturable absorber for C-band passively Q-switched fiber laser,” Appl. Opt. 56, 4720–4726 (2017).
[Crossref]

Alonso, A.

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).
[Crossref]

Anderson, R. R.

K. A. Khatri, V. Ross, J. M. Grevelink, C. M. Magro, and R. R. Anderson, “Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides,” Arch. Dermatol. 135, 391–397 (1999).
[Crossref]

Arai, K.

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).
[Crossref]

Bai, X. K.

X. K. Bai, C. B. Mou, L. X. Xu, S. F. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9, 042701 (2016).
[Crossref]

Balakrishnan, K.

Balberg, I.

I. Balberg and J. I. Pankove, “Optical measurements on magnetite single crystals,” Phys. Rev. Lett. 27, 596–599 (1971).
[Crossref]

Bao, Q. L.

Y. Chen, G. B. Jiang, S. Q. Chen, Z. N. Guo, X. F. Yu, C. J. Zhao, H. Zhang, Q. L. Bao, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Bass, L. S.

L. S. Bass, “Erbium:YAG laser skin resurfacing: preliminary clinical evaluation,” Ann. Plast. Surg. 40, 328–334 (1998).
[Crossref]

Bernier, M.

Bian, J. T.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

Brown, D. P.

Cai, Z.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

Chen, B. H.

Chen, H.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-wavelength and multiwavelength Q-switched fiber laser using Fe3O4 nanoparticles,” IEEE Photon. J. 9, 1501009 (2017).
[Crossref]

Chen, H. Z.

M. S. Xu, T. Liang, M. M. Shi, and H. Z. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Chen, J. P.

Chen, S. Q.

Chen, X. H.

Chen, Y.

Chen, Y. S.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-wavelength and multiwavelength Q-switched fiber laser using Fe3O4 nanoparticles,” IEEE Photon. J. 9, 1501009 (2017).
[Crossref]

Chen, Z. D.

Cheng, X.

Cui, L. H.

N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, and W. P. Qin, “Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm,” Laser Phys. Lett. 16, 065102 (2019).
[Crossref]

Cui, X. Q.

Czarnecka, A.

S. Karsai, A. Czarnecka, M. Jünger, and C. Raulin, “Ablative fractional lasers (CO2 and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides,” Lasers Surg. Med. 42, 160–167 (2010).
[Crossref]

Dai, S. Y.

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78  μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

del Puerto Morales, M.

P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez- Carreno, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D 36, R182–R197 (2003).
[Crossref]

Demelenne, B.

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).
[Crossref]

der Au, J. A.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

Dissmann, J. P.

S. Stübinger, J. P. Dissmann, N. C. Pinho, B. Saldamli, O. Seitz, and R. Sader, “A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er:YAG laser ablation,” Lasers Surg. Med. 41, 26–30 (2009).
[Crossref]

Du, B. B.

Dubey, M.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramsubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Duval, S.

El-Diasty, F.

F. El-Diasty, H. M. El-Sayed, F. I. El-Hosiny, and M. I. M. Ismail, “Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles,” Curr. Opin. Solid State Mater. Sci. 13, 28–34 (2009).
[Crossref]

El-Hosiny, F. I.

F. El-Diasty, H. M. El-Sayed, F. I. El-Hosiny, and M. I. M. Ismail, “Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles,” Curr. Opin. Solid State Mater. Sci. 13, 28–34 (2009).
[Crossref]

El-Sayed, H. M.

F. El-Diasty, H. M. El-Sayed, F. I. El-Hosiny, and M. I. M. Ismail, “Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles,” Curr. Opin. Solid State Mater. Sci. 13, 28–34 (2009).
[Crossref]

Fan, D. Y.

Feng, G. Y.

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78  μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Feng, T. X.

Feng, Y.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

Fortin, V.

Fuerbach, A.

Galzerano, G.

Gao, Y.

Garcia-Talavera, M. R.

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Gini, E.

Gomes, L.

L. Gomes, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass,” J. Appl. Phys. 107, 053103 (2010).
[Crossref]

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980–1070-nm spectral range,” Opt. Lett. 28, 1522–1524 (2003).
[Crossref]

Gonzalez- Carreno, T.

P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez- Carreno, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D 36, R182–R197 (2003).
[Crossref]

Grevelink, J. M.

K. A. Khatri, V. Ross, J. M. Grevelink, C. M. Magro, and R. R. Anderson, “Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides,” Arch. Dermatol. 135, 391–397 (1999).
[Crossref]

Gross, S.

Grudinin, A. B.

Guo, Q. B.

X. F. Liu, Q. B. Guo, and J. R. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

Guo, Z.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Guo, Z. N.

Hai, T.

Hakulinen, T.

Häring, R.

Härkönen, A.

Harun, S. W.

Hasan, T.

Hashimoto, T.

T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol-gel derived α-Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80, 3184–3190 (1996).
[Crossref]

He, J. L.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

He, Y. L.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

Hu, G.

Hu, X. H.

Huang, B.

P. H. Tang, Y. Tao, Y. L. Mao, M. Wu, Z. Y. Huang, S. N. Liang, X. H. Chen, X. Qi, B. Huang, J. Liu, and C. J. Zhao, “Graphene/MoS2 heterostructure: a robust mid-infrared optical modulator for Er3+-doped ZBLAN fiber laser,” Chin. Opt. Lett. 16, 020012 (2018).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

Huang, Y.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

Huang, Z. Y.

Hudson, D. D.

Ismail, M. A.

Ismail, M. F.

Ismail, M. I. M.

F. El-Diasty, H. M. El-Sayed, F. I. El-Hosiny, and M. I. M. Ismail, “Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles,” Curr. Opin. Solid State Mater. Sci. 13, 28–34 (2009).
[Crossref]

Jablonski, M.

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.

Jackson, S. D.

Jeong, K. H.

J. H. Koo, K. H. Jeong, B.-A. Yu, and W. J. Shin, “Evanescent field interaction with Fe3O4 nano-particle for passively Q-switched thulium-doped fiber laser at 1.94  μm,” Opt. Laser Technol. 119, 105579 (2019).
[Crossref]

Ji, W.

Jia, H.

N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, and W. P. Qin, “Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm,” Laser Phys. Lett. 16, 065102 (2019).
[Crossref]

Jia, Z. X.

N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, and W. P. Qin, “Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm,” Laser Phys. Lett. 16, 065102 (2019).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Jiang, G. B.

Jiang, J.

Jiang, T.

Jiang, X.

Jobin, F.

Jouhti, T.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

Jünger, M.

S. Karsai, A. Czarnecka, M. Jünger, and C. Raulin, “Ablative fractional lasers (CO2 and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides,” Lasers Surg. Med. 42, 160–167 (2010).
[Crossref]

Kang, Z.

N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, and W. P. Qin, “Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm,” Laser Phys. Lett. 16, 065102 (2019).
[Crossref]

C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, and Y. Liu, “Mid-Infrared Q-switched and mode-locked fiber lasers at 2.87  μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum 25, 1100206 (2019).
[Crossref]

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3  μm,” Opt. Express 27, 4886–4896 (2019).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Karsai, S.

S. Karsai, A. Czarnecka, M. Jünger, and C. Raulin, “Ablative fractional lasers (CO2 and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides,” Lasers Surg. Med. 42, 160–167 (2010).
[Crossref]

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

Kaskela, A.

Kataura, H.

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.

Kauppinen, E. I.

Kelleher, E.

R. Woodward and E. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

Keller, U.

R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53  μm,” Opt. Lett. 24, 388–390 (1999).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

Khaleel, W. A.

Khatri, K. A.

K. A. Khatri, V. Ross, J. M. Grevelink, C. M. Magro, and R. R. Anderson, “Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides,” Arch. Dermatol. 135, 391–397 (1999).
[Crossref]

Kikuchi, K.

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.

Kilpela, A.

A. Kilpela, J. Ylitalo, K. Maatta, and J. Kostamovaara, “Timing discriminator for pulsed time-of-flight laser rangefinding measurements,” Rev. Sci. Instrum. 69, 1978–1984 (1998).
[Crossref]

Kim, J. H.

J. H. Koo, J. S. Lee, J. H. Kim, and J. H. Lee, “A Q-switched 1.89  μm fiber laser using an Fe3O4-based saturable absorber,” J. Lumin. 195, 181–186 (2018).
[Crossref]

Kivistö, S.

Koo, J.

Koo, J. H.

J. H. Koo, K. H. Jeong, B.-A. Yu, and W. J. Shin, “Evanescent field interaction with Fe3O4 nano-particle for passively Q-switched thulium-doped fiber laser at 1.94  μm,” Opt. Laser Technol. 119, 105579 (2019).
[Crossref]

J. H. Koo, J. S. Lee, J. H. Kim, and J. H. Lee, “A Q-switched 1.89  μm fiber laser using an Fe3O4-based saturable absorber,” J. Lumin. 195, 181–186 (2018).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

Kostamovaara, J.

A. Kilpela, J. Ylitalo, K. Maatta, and J. Kostamovaara, “Timing discriminator for pulsed time-of-flight laser rangefinding measurements,” Rev. Sci. Instrum. 69, 1978–1984 (1998).
[Crossref]

Laporta, P.

Larose, M.

Latif, A. A.

Latiff, A. A.

A. Nady, M. H. M. Ahmed, A. A. Latiff, A. Numan, C. H. R. Ooi, and S. W. Harun, “Nickel oxide nanoparticles as a saturable absorber for an all-fiber passively Q-switched erbium-doped fiber laser,” Laser Phys. 27, 065105 (2017).
[Crossref]

Lee, C. S. J.

Lee, J.

Lee, J. H.

Lee, J. S.

J. H. Koo, J. S. Lee, J. H. Kim, and J. H. Lee, “A Q-switched 1.89  μm fiber laser using an Fe3O4-based saturable absorber,” J. Lumin. 195, 181–186 (2018).
[Crossref]

Li, C.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Li, D. C.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Li, G. Q.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Li, H. P.

Li, J.

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3  μm,” Opt. Express 27, 4886–4896 (2019).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Li, J. F.

Li, L.

Li, M. K.

Li, N.

N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, and W. P. Qin, “Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm,” Laser Phys. Lett. 16, 065102 (2019).
[Crossref]

Li, T.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Li, X. H.

Liang, S. N.

Liang, T.

M. S. Xu, T. Liang, M. M. Shi, and H. Z. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Librantz, A. F. H.

L. Gomes, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass,” J. Appl. Phys. 107, 053103 (2010).
[Crossref]

Lin, Z.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

Liu, C.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

Liu, J.

P. H. Tang, Y. Tao, Y. L. Mao, M. Wu, Z. Y. Huang, S. N. Liang, X. H. Chen, X. Qi, B. Huang, J. Liu, and C. J. Zhao, “Graphene/MoS2 heterostructure: a robust mid-infrared optical modulator for Er3+-doped ZBLAN fiber laser,” Chin. Opt. Lett. 16, 020012 (2018).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

Liu, J. X.

N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, and W. P. Qin, “Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm,” Laser Phys. Lett. 16, 065102 (2019).
[Crossref]

Liu, L.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Liu, S. C.

L. Li, R. D. Lv, S. C. Liu, Z. D. Chen, J. Wang, Y. G. Wang, W. Ren, and W. J. Liu, “Ferroferric-oxide nanoparticle based Q-switcher for a 1  μm region,” Opt. Mater. Express 9, 731–738 (2019).
[Crossref]

L. Li, Y. G. Wang, X. Wang, R. D. Lv, S. C. Liu, Z. D. Chen, and J. Wang, “Generation of dark solitons in Er-doped fiber laser based on ferroferric-oxide nanoparticles,” Opt. Laser Technol. 103, 354–358 (2018).
[Crossref]

Liu, W. J.

Liu, X. F.

X. F. Liu, Q. B. Guo, and J. R. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

Liu, X. Y.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Liu, Y.

C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, and Y. Liu, “Mid-Infrared Q-switched and mode-locked fiber lasers at 2.87  μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum 25, 1100206 (2019).
[Crossref]

H. Y. Luo, J. F. Li, Y. Gao, Y. Xu, X. H. Li, and Y. Liu, “Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08  μm using PbS nanoparticles,” Opt. Lett. 44, 2322–2325 (2019).
[Crossref]

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3  μm,” Opt. Express 27, 4886–4896 (2019).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

J. F. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
[Crossref]

Loh, K. P.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Lu, H.

Lu, R.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Lu, S. B.

Luo, H.

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3  μm,” Opt. Express 27, 4886–4896 (2019).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Luo, H. Y.

Luo, Z.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

Lv, R. D.

L. Li, R. D. Lv, S. C. Liu, Z. D. Chen, J. Wang, Y. G. Wang, W. Ren, and W. J. Liu, “Ferroferric-oxide nanoparticle based Q-switcher for a 1  μm region,” Opt. Mater. Express 9, 731–738 (2019).
[Crossref]

L. Li, Y. G. Wang, X. Wang, R. D. Lv, S. C. Liu, Z. D. Chen, and J. Wang, “Generation of dark solitons in Er-doped fiber laser based on ferroferric-oxide nanoparticles,” Opt. Laser Technol. 103, 354–358 (2018).
[Crossref]

Lyu, Y. J.

C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, and Y. Liu, “Mid-Infrared Q-switched and mode-locked fiber lasers at 2.87  μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum 25, 1100206 (2019).
[Crossref]

Ma, J. G.

Maatta, K.

A. Kilpela, J. Ylitalo, K. Maatta, and J. Kostamovaara, “Timing discriminator for pulsed time-of-flight laser rangefinding measurements,” Rev. Sci. Instrum. 69, 1978–1984 (1998).
[Crossref]

Macadam, N.

Magro, C. M.

K. A. Khatri, V. Ross, J. M. Grevelink, C. M. Magro, and R. R. Anderson, “Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides,” Arch. Dermatol. 135, 391–397 (1999).
[Crossref]

Majewski, M. R.

Mao, D.

Mao, Y. L.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

Melchior, H.

Miao, L. L.

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Mohammed, D. Z.

Mou, C. B.

X. K. Bai, C. B. Mou, L. X. Xu, S. F. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9, 042701 (2016).
[Crossref]

Nady, A.

A. Nady, M. H. M. Ahmed, A. A. Latiff, A. Numan, C. H. R. Ooi, and S. W. Harun, “Nickel oxide nanoparticles as a saturable absorber for an all-fiber passively Q-switched erbium-doped fiber laser,” Laser Phys. 27, 065105 (2017).
[Crossref]

Nasibulin, A. G.

Nayan, N.

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Niedermeier, S.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Norwood, R. A.

C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Numan, A.

A. Nady, M. H. M. Ahmed, A. A. Latiff, A. Numan, C. H. R. Ooi, and S. W. Harun, “Nickel oxide nanoparticles as a saturable absorber for an all-fiber passively Q-switched erbium-doped fiber laser,” Laser Phys. 27, 065105 (2017).
[Crossref]

Offerhaus, H. L.

Okhotnikov, O. G.

Ooi, C. H. R.

A. Nady, M. H. M. Ahmed, A. A. Latiff, A. Numan, C. H. R. Ooi, and S. W. Harun, “Nickel oxide nanoparticles as a saturable absorber for an all-fiber passively Q-switched erbium-doped fiber laser,” Laser Phys. 27, 065105 (2017).
[Crossref]

Pankove, J. I.

I. Balberg and J. I. Pankove, “Optical measurements on magnetite single crystals,” Phys. Rev. Lett. 27, 596–599 (1971).
[Crossref]

Paschotta, R.

Peng, H.

Peyghambarian, N.

C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

Pinho, N. C.

S. Stübinger, J. P. Dissmann, N. C. Pinho, B. Saldamli, O. Seitz, and R. Sader, “A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er:YAG laser ablation,” Lasers Surg. Med. 41, 26–30 (2009).
[Crossref]

Pu, S. L.

X. K. Bai, C. B. Mou, L. X. Xu, S. F. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9, 042701 (2016).
[Crossref]

Qi, X.

Qian, L. J.

Qiao, W. C.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Qin, G.

Qin, G. S.

N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, and W. P. Qin, “Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm,” Laser Phys. Lett. 16, 065102 (2019).
[Crossref]

C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, and Y. Liu, “Mid-Infrared Q-switched and mode-locked fiber lasers at 2.87  μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum 25, 1100206 (2019).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Qin, W. P.

N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, and W. P. Qin, “Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm,” Laser Phys. Lett. 16, 065102 (2019).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Qin, Z. P.

Qiu, J. R.

X. F. Liu, Q. B. Guo, and J. R. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

Rairoux, P.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Ramsubramaniam, A.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramsubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Raulin, C.

S. Karsai, A. Czarnecka, M. Jünger, and C. Raulin, “Ablative fractional lasers (CO2 and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides,” Lasers Surg. Med. 42, 160–167 (2010).
[Crossref]

Reduan, S. A.

Ren, W.

Richardson, D. J.

Rodriguez, M.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Ronneberger, F.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Ross, V.

K. A. Khatri, V. Ross, J. M. Grevelink, C. M. Magro, and R. R. Anderson, “Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides,” Arch. Dermatol. 135, 391–397 (1999).
[Crossref]

Rotermund, F.

Rozhin, A.

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.

Rozhin, A. G.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Ruan, S. C.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-wavelength and multiwavelength Q-switched fiber laser using Fe3O4 nanoparticles,” IEEE Photon. J. 9, 1501009 (2017).
[Crossref]

Ruslan, N. E.

Sader, R.

S. Stübinger, J. P. Dissmann, N. C. Pinho, B. Saldamli, O. Seitz, and R. Sader, “A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er:YAG laser ablation,” Lasers Surg. Med. 41, 26–30 (2009).
[Crossref]

Sakakibara, Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.

Saldamli, B.

S. Stübinger, J. P. Dissmann, N. C. Pinho, B. Saldamli, O. Seitz, and R. Sader, “A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er:YAG laser ablation,” Lasers Surg. Med. 41, 26–30 (2009).
[Crossref]

Salim, M. A. M.

Sauerbrey, R.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Schillinger, H.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Seitz, O.

S. Stübinger, J. P. Dissmann, N. C. Pinho, B. Saldamli, O. Seitz, and R. Sader, “A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er:YAG laser ablation,” Lasers Surg. Med. 41, 26–30 (2009).
[Crossref]

Serna, C. J.

P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez- Carreno, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D 36, R182–R197 (2003).
[Crossref]

Set, S. Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.

Shen, D. Y.

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Shi, H. X.

C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, and Y. Liu, “Mid-Infrared Q-switched and mode-locked fiber lasers at 2.87  μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum 25, 1100206 (2019).
[Crossref]

Shi, M. M.

M. S. Xu, T. Liang, M. M. Shi, and H. Z. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Shin, W. J.

J. H. Koo, K. H. Jeong, B.-A. Yu, and W. J. Shin, “Evanescent field interaction with Fe3O4 nano-particle for passively Q-switched thulium-doped fiber laser at 1.94  μm,” Opt. Laser Technol. 119, 105579 (2019).
[Crossref]

Sodnik, Z.

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).
[Crossref]

Song, F.

Stein, B.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Stübinger, S.

S. Stübinger, J. P. Dissmann, N. C. Pinho, B. Saldamli, O. Seitz, and R. Sader, “A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er:YAG laser ablation,” Lasers Surg. Med. 41, 26–30 (2009).
[Crossref]

Su, L. B.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Sun, C. D.

Sun, L.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

Sun, Z.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Tanaka, Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.

Tang, B. Y.

Tang, D. Y.

Y. Chen, G. B. Jiang, S. Q. Chen, Z. N. Guo, X. F. Yu, C. J. Zhao, H. Zhang, Q. L. Bao, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Tang, P. H.

P. H. Tang, Y. Tao, Y. L. Mao, M. Wu, Z. Y. Huang, S. N. Liang, X. H. Chen, X. Qi, B. Huang, J. Liu, and C. J. Zhao, “Graphene/MoS2 heterostructure: a robust mid-infrared optical modulator for Er3+-doped ZBLAN fiber laser,” Chin. Opt. Lett. 16, 020012 (2018).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

Tao, Y.

Tartaj, P.

P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez- Carreno, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D 36, R182–R197 (2003).
[Crossref]

Thambiratnam, K.

Tokumoto, M.

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.

Toyoshima, M.

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).
[Crossref]

Turistyn, S. K.

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Vallée, R.

Veintemillas-Verdaguer, S.

P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez- Carreno, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D 36, R182–R197 (2003).
[Crossref]

Waite, D.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Wang, B. L.

H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, F.

C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Wang, H.

Wang, H. S.

Wang, J.

Wang, J. Y.

H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, J. Z.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-wavelength and multiwavelength Q-switched fiber laser using Fe3O4 nanoparticles,” IEEE Photon. J. 9, 1501009 (2017).
[Crossref]

Wang, L. L.

Wang, Q. K.

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

Wang, S. F.

X. K. Bai, C. B. Mou, L. X. Xu, S. F. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9, 042701 (2016).
[Crossref]

Wang, X.

L. Li, Y. G. Wang, X. Wang, R. D. Lv, S. C. Liu, Z. D. Chen, and J. Wang, “Generation of dark solitons in Er-doped fiber laser based on ferroferric-oxide nanoparticles,” Opt. Laser Technol. 103, 354–358 (2018).
[Crossref]

X. Wang, Y. G. Wang, D. Mao, L. Li, and Z. D. Chen, “Passively Q-switched Nd:YVO4 laser based on Fe3O4 nanoparticles saturable absorber,” Opt. Mater. Express 7, 2913–2921 (2017).
[Crossref]

Wang, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Wang, Y. C.

H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Wang, Y. G.

Wang, Y. H.

Wang, Y. S.

Wang, Z. T.

Wedekind, C.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Wei, C.

C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, and Y. Liu, “Mid-Infrared Q-switched and mode-locked fiber lasers at 2.87  μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum 25, 1100206 (2019).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

Wen, S. C.

Weng, J.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Wille, H.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Withford, M. J.

Woodward, R.

R. Woodward and E. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

Woodward, R. I.

Wöste, L.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Wu, D.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

Wu, J.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

Wu, K.

Wu, M.

P. H. Tang, Y. Tao, Y. L. Mao, M. Wu, Z. Y. Huang, S. N. Liang, X. H. Chen, X. Qi, B. Huang, J. Liu, and C. J. Zhao, “Graphene/MoS2 heterostructure: a robust mid-infrared optical modulator for Er3+-doped ZBLAN fiber laser,” Chin. Opt. Lett. 16, 020012 (2018).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

Xia, F. N.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramsubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xiang, N.

Xiao, D.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramsubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xie, G. Q.

Xie, J.

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

Xing, G.

Xu, H.

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

Xu, J.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Xu, L. X.

X. K. Bai, C. B. Mou, L. X. Xu, S. F. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9, 042701 (2016).
[Crossref]

Xu, M. S.

M. S. Xu, T. Liang, M. M. Shi, and H. Z. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Xu, Y.

Yaguchi, H.

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.

Yamada, T.

T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol-gel derived α-Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80, 3184–3190 (1996).
[Crossref]

Yamakawa, S.

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).
[Crossref]

Yamawaki, T.

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).
[Crossref]

Yan, P. G.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-wavelength and multiwavelength Q-switched fiber laser using Fe3O4 nanoparticles,” IEEE Photon. J. 9, 1501009 (2017).
[Crossref]

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Yan, Z. J.

Yang, K. J.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Yang, X. H.

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78  μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Yeom, D.

Yin, J. D.

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-wavelength and multiwavelength Q-switched fiber laser using Fe3O4 nanoparticles,” IEEE Photon. J. 9, 1501009 (2017).
[Crossref]

Yin, K.

Ying, J. Y.

Ylitalo, J.

A. Kilpela, J. Ylitalo, K. Maatta, and J. Kostamovaara, “Timing discriminator for pulsed time-of-flight laser rangefinding measurements,” Rev. Sci. Instrum. 69, 1978–1984 (1998).
[Crossref]

Yoko, T.

T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol-gel derived α-Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80, 3184–3190 (1996).
[Crossref]

Yu, B.-A.

J. H. Koo, K. H. Jeong, B.-A. Yu, and W. J. Shin, “Evanescent field interaction with Fe3O4 nano-particle for passively Q-switched thulium-doped fiber laser at 1.94  μm,” Opt. Laser Technol. 119, 105579 (2019).
[Crossref]

Yu, H.

H. Yu, X. Zheng, K. Yin, X. Cheng, and T. Jiang, “Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets,” Opt. Mater. Express 6, 603–609 (2016).
[Crossref]

H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Yu, X. F.

Yuan, P.

Yusoff, N.

H. Ahmad, S. N. Aidit, and N. Yusoff, “Bismuth oxide nanoflakes for passive Q-switching in a C-band erbium doped fiber laser,” Infrared Phys. Technol. 95, 19–26 (2018).
[Crossref]

Zeng, X. L.

X. K. Bai, C. B. Mou, L. X. Xu, S. F. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9, 042701 (2016).
[Crossref]

Zhai, B.

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Zhang, B. T.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Zhang, H.

C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, and Y. Liu, “Mid-Infrared Q-switched and mode-locked fiber lasers at 2.87  μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum 25, 1100206 (2019).
[Crossref]

X. Jiang, S. Gross, M. J. Withford, H. Zhang, D. Yeom, F. Rotermund, and A. Fuerbach, “Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers,” Opt. Mater. Express 8, 3055–3071 (2018).
[Crossref]

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78  μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Y. Chen, G. B. Jiang, S. Q. Chen, Z. N. Guo, X. F. Yu, C. J. Zhao, H. Zhang, Q. L. Bao, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and B. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Zhang, H. J.

H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Zhang, L.

H. S. Wang, F. Y. Zhao, Z. J. Yan, X. H. Hu, K. M. Zhou, T. Zhang, W. Zhang, Y. S. Wang, W. Zhao, L. Zhang, and C. D. Sun, “Excessively tilted fiber grating based Fe3O4 saturable absorber for passively mode-locked fiber laser,” Opt. Express 27, 15693–15700 (2019).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Zhang, T.

H. S. Wang, F. Y. Zhao, Z. J. Yan, X. H. Hu, K. M. Zhou, T. Zhang, W. Zhang, Y. S. Wang, W. Zhao, L. Zhang, and C. D. Sun, “Excessively tilted fiber grating based Fe3O4 saturable absorber for passively mode-locked fiber laser,” Opt. Express 27, 15693–15700 (2019).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78  μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Zhang, W.

Zhang, W. D.

Zhang, X. Y.

Zhao, C. J.

P. H. Tang, Y. Tao, Y. L. Mao, M. Wu, Z. Y. Huang, S. N. Liang, X. H. Chen, X. Qi, B. Huang, J. Liu, and C. J. Zhao, “Graphene/MoS2 heterostructure: a robust mid-infrared optical modulator for Er3+-doped ZBLAN fiber laser,” Chin. Opt. Lett. 16, 020012 (2018).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Y. Chen, G. B. Jiang, S. Q. Chen, Z. N. Guo, X. F. Yu, C. J. Zhao, H. Zhang, Q. L. Bao, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and B. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

Zhao, D.

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Zhao, F. Y.

Zhao, J.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Zhao, J. L.

Zhao, L. M.

Zhao, S. Z.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Zhao, W.

Zheng, L. H.

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

Zheng, X.

Zhou, K. M.

H. S. Wang, F. Y. Zhao, Z. J. Yan, X. H. Hu, K. M. Zhou, T. Zhang, W. Zhang, Y. S. Wang, W. Zhao, L. Zhang, and C. D. Sun, “Excessively tilted fiber grating based Fe3O4 saturable absorber for passively mode-locked fiber laser,” Opt. Express 27, 15693–15700 (2019).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Zhou, S. H.

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78  μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

Zhu, X. S.

C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

Ziener, C.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Zou, Y. H.

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[Crossref]

Adv. Mater. (1)

X. F. Liu, Q. B. Guo, and J. R. Qiu, “Emerging low-dimensional materials for nonlinear optics and ultrafast photonics,” Adv. Mater. 29, 1605886 (2017).
[Crossref]

Ann. Plast. Surg. (1)

L. S. Bass, “Erbium:YAG laser skin resurfacing: preliminary clinical evaluation,” Ann. Plast. Surg. 40, 328–334 (1998).
[Crossref]

APL Photon. (1)

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm,” APL Photon. 3, 116106 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[Crossref]

Appl. Phys. Express (1)

X. K. Bai, C. B. Mou, L. X. Xu, S. F. Wang, S. L. Pu, and X. L. Zeng, “Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber,” Appl. Phys. Express 9, 042701 (2016).
[Crossref]

Appl. Phys. Lett. (1)

Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, and W. P. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103, 041105 (2013).
[Crossref]

Appl. Sci. (1)

R. Woodward and E. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5, 1440–1456 (2015).
[Crossref]

Arch. Dermatol. (1)

K. A. Khatri, V. Ross, J. M. Grevelink, C. M. Magro, and R. R. Anderson, “Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides,” Arch. Dermatol. 135, 391–397 (1999).
[Crossref]

Chem. Rev. (1)

M. S. Xu, T. Liang, M. M. Shi, and H. Z. Chen, “Graphene-like two-dimensional materials,” Chem. Rev. 113, 3766–3798 (2013).
[Crossref]

Chin. Opt. Lett. (2)

Curr. Opin. Solid State Mater. Sci. (1)

F. El-Diasty, H. M. El-Sayed, F. I. El-Hosiny, and M. I. M. Ismail, “Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles,” Curr. Opin. Solid State Mater. Sci. 13, 28–34 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum (2)

C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, and Y. Liu, “Mid-Infrared Q-switched and mode-locked fiber lasers at 2.87  μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum 25, 1100206 (2019).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. der Au, “Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum 2, 435–453 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, and J. Weng, “Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength,” IEEE J. Sel. Top. Quantum Electron 20, 0902708 (2014).
[Crossref]

IEEE Photon. J. (1)

Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, and S. C. Ruan, “Single-wavelength and multiwavelength Q-switched fiber laser using Fe3O4 nanoparticles,” IEEE Photon. J. 9, 1501009 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (3)

X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, and J. Xu, “Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region,” IEEE Photon. Technol. Lett. 30, 777–780 (2018).
[Crossref]

P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, and S. C. Wen, “2.8-μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator,” IEEE Photon. Technol. Lett. 28, 1573–1576 (2016).
[Crossref]

C. Wei, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-switched 2.8-μm nanosecond fiber laser,” IEEE Photon. Technol. Lett. 24, 1741–1744 (2012).
[Crossref]

IEEE Trans. Antennas Propag. (1)

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, and B. Demelenne, “Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link,” IEEE Trans. Antennas Propag. 53, 842–850 (2005).
[Crossref]

Infrared Phys. Technol. (1)

H. Ahmad, S. N. Aidit, and N. Yusoff, “Bismuth oxide nanoflakes for passive Q-switching in a C-band erbium doped fiber laser,” Infrared Phys. Technol. 95, 19–26 (2018).
[Crossref]

J. Appl. Phys. (2)

L. Gomes, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass,” J. Appl. Phys. 107, 053103 (2010).
[Crossref]

T. Hashimoto, T. Yamada, and T. Yoko, “Third-order nonlinear optical properties of sol-gel derived α-Fe2O3, γ- Fe2O3, and Fe3O4 thin films,” J. Appl. Phys. 80, 3184–3190 (1996).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (1)

J. H. Koo, J. S. Lee, J. H. Kim, and J. H. Lee, “A Q-switched 1.89  μm fiber laser using an Fe3O4-based saturable absorber,” J. Lumin. 195, 181–186 (2018).
[Crossref]

J. Phys. D (1)

P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez- Carreno, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D 36, R182–R197 (2003).
[Crossref]

Laser Photon. Rev. (1)

H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, and J. Y. Wang, “Topological insulator as an optical modulator for pulsed solid-state lasers,” Laser Photon. Rev. 7, L77–L83 (2013).
[Crossref]

Laser Phys. (2)

A. Nady, M. H. M. Ahmed, A. A. Latiff, A. Numan, C. H. R. Ooi, and S. W. Harun, “Nickel oxide nanoparticles as a saturable absorber for an all-fiber passively Q-switched erbium-doped fiber laser,” Laser Phys. 27, 065105 (2017).
[Crossref]

S. K. M. Al-Hayali and A. H. Al-Janabi, “Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization,” Laser Phys. 28, 035103 (2018).
[Crossref]

Laser Phys. Lett. (4)

N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, and W. P. Qin, “Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm,” Laser Phys. Lett. 16, 065102 (2019).
[Crossref]

T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, and S. H. Zhou, “2.78  μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film,” Laser Phys. Lett. 13, 075102 (2016).
[Crossref]

C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, and Y. Liu, “Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber,” Laser Phys. Lett. 13, 105108 (2016).
[Crossref]

J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser,” Laser Phys. Lett. 11, 065102 (2014).
[Crossref]

Lasers Surg. Med. (2)

S. Stübinger, J. P. Dissmann, N. C. Pinho, B. Saldamli, O. Seitz, and R. Sader, “A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er:YAG laser ablation,” Lasers Surg. Med. 41, 26–30 (2009).
[Crossref]

S. Karsai, A. Czarnecka, M. Jünger, and C. Raulin, “Ablative fractional lasers (CO2 and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides,” Lasers Surg. Med. 42, 160–167 (2010).
[Crossref]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008).
[Crossref]

Nat. Photonics (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramsubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Opt. Express (10)

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and B. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express 20, 27888–27895 (2012).
[Crossref]

Y. Chen, G. B. Jiang, S. Q. Chen, Z. N. Guo, X. F. Yu, C. J. Zhao, H. Zhang, Q. L. Bao, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Z. P. Qin, T. Hai, G. Q. Xie, J. G. Ma, P. Yuan, L. J. Qian, L. Li, L. M. Zhao, and D. Y. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5  μm wavelength,” Opt. Express 26, 8224–8231 (2018).
[Crossref]

B. H. Chen, X. Y. Zhang, K. Wu, H. Wang, J. Wang, and J. P. Chen, “Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Opt. Express 23, 26723–26737 (2015).
[Crossref]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17, 2358–2363 (2009).
[Crossref]

H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, and Y. Liu, “Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3  μm,” Opt. Express 27, 4886–4896 (2019).
[Crossref]

R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, and S. D. Jackson, “Q-switched Dy:ZBLAN fiber lasers beyond 3  μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus,” Opt. Express 27, 15032–15045 (2019).
[Crossref]

Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, and L. J. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm,” Opt. Express 23, 24713–24718 (2015).
[Crossref]

H. S. Wang, F. Y. Zhao, Z. J. Yan, X. H. Hu, K. M. Zhou, T. Zhang, W. Zhang, Y. S. Wang, W. Zhao, L. Zhang, and C. D. Sun, “Excessively tilted fiber grating based Fe3O4 saturable absorber for passively mode-locked fiber laser,” Opt. Express 27, 15693–15700 (2019).
[Crossref]

G. Xing, J. Jiang, J. Y. Ying, and W. Ji, “Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold,” Opt. Express 18, 6183–6190 (2010).
[Crossref]

Opt. Laser Technol. (2)

L. Li, Y. G. Wang, X. Wang, R. D. Lv, S. C. Liu, Z. D. Chen, and J. Wang, “Generation of dark solitons in Er-doped fiber laser based on ferroferric-oxide nanoparticles,” Opt. Laser Technol. 103, 354–358 (2018).
[Crossref]

J. H. Koo, K. H. Jeong, B.-A. Yu, and W. J. Shin, “Evanescent field interaction with Fe3O4 nano-particle for passively Q-switched thulium-doped fiber laser at 1.94  μm,” Opt. Laser Technol. 119, 105579 (2019).
[Crossref]

Opt. Lett. (9)

M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8  μm to 3.4  μm, pumped at 1.7  μm,” Opt. Lett. 43, 971–974 (2018).
[Crossref]

V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, “10-W-level monolithic dysprosium-doped fiber laser at 3.24  μm,” Opt. Lett. 44, 491–494 (2019).
[Crossref]

Y. H. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, and R. Vallée, “Ultrafast Dy3+: fluoride fiber laser beyond 3  μm,” Opt. Lett. 44, 395–398 (2019).
[Crossref]

H. Y. Luo, J. F. Li, Y. Gao, Y. Xu, X. H. Li, and Y. Liu, “Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08  μm using PbS nanoparticles,” Opt. Lett. 44, 2322–2325 (2019).
[Crossref]

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980–1070-nm spectral range,” Opt. Lett. 28, 1522–1524 (2003).
[Crossref]

R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53  μm,” Opt. Lett. 24, 388–390 (1999).
[Crossref]

J. F. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37, 3747–3749 (2012).
[Crossref]

C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38, 3233–3236 (2013).
[Crossref]

J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, and Y. Liu, “3-μm mid-infrared pulse generation using topological insulator as the saturable absorber,” Opt. Lett. 40, 3659–3662 (2015).
[Crossref]

Opt. Mater. Express (4)

Photon. Res. (1)

Phys. Rev. Lett. (1)

I. Balberg and J. I. Pankove, “Optical measurements on magnetite single crystals,” Phys. Rev. Lett. 27, 596–599 (1971).
[Crossref]

Rev. Sci. Instrum. (1)

A. Kilpela, J. Ylitalo, K. Maatta, and J. Kostamovaara, “Timing discriminator for pulsed time-of-flight laser rangefinding measurements,” Rev. Sci. Instrum. 69, 1978–1984 (1998).
[Crossref]

Sci. Rep. (1)

J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, and Y. Liu, “Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers,” Sci. Rep. 6, 30361 (2016).
[Crossref]

Other (1)

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, and K. Kikuchi, “Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes,” in Optical Fiber Communications Conference (OFC) (2003), paper PD44.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Characterizations of Fe3O4 nanoparticle dispersion: (a) atomic structure, (b) TEM image with a 50 nm scale, (c) HRTEM image with a 5 nm scale, and (d) X-ray diffraction pattern.
Fig. 2.
Fig. 2. Nonlinear optical absorption measurement: (a) experimental setup and (b) results at 2.87 μm.
Fig. 3.
Fig. 3. Experimental setup of the tunable passively Q-switched Dy3+-doped ZBLAN fiber laser using Fe3O4 nanoparticles as the SA. L1-L4, four lenses; DM1 and DM2, two dichroic mirrors; HT, high transmittance; HR, high reflectance.
Fig. 4.
Fig. 4. Q-switched pulse train and single pulse waveform (inset) at the launched pump powers of (a) 1.62 W and (b) 2.89 W; (c) optical and (d) RF spectra at the launched pump power of 2.89 W.
Fig. 5.
Fig. 5. (a) Pulse width and repetition rate and (b) pulse energy and output power as a function of the launched pump power.
Fig. 6.
Fig. 6. (a) Output spectrum, output power, and pulse energy, and (b) repetition rate and pulse width as a function of the wavelength at the launched pump power of 2.89 W.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(I)=1ΔT·exp(I/Isat)Tns,