Abstract

The mid-infrared spectrum can be recorded from almost any material, making mid-infrared spectroscopy an extremely important and widely used sample characterization and analysis technique. However, sensitive photoconductive detectors operate primarily in the near-infrared (NIR), but not in the mid-infrared, making the NIR more favorable for accurate spectral analysis. Although the absorption cross section of vibrational modes in the NIR is orders of magnitude smaller compared to the fundamental vibrations in the mid-infrared, different concepts have been proposed to increase the detectability of weak molecular transitions overtones. Yet, the contribution of magnetophotonic structures in the NIR absorption effect has never been explored so far. Here we propose high-Q magnetophotonic structures for a supersensitive detection of weak absorption resonances in the NIR. We analyze the contributions of both magnetic and nonmagnetic photonic crystal configurations to the detection of weak molecular transitions overtones. Our results constitute an important step towards the development of highly sensitive spectroscopic tools based on high-Q magnetophotonic sensors.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Differential extinction of vibrational molecular overtone transitions with gold nanorods and its role in surface enhanced near-IR absorption (SENIRA)

Daler R. Dadadzhanov, Tigran A. Vartanyan, and Alina Karabchevsky
Opt. Express 27(21) 29471-29478 (2019)

Design study of nanograting-based surface plasmon resonance biosensor in the near-infrared wavelength

M. Tahmasebpour, M. Bahrami, and A. Asgari
Appl. Opt. 53(7) 1449-1458 (2014)

Photonic crystals as topological high-Q resonators

R. Merlin and S. M. Young
Opt. Express 22(15) 18579-18587 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. S. Struve, Fundamentals of Molecular Spectroscopy (Wiley, 1989).
  2. R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
    [Crossref]
  3. D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
    [Crossref]
  4. A. Karabchevsky and A. V. Kavokin, “Giant absorption of light by molecular vibrations on a chip,” Sci. Rep. 6, 21201 (2016).
    [Crossref]
  5. A. Karabchevsky, A. Katiyi, M. I. M. Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines with photonic microfibers sculptured gold nanoparticles,” ACS Photon. 5, 2200–2207 (2018).
    [Crossref]
  6. A. Katiyi and A. Karabchevsky, “Si nanostrip rib-waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared,” ACS Sens. 3, 618–623 (2018).
    [Crossref]
  7. A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Lightwave Technol. 35, 2902–2908 (2017).
    [Crossref]
  8. A. Karabchevsky and A. Shalabney, “Strong interaction of molecular vibrational overtones with near-guided surface plasmon polariton,” Proc. SPIE 9899, 98991T (2016).
    [Crossref]
  9. D. R. Dadadzhanov, T. A. Vartanyan, and A. Karabchevsky, “Differential extinction of vibrational molecular overtone transitions with gold nanorods and its role in surface enhanced near-IR absorption (SENIRA),” Opt. Express 27, 29471–29478 (2019).
    [Crossref]
  10. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
    [Crossref]
  11. D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
    [Crossref]
  12. K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
    [Crossref]
  13. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
    [Crossref]
  14. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [Crossref]
  15. N. E. Khokhlov, D. O. Ignatyeva, and V. I. Belotelov, “Plasmonic pulse shaping and velocity control via photoexcitation of electrons in a gold film,” Opt. Express 22, 28019–28026 (2014).
    [Crossref]
  16. D. O. Ignatyeva and A. P. Sukhorukov, “Plasmon beams interaction at interface between metal and dielectric with saturable Kerr nonlinearity,” Appl. Phys. A 109, 813–818 (2012).
    [Crossref]
  17. D. O. Ignatyeva and A. P. Sukhorukov, “Femtosecond-pulse control in nonlinear plasmonic systems,” Phys. Rev. A 89, 013850 (2014).
    [Crossref]
  18. O. Borovkova, A. Kalish, and V. Belotelov, “Transverse magneto-optical Kerr effect in active magneto-plasmonic structures,” Opt. Lett. 41, 4593–4596 (2016).
    [Crossref]
  19. O. V. Borovkova, H. Hashim, M. A. Kozhaev, S. A. Dagesyan, A. Chakravarty, M. Levy, and V. I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
    [Crossref]
  20. O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
    [Crossref]
  21. M. Levy, O. V. Borovkova, C. Sheidler, B. Blasiola, D. Karki, F. Jomard, M. A. Kozhaev, E. Popova, N. Keller, and V. I. Belotelov, “Faraday rotation in iron garnet films beyond elemental substitutions,” Optica 6, 642–646 (2019).
    [Crossref]
  22. C. A. Herreño-Fierro, E. J. Patiño, G. Armelles, and A. Cebollada, “Surface sensitivity of optical and magneto-optical and ellipsometric properties in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 108, 021109 (2016).
    [Crossref]
  23. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31, 1085–1087 (2006).
    [Crossref]
  24. D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
    [Crossref]
  25. N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
    [Crossref]
  26. S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gáspár, and E. Gheorghiu, “Magneto-plasmonic biosensor with enhanced analytical response and stability,” Biosens. Bioelectron. 63, 525–532 (2015).
    [Crossref]
  27. M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Garcia-Martin, and R. Rella, “Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor,” Biosens. Bioelectron. 58, 114–120 (2014).
    [Crossref]
  28. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
    [Crossref]
  29. D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
    [Crossref]
  30. D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Rep. 6, 28077 (2016).
    [Crossref]
  31. J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
    [Crossref]
  32. A. M. Merzlikin, E. V. Kuznetsov, and A. V. Baryshev, “Magneto-optical device based on polarization sensitivity for perspective biosensing applications,” IEEE Sens. J. 18, 5732–5738 (2018).
    [Crossref]
  33. B. Caballero, A. Garcia-Martin, and J. C. Cuevas, “Hybrid magnetoplasmonic crystal boost performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
    [Crossref]
  34. A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).
  35. S. K. Sekatskii, S. Smirnov, G. Dietler, M. N. E. Alam, M. Vasiliev, and K. Alameh, “Photonic crystal-supported long-range surface plasmon-polaritons propagating along high-quality silver nanofilms,” Appl. Sci. 8, 248 (2018).
    [Crossref]
  36. V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
    [Crossref]
  37. E. Rostova, C. B. Diba, G. Dietler, and S. Sekatskii, “Label-free optical biosensor based on photonic crystal reveals binding kinetics of antibodies to living bacterial cells E. coli,” Biosensors 6, 52 (2016).
    [Crossref]
  38. V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12, 093006 (2010).
    [Crossref]
  39. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
    [Crossref]
  40. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
    [Crossref]
  41. T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
    [Crossref]
  42. J. R. DeVore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. 41, 416–419 (1951).
    [Crossref]
  43. S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys. 105, 293–296 (2003).
    [Crossref]

2019 (4)

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

M. Levy, O. V. Borovkova, C. Sheidler, B. Blasiola, D. Karki, F. Jomard, M. A. Kozhaev, E. Popova, N. Keller, and V. I. Belotelov, “Faraday rotation in iron garnet films beyond elemental substitutions,” Optica 6, 642–646 (2019).
[Crossref]

D. R. Dadadzhanov, T. A. Vartanyan, and A. Karabchevsky, “Differential extinction of vibrational molecular overtone transitions with gold nanorods and its role in surface enhanced near-IR absorption (SENIRA),” Opt. Express 27, 29471–29478 (2019).
[Crossref]

2018 (5)

O. V. Borovkova, H. Hashim, M. A. Kozhaev, S. A. Dagesyan, A. Chakravarty, M. Levy, and V. I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

A. M. Merzlikin, E. V. Kuznetsov, and A. V. Baryshev, “Magneto-optical device based on polarization sensitivity for perspective biosensing applications,” IEEE Sens. J. 18, 5732–5738 (2018).
[Crossref]

S. K. Sekatskii, S. Smirnov, G. Dietler, M. N. E. Alam, M. Vasiliev, and K. Alameh, “Photonic crystal-supported long-range surface plasmon-polaritons propagating along high-quality silver nanofilms,” Appl. Sci. 8, 248 (2018).
[Crossref]

A. Karabchevsky, A. Katiyi, M. I. M. Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines with photonic microfibers sculptured gold nanoparticles,” ACS Photon. 5, 2200–2207 (2018).
[Crossref]

A. Katiyi and A. Karabchevsky, “Si nanostrip rib-waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared,” ACS Sens. 3, 618–623 (2018).
[Crossref]

2017 (2)

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Lightwave Technol. 35, 2902–2908 (2017).
[Crossref]

2016 (9)

O. Borovkova, A. Kalish, and V. Belotelov, “Transverse magneto-optical Kerr effect in active magneto-plasmonic structures,” Opt. Lett. 41, 4593–4596 (2016).
[Crossref]

B. Caballero, A. Garcia-Martin, and J. C. Cuevas, “Hybrid magnetoplasmonic crystal boost performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
[Crossref]

C. A. Herreño-Fierro, E. J. Patiño, G. Armelles, and A. Cebollada, “Surface sensitivity of optical and magneto-optical and ellipsometric properties in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 108, 021109 (2016).
[Crossref]

D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
[Crossref]

D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Rep. 6, 28077 (2016).
[Crossref]

E. Rostova, C. B. Diba, G. Dietler, and S. Sekatskii, “Label-free optical biosensor based on photonic crystal reveals binding kinetics of antibodies to living bacterial cells E. coli,” Biosensors 6, 52 (2016).
[Crossref]

K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

A. Karabchevsky and A. Shalabney, “Strong interaction of molecular vibrational overtones with near-guided surface plasmon polariton,” Proc. SPIE 9899, 98991T (2016).
[Crossref]

A. Karabchevsky and A. V. Kavokin, “Giant absorption of light by molecular vibrations on a chip,” Sci. Rep. 6, 21201 (2016).
[Crossref]

2015 (3)

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gáspár, and E. Gheorghiu, “Magneto-plasmonic biosensor with enhanced analytical response and stability,” Biosens. Bioelectron. 63, 525–532 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref]

2014 (3)

M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Garcia-Martin, and R. Rella, “Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor,” Biosens. Bioelectron. 58, 114–120 (2014).
[Crossref]

D. O. Ignatyeva and A. P. Sukhorukov, “Femtosecond-pulse control in nonlinear plasmonic systems,” Phys. Rev. A 89, 013850 (2014).
[Crossref]

N. E. Khokhlov, D. O. Ignatyeva, and V. I. Belotelov, “Plasmonic pulse shaping and velocity control via photoexcitation of electrons in a gold film,” Opt. Express 22, 28019–28026 (2014).
[Crossref]

2013 (4)

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref]

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref]

2012 (1)

D. O. Ignatyeva and A. P. Sukhorukov, “Plasmon beams interaction at interface between metal and dielectric with saturable Kerr nonlinearity,” Appl. Phys. A 109, 813–818 (2012).
[Crossref]

2010 (2)

V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12, 093006 (2010).
[Crossref]

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[Crossref]

2009 (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

2008 (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

2007 (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

2006 (1)

2003 (1)

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys. 105, 293–296 (2003).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

1951 (1)

Abdul Khudus, M. I. M.

A. Karabchevsky, A. Katiyi, M. I. M. Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines with photonic microfibers sculptured gold nanoparticles,” ACS Photon. 5, 2200–2207 (2018).
[Crossref]

Adato, R.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref]

Åkerman, J.

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Akimov, I. A.

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

Alam, M. N. E.

S. K. Sekatskii, S. Smirnov, G. Dietler, M. N. E. Alam, M. Vasiliev, and K. Alameh, “Photonic crystal-supported long-range surface plasmon-polaritons propagating along high-quality silver nanofilms,” Appl. Sci. 8, 248 (2018).
[Crossref]

Alameh, K.

S. K. Sekatskii, S. Smirnov, G. Dietler, M. N. E. Alam, M. Vasiliev, and K. Alameh, “Photonic crystal-supported long-range surface plasmon-polaritons propagating along high-quality silver nanofilms,” Appl. Sci. 8, 248 (2018).
[Crossref]

D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
[Crossref]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Alieva, E. V.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

Altug, H.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Arenas, D. J.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Armelles, G.

C. A. Herreño-Fierro, E. J. Patiño, G. Armelles, and A. Cebollada, “Surface sensitivity of optical and magneto-optical and ellipsometric properties in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 108, 021109 (2016).
[Crossref]

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[Crossref]

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31, 1085–1087 (2006).
[Crossref]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Baryshev, A. V.

A. M. Merzlikin, E. V. Kuznetsov, and A. V. Baryshev, “Magneto-optical device based on polarization sensitivity for perspective biosensing applications,” IEEE Sens. J. 18, 5732–5738 (2018).
[Crossref]

Bayer, M.

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

Belotelov, V.

Belotelov, V. I.

M. Levy, O. V. Borovkova, C. Sheidler, B. Blasiola, D. Karki, F. Jomard, M. A. Kozhaev, E. Popova, N. Keller, and V. I. Belotelov, “Faraday rotation in iron garnet films beyond elemental substitutions,” Optica 6, 642–646 (2019).
[Crossref]

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

O. V. Borovkova, H. Hashim, M. A. Kozhaev, S. A. Dagesyan, A. Chakravarty, M. Levy, and V. I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
[Crossref]

D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Rep. 6, 28077 (2016).
[Crossref]

N. E. Khokhlov, D. O. Ignatyeva, and V. I. Belotelov, “Plasmonic pulse shaping and velocity control via photoexcitation of electrons in a gold film,” Opt. Express 22, 28019–28026 (2014).
[Crossref]

Bi, L.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Blasiola, B.

Borovkova, O.

Borovkova, O. V.

M. Levy, O. V. Borovkova, C. Sheidler, B. Blasiola, D. Karki, F. Jomard, M. A. Kozhaev, E. Popova, N. Keller, and V. I. Belotelov, “Faraday rotation in iron garnet films beyond elemental substitutions,” Optica 6, 642–646 (2019).
[Crossref]

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

O. V. Borovkova, H. Hashim, M. A. Kozhaev, S. A. Dagesyan, A. Chakravarty, M. Levy, and V. I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

Bright, T. J.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Caballero, B.

B. Caballero, A. Garcia-Martin, and J. C. Cuevas, “Hybrid magnetoplasmonic crystal boost performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
[Crossref]

Calandrini, E.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Caligiuri, V.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Calle, A.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[Crossref]

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31, 1085–1087 (2006).
[Crossref]

Cebollada, A.

C. A. Herreño-Fierro, E. J. Patiño, G. Armelles, and A. Cebollada, “Surface sensitivity of optical and magneto-optical and ellipsometric properties in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 108, 021109 (2016).
[Crossref]

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[Crossref]

Chakravarty, A.

O. V. Borovkova, H. Hashim, M. A. Kozhaev, S. A. Dagesyan, A. Chakravarty, M. Levy, and V. I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

Cuevas, J. C.

B. Caballero, A. Garcia-Martin, and J. C. Cuevas, “Hybrid magnetoplasmonic crystal boost performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
[Crossref]

Dadadzhanov, D. R.

Dagesyan, S. A.

O. V. Borovkova, H. Hashim, M. A. Kozhaev, S. A. Dagesyan, A. Chakravarty, M. Levy, and V. I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

David, S.

S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gáspár, and E. Gheorghiu, “Magneto-plasmonic biosensor with enhanced analytical response and stability,” Biosens. Bioelectron. 63, 525–532 (2015).
[Crossref]

De Angelis, F.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

de Oliveira, T. A. G.

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Deng, L.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

DeVore, J. R.

Diba, C. B.

E. Rostova, C. B. Diba, G. Dietler, and S. Sekatskii, “Label-free optical biosensor based on photonic crystal reveals binding kinetics of antibodies to living bacterial cells E. coli,” Biosensors 6, 52 (2016).
[Crossref]

Dietler, G.

S. K. Sekatskii, S. Smirnov, G. Dietler, M. N. E. Alam, M. Vasiliev, and K. Alameh, “Photonic crystal-supported long-range surface plasmon-polaritons propagating along high-quality silver nanofilms,” Appl. Sci. 8, 248 (2018).
[Crossref]

E. Rostova, C. B. Diba, G. Dietler, and S. Sekatskii, “Label-free optical biosensor based on photonic crystal reveals binding kinetics of antibodies to living bacterial cells E. coli,” Biosensors 6, 52 (2016).
[Crossref]

D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Rep. 6, 28077 (2016).
[Crossref]

D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
[Crossref]

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref]

Dmitriev, A.

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Dregely, D.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref]

Duan, H.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref]

Elkabbash, M.

K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Fariña, D.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[Crossref]

Ferreiro-Vila, E.

M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Garcia-Martin, and R. Rella, “Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor,” Biosens. Bioelectron. 58, 114–120 (2014).
[Crossref]

Furukawa, Y.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys. 105, 293–296 (2003).
[Crossref]

Gaeta, A. L.

Garcia-Martin, A.

B. Caballero, A. Garcia-Martin, and J. C. Cuevas, “Hybrid magnetoplasmonic crystal boost performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
[Crossref]

M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Garcia-Martin, and R. Rella, “Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor,” Biosens. Bioelectron. 58, 114–120 (2014).
[Crossref]

Garcia-Martin, J. M.

M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Garcia-Martin, and R. Rella, “Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor,” Biosens. Bioelectron. 58, 114–120 (2014).
[Crossref]

Garoli, D.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Gáspár, S.

S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gáspár, and E. Gheorghiu, “Magneto-plasmonic biosensor with enhanced analytical response and stability,” Biosens. Bioelectron. 63, 525–532 (2015).
[Crossref]

Gheorghiu, E.

S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gáspár, and E. Gheorghiu, “Magneto-plasmonic biosensor with enhanced analytical response and stability,” Biosens. Bioelectron. 63, 525–532 (2015).
[Crossref]

Gheorghiu, M.

S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gáspár, and E. Gheorghiu, “Magneto-plasmonic biosensor with enhanced analytical response and stability,” Biosens. Bioelectron. 63, 525–532 (2015).
[Crossref]

Giessen, H.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref]

Giovannini, G.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Gregorczyk, K. E.

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Hashim, H.

O. V. Borovkova, H. Hashim, M. A. Kozhaev, S. A. Dagesyan, A. Chakravarty, M. Levy, and V. I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Herreño-Fierro, C. A.

C. A. Herreño-Fierro, E. J. Patiño, G. Armelles, and A. Cebollada, “Surface sensitivity of optical and magneto-optical and ellipsometric properties in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 108, 021109 (2016).
[Crossref]

Higuchi, S.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys. 105, 293–296 (2003).
[Crossref]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

Hu, J.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Hubarevich, A.

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Ignatyeva, D. O.

D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Rep. 6, 28077 (2016).
[Crossref]

D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
[Crossref]

D. O. Ignatyeva and A. P. Sukhorukov, “Femtosecond-pulse control in nonlinear plasmonic systems,” Phys. Rev. A 89, 013850 (2014).
[Crossref]

N. E. Khokhlov, D. O. Ignatyeva, and V. I. Belotelov, “Plasmonic pulse shaping and velocity control via photoexcitation of electrons in a gold film,” Opt. Express 22, 28019–28026 (2014).
[Crossref]

D. O. Ignatyeva and A. P. Sukhorukov, “Plasmon beams interaction at interface between metal and dielectric with saturable Kerr nonlinearity,” Appl. Phys. A 109, 813–818 (2012).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Jomard, F.

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Kalish, A.

Kamada, O.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys. 105, 293–296 (2003).
[Crossref]

Kang, T.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Kapralov, P. O.

D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
[Crossref]

D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Rep. 6, 28077 (2016).
[Crossref]

Karabchevsky, A.

D. R. Dadadzhanov, T. A. Vartanyan, and A. Karabchevsky, “Differential extinction of vibrational molecular overtone transitions with gold nanorods and its role in surface enhanced near-IR absorption (SENIRA),” Opt. Express 27, 29471–29478 (2019).
[Crossref]

A. Katiyi and A. Karabchevsky, “Si nanostrip rib-waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared,” ACS Sens. 3, 618–623 (2018).
[Crossref]

A. Karabchevsky, A. Katiyi, M. I. M. Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines with photonic microfibers sculptured gold nanoparticles,” ACS Photon. 5, 2200–2207 (2018).
[Crossref]

A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Lightwave Technol. 35, 2902–2908 (2017).
[Crossref]

A. Karabchevsky and A. Shalabney, “Strong interaction of molecular vibrational overtones with near-guided surface plasmon polariton,” Proc. SPIE 9899, 98991T (2016).
[Crossref]

A. Karabchevsky and A. V. Kavokin, “Giant absorption of light by molecular vibrations on a chip,” Sci. Rep. 6, 21201 (2016).
[Crossref]

Karakouz, T.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref]

Karczewski, G.

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

Karki, D.

Kataja, M.

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Katiyi, A.

A. Karabchevsky, A. Katiyi, M. I. M. Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines with photonic microfibers sculptured gold nanoparticles,” ACS Photon. 5, 2200–2207 (2018).
[Crossref]

A. Katiyi and A. Karabchevsky, “Si nanostrip rib-waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared,” ACS Sens. 3, 618–623 (2018).
[Crossref]

A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Lightwave Technol. 35, 2902–2908 (2017).
[Crossref]

Kavokin, A. V.

A. Karabchevsky, A. Katiyi, M. I. M. Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines with photonic microfibers sculptured gold nanoparticles,” ACS Photon. 5, 2200–2207 (2018).
[Crossref]

A. Karabchevsky and A. V. Kavokin, “Giant absorption of light by molecular vibrations on a chip,” Sci. Rep. 6, 21201 (2016).
[Crossref]

Keller, N.

Khokhlov, N. E.

Kitamura, K.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys. 105, 293–296 (2003).
[Crossref]

Knez, M.

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Knyazev, G. A.

D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
[Crossref]

D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Rep. 6, 28077 (2016).
[Crossref]

Konopsky, V. N.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref]

V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12, 093006 (2010).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

Kotov, V.

A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).

Koukis, D. I.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Kozhaev, M. A.

M. Levy, O. V. Borovkova, C. Sheidler, B. Blasiola, D. Karki, F. Jomard, M. A. Kozhaev, E. Popova, N. Keller, and V. I. Belotelov, “Faraday rotation in iron garnet films beyond elemental substitutions,” Optica 6, 642–646 (2019).
[Crossref]

O. V. Borovkova, H. Hashim, M. A. Kozhaev, S. A. Dagesyan, A. Chakravarty, M. Levy, and V. I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

Kuznetsov, E. V.

A. M. Merzlikin, E. V. Kuznetsov, and A. V. Baryshev, “Magneto-optical device based on polarization sensitivity for perspective biosensing applications,” IEEE Sens. J. 18, 5732–5738 (2018).
[Crossref]

Lamont, M. R. E.

Lechuga, L. M.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[Crossref]

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31, 1085–1087 (2006).
[Crossref]

Levy, M.

M. Levy, O. V. Borovkova, C. Sheidler, B. Blasiola, D. Karki, F. Jomard, M. A. Kozhaev, E. Popova, N. Keller, and V. I. Belotelov, “Faraday rotation in iron garnet films beyond elemental substitutions,” Optica 6, 642–646 (2019).
[Crossref]

O. V. Borovkova, H. Hashim, M. A. Kozhaev, S. A. Dagesyan, A. Chakravarty, M. Levy, and V. I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

Liang, X.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Lipson, M.

Liu, C.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Lu, H.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Luculescu, C.

S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gáspár, and E. Gheorghiu, “Magneto-plasmonic biosensor with enhanced analytical response and stability,” Biosens. Bioelectron. 63, 525–532 (2015).
[Crossref]

Luke, K.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Maccaferri, N.

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Manera, M. G.

M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Garcia-Martin, and R. Rella, “Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor,” Biosens. Bioelectron. 58, 114–120 (2014).
[Crossref]

Merzlikin, A. M.

A. M. Merzlikin, E. V. Kuznetsov, and A. V. Baryshev, “Magneto-optical device based on polarization sensitivity for perspective biosensing applications,” IEEE Sens. J. 18, 5732–5738 (2018).
[Crossref]

Muratore, C.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Neubrech, F.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref]

Nur-E-Alam, M.

D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
[Crossref]

Okawachi, Y.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Patiño, E. J.

C. A. Herreño-Fierro, E. J. Patiño, G. Armelles, and A. Cebollada, “Surface sensitivity of optical and magneto-optical and ellipsometric properties in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 108, 021109 (2016).
[Crossref]

Peng, B.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Pirzadeh, Z.

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Poddubny, A. N.

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Polonschii, C.

S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gáspár, and E. Gheorghiu, “Magneto-plasmonic biosensor with enhanced analytical response and stability,” Biosens. Bioelectron. 63, 525–532 (2015).
[Crossref]

Popova, E.

Qin, J.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Regatos, D.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[Crossref]

Rella, R.

M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Garcia-Martin, and R. Rella, “Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor,” Biosens. Bioelectron. 58, 114–120 (2014).
[Crossref]

Rostova, E.

E. Rostova, C. B. Diba, G. Dietler, and S. Sekatskii, “Label-free optical biosensor based on photonic crystal reveals binding kinetics of antibodies to living bacterial cells E. coli,” Biosensors 6, 52 (2016).
[Crossref]

Sekatskii, S.

E. Rostova, C. B. Diba, G. Dietler, and S. Sekatskii, “Label-free optical biosensor based on photonic crystal reveals binding kinetics of antibodies to living bacterial cells E. coli,” Biosensors 6, 52 (2016).
[Crossref]

Sekatskii, S. K.

S. K. Sekatskii, S. Smirnov, G. Dietler, M. N. E. Alam, M. Vasiliev, and K. Alameh, “Photonic crystal-supported long-range surface plasmon-polaritons propagating along high-quality silver nanofilms,” Appl. Sci. 8, 248 (2018).
[Crossref]

D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Rep. 6, 28077 (2016).
[Crossref]

D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
[Crossref]

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref]

Sepúlveda, B.

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[Crossref]

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31, 1085–1087 (2006).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Shalabney, A.

A. Karabchevsky and A. Shalabney, “Strong interaction of molecular vibrational overtones with near-guided surface plasmon polariton,” Proc. SPIE 9899, 98991T (2016).
[Crossref]

Sheidler, C.

Smirnov, S.

S. K. Sekatskii, S. Smirnov, G. Dietler, M. N. E. Alam, M. Vasiliev, and K. Alameh, “Photonic crystal-supported long-range surface plasmon-polaritons propagating along high-quality silver nanofilms,” Appl. Sci. 8, 248 (2018).
[Crossref]

Spitzer, F.

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Struve, W. S.

W. S. Struve, Fundamentals of Molecular Spectroscopy (Wiley, 1989).

Sukhorukov, A. P.

D. O. Ignatyeva and A. P. Sukhorukov, “Femtosecond-pulse control in nonlinear plasmonic systems,” Phys. Rev. A 89, 013850 (2014).
[Crossref]

D. O. Ignatyeva and A. P. Sukhorukov, “Plasmon beams interaction at interface between metal and dielectric with saturable Kerr nonlinearity,” Appl. Phys. A 109, 813–818 (2012).
[Crossref]

Takekawa, S.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys. 105, 293–296 (2003).
[Crossref]

Tanner, D. B.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Uyeda, K.

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys. 105, 293–296 (2003).
[Crossref]

van Dijken, S.

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Vartanyan, T. A.

Vasiliev, M.

S. K. Sekatskii, S. Smirnov, G. Dietler, M. N. E. Alam, M. Vasiliev, and K. Alameh, “Photonic crystal-supported long-range surface plasmon-polaritons propagating along high-quality silver nanofilms,” Appl. Sci. 8, 248 (2018).
[Crossref]

D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
[Crossref]

Vavassori, P.

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Vicario, C.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref]

Voevodin, A. A.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Vogelgesang, R.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref]

Wang, C.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Wang, X.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Watjen, J. I.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Wiater, M.

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

Wojtowicz, T.

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Yakovlev, D. R.

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

Zhang, L. S.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Zhang, Y.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Zhang, Z. M.

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

Zhou, P.

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

Zvezdin, A.

A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).

Zvezdin, A. K.

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

ACS Photon. (3)

A. Karabchevsky, A. Katiyi, M. I. M. Abdul Khudus, and A. V. Kavokin, “Tuning the near-infrared absorption of aromatic amines with photonic microfibers sculptured gold nanoparticles,” ACS Photon. 5, 2200–2207 (2018).
[Crossref]

J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, and L. Bi, “Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films,” ACS Photon. 4, 1403–1412 (2017).
[Crossref]

B. Caballero, A. Garcia-Martin, and J. C. Cuevas, “Hybrid magnetoplasmonic crystal boost performance of nanohole arrays as plasmonic sensors,” ACS Photon. 3, 203–208 (2016).
[Crossref]

ACS Sens. (1)

A. Katiyi and A. Karabchevsky, “Si nanostrip rib-waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared,” ACS Sens. 3, 618–623 (2018).
[Crossref]

Anal. Chem. (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

Appl. Phys. A (1)

D. O. Ignatyeva and A. P. Sukhorukov, “Plasmon beams interaction at interface between metal and dielectric with saturable Kerr nonlinearity,” Appl. Phys. A 109, 813–818 (2012).
[Crossref]

Appl. Phys. Lett. (2)

O. V. Borovkova, H. Hashim, M. A. Kozhaev, S. A. Dagesyan, A. Chakravarty, M. Levy, and V. I. Belotelov, “TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films,” Appl. Phys. Lett. 112, 063101 (2018).
[Crossref]

C. A. Herreño-Fierro, E. J. Patiño, G. Armelles, and A. Cebollada, “Surface sensitivity of optical and magneto-optical and ellipsometric properties in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 108, 021109 (2016).
[Crossref]

Appl. Sci. (1)

S. K. Sekatskii, S. Smirnov, G. Dietler, M. N. E. Alam, M. Vasiliev, and K. Alameh, “Photonic crystal-supported long-range surface plasmon-polaritons propagating along high-quality silver nanofilms,” Appl. Sci. 8, 248 (2018).
[Crossref]

Biosens. Bioelectron. (2)

S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gáspár, and E. Gheorghiu, “Magneto-plasmonic biosensor with enhanced analytical response and stability,” Biosens. Bioelectron. 63, 525–532 (2015).
[Crossref]

M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Garcia-Martin, and R. Rella, “Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor,” Biosens. Bioelectron. 58, 114–120 (2014).
[Crossref]

Biosensors (1)

E. Rostova, C. B. Diba, G. Dietler, and S. Sekatskii, “Label-free optical biosensor based on photonic crystal reveals binding kinetics of antibodies to living bacterial cells E. coli,” Biosensors 6, 52 (2016).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

IEEE Sens. J. (1)

A. M. Merzlikin, E. V. Kuznetsov, and A. V. Baryshev, “Magneto-optical device based on polarization sensitivity for perspective biosensing applications,” IEEE Sens. J. 18, 5732–5738 (2018).
[Crossref]

J. Appl. Phys. (2)

D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys. 108, 054502 (2010).
[Crossref]

T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, and D. J. Arenas, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” J. Appl. Phys. 114, 083515 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

JETP Lett. (1)

D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. I. Belotelov, “High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications,” JETP Lett. 104, 679–684 (2016).
[Crossref]

Nanophotonics (1)

O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Transverse magneto-optical Kerr effect at narrow optical resonances,” Nanophotonics 8, 287–296 (2019).
[Crossref]

Nanoscale Horiz. (1)

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horiz. 4, 1153–1157 (2019).
[Crossref]

Nat. Commun. (3)

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun. 4, 2154 (2013).
[Crossref]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref]

N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, and P. Vavassori, “Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas,” Nat. Commun. 6, 6150 (2015).
[Crossref]

Nat. Mater. (3)

K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009).
[Crossref]

New J. Phys. (1)

V. N. Konopsky, “Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces,” New J. Phys. 12, 093006 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Phys. Rev. A (1)

D. O. Ignatyeva and A. P. Sukhorukov, “Femtosecond-pulse control in nonlinear plasmonic systems,” Phys. Rev. A 89, 013850 (2014).
[Crossref]

Proc. SPIE (1)

A. Karabchevsky and A. Shalabney, “Strong interaction of molecular vibrational overtones with near-guided surface plasmon polariton,” Proc. SPIE 9899, 98991T (2016).
[Crossref]

Sci. Rep. (2)

A. Karabchevsky and A. V. Kavokin, “Giant absorption of light by molecular vibrations on a chip,” Sci. Rep. 6, 21201 (2016).
[Crossref]

D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, and V. I. Belotelov, “Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications,” Sci. Rep. 6, 28077 (2016).
[Crossref]

Sens. Actuators A Phys. (1)

S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, and K. Uyeda, “Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor,” Sens. Actuators A Phys. 105, 293–296 (2003).
[Crossref]

Sensors (1)

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref]

Other (2)

A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).

W. S. Struve, Fundamentals of Molecular Spectroscopy (Wiley, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic representation of the proposed sensor. Incident light illuminates the prism, which in turn provides the momentum to excite the quasi-surface modes. The surface modes excite the studied organic molecular vibrations overtones in the PC-based multilayer sensor that is observed in the reflectance spectra of s-polarized light for the nonmagnetic structure and in the transverse MO Kerr effect spectra of p-polarized light for the magnetic structure.
Fig. 2.
Fig. 2. (a) PC structure scheme and the electromagnetic field distribution of the mode inside the PC structure and NMA analyte. The reflectance spectrum (incidence angle versus wavelength) of the PC-based structure for superhigh Q sensing; (b) large scale, the position of the excited mode with respect to the PC BG and total internal reflection angle, shown by green rectangle; (c) magnified scale showing the ultrahigh-Q of the excited mode; (d) magnified scale showing the disappearance of the resonance in the case of zero absorption.
Fig. 3.
Fig. 3. Magnetic sensing structure with TM-polarized quasi-surface mode. (a) Reflectance (R) and (b) TMOKE magnified scale wavelength versus angle plot showing the ultrahigh-Q of the excited mode and corresponding enhancement of the MO response; (c) R (solid line), ΔR (dashed line), and TMOKE δR (dotted line) angular spectra at the resonance wavelength 1.495 μm; (d) angular spectra of sensitivity of optical and MO response to the extinction coefficient of the analyte, dR/dn and d(dR/R)/dn.
Fig. 4.
Fig. 4. Relative magnitude I/I0 of the quasi-surface wave intensity in the disturbed structure normalized on the surface wave intensity in the nondisturbed structure I0, with respect to the magnitude of δwj in nanometers and δnj in refractive index units (RIU) deviations from the designed values averaged over 100 randomly generated deviations.
Fig. 5.
Fig. 5. Normalized reflectance (in percents of light energy reflected by the structure normalized to the incident energy) versus angle of incidence (degrees) of superhigh Q resonance at the wavelength of the incident light 1.495 μm. Resonant curves corresponding to different thicknesses of the bottom Si layer, 255 nm (black solid curve), 260 nm (red dashed curve), and 265 nm (blue dotted curve).
Fig. 6.
Fig. 6. Normalized reflectance (in percents of light energy reflected by the structure normalized to the incident energy) versus angle of incidence (degrees) of superhigh Q resonance at the wavelength of the incident light 1.495 μm. Resonant curves in the cases of absorbing (n=104, red solid curve) and nonabsorbing (n=0, blue dashed curve) analyte material with the same real part of the refractive index.
Fig. 7.
Fig. 7. Scheme of the magnetic PC nanostructure in the external magnetic field H. Input and reflected light at 1.495 μm is shown with red arrows.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δR=ΔR/R=2[R(M)R(M)]/[R(M)+R(M)].
Zjinto=Zj·Zj+1intoiZjtan(αj)ZjiZj+1intotan(αj),
Zleft+Zright=0,

Metrics