Abstract

This study proposes and demonstrates a novel nanoclamp structure symmetrically disposed near a one-dimensional (1D) photonic crystal (PhC) nanocavity embedded in a deformable polydimethylsiloxane substrate. These nanoclamps show capabilities of locally shaping (including enhancing and inhibiting) the strain of PhC nanocavity. The produced artificial non-ideal elastomer leads to an enhanced wavelength response of 12.7  nm for every percentage compressive strain variation from the tunable PhC nanolasers in experiments. This result not only guarantees the excellent tunability of the 1D PhC nanolasers but also promises ultrahigh sensitivity in strain sensing. Moreover, such nanoclamps can further create a reconfigurable conversion between waveguide and nanocavity with a 1–2 order difference in the quality factor when applied to a 1D PhC waveguide. We believe this study provides a possibility for on-demand sculpturing of the optical properties of tunable PhC devices in the nanoscale by inserting additional nano- or micro-structures.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity

Bui Thanh Tung, Dzung Viet Dao, Taro Ikeda, Yoshiaki Kanamori, Kazuhiro Hane, and Susumu Sugiyama
Opt. Express 19(9) 8821-8829 (2011)

Proposal and numerical study of a flexible visible photonic crystal defect cavity for nanoscale strain sensors

Jie Zhou, Taojie Zhou, Jiagen Li, Kebo He, Zhiren Qiu, Bocang Qiu, and Zhaoyu Zhang
Opt. Express 25(20) 23645-23653 (2017)

Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate

You-Shin No, Jae-Hyuck Choi, Kyoung-Ho Kim, and Hong-Gyu Park
Opt. Express 24(23) 26119-26128 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Opt. Mater. Express 3, 1313–1331 (2013).
    [Crossref]
  2. L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Opt. Express 20, 20564–20575 (2012).
    [Crossref]
  3. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
    [Crossref]
  4. D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
    [Crossref]
  5. Z. Gao, F. Gao, Y. Zhang, Y. Luo, and B. Zhang, “Flexible photonic topological insulator,” Adv. Opt. Mater. 6, 1800532 (2018).
    [Crossref]
  6. L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5, 44–51 (2018).
    [Crossref]
  7. T. W. Lu, L. H. Chiu, P. T. Lin, and P. T. Lee, “One-dimensional photonic crystal nanobeam lasers on a flexible substrate,” Appl. Phys. Lett. 99, 071101 (2011).
    [Crossref]
  8. X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
    [Crossref]
  9. X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
    [Crossref]
  10. S. Kim, H. Ko, C. Lee, M. K. Kim, K. S. Kim, Y. H. Lee, K. Shin, and Y. H. Cho, “Semiconductor photonic nanocavity on a paper substrate,” Adv. Mater. 28, 9765–9769 (2016).
    [Crossref]
  11. Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci. Rep. 2, 622 (2012).
    [Crossref]
  12. J. A. Grieve, K. F. Ng, M. Rodrigues, J. Viana-Gomes, and A. Ling, “Mechanically tunable integrated beamsplitters on a flexible polymer platform,” Appl. Phys. Lett. 111, 211106 (2017).
    [Crossref]
  13. L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
    [Crossref]
  14. C. Foucher, B. Guilhabert, N. Laurand, and M. D. Dawson, “Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass,” Appl. Phys. Lett. 104, 141108 (2014).
    [Crossref]
  15. M. H. Shih, K. S. Hsu, K. Lee, K. T. Lai, C. T. Lin, and P. T. Lee, “Compact tunable laser with InGaAsP photonic crystal nanorods for C-band communication,” IEEE J. Sel. Top. Quantum Electron. 21, 4900505 (2015).
    [Crossref]
  16. J. H. Choi, Y. S. No, J. P. So, J. M. Lee, K. H. Kim, M. S. Hwang, S. H. Kwon, and H. G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
    [Crossref]
  17. T. W. Lu, C. Wang, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8, 16769–16775 (2016).
    [Crossref]
  18. C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
    [Crossref]
  19. I. Zhu, J. Kapraun, J. Ferrara, and C. J. Chang-Hasnain, “Flexible photonic metastructures for tunable coloration,” Optica 2, 255–258 (2015).
    [Crossref]
  20. P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
    [Crossref]
  21. H. Cho, S. Han, J. Kwon, J. Jung, H. J. Kim, H. Kim, H. Eom, S. Hong, and S. H. Ko, “Self-assembled stretchable photonic crystal for a tunable color filter,” Opt. Lett. 43, 3501–3504 (2018).
    [Crossref]
  22. H. Wang and K. Q. Zhang, “Photonic crystal structures with tunable structure color as colorimetric sensors,” Sensors 13, 4192–4213 (2013).
    [Crossref]
  23. X. Gan, H. Clevenson, and D. Englund, “Polymer photonic crystal nanocavity for precision strain sensing,” ACS Photon. 4, 1591–1594 (2017).
    [Crossref]
  24. R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6, 3182–3199 (2018).
    [Crossref]
  25. T. W. Lu, C. C. Wu, and P. T. Lee, “1D photonic crystal strain sensors,” ACS Photon. 5, 2762–2772 (2018).
    [Crossref]
  26. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [Crossref]
  27. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16, 11095–11102 (2008).
    [Crossref]
  28. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
    [Crossref]
  29. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19, 9221–9231 (2011).
    [Crossref]
  30. H. P. Phan, T. Dinh, T. Kozeki, T. K. Nguyen, A. Qamar, T. Namazu, N. T. Nguyen, and D. V. Dao, “Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects,” Appl. Phys. Lett. 109, 123502 (2016).
    [Crossref]
  31. A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation,” Science 360, 764–768 (2018).
    [Crossref]
  32. W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
    [Crossref]
  33. COMSOL Multiphysics® Modeling Software.
  34. S. M. Hu, “Film-edge-induced stress in substrates,” J. Appl. Phys. 50, 4661–4666 (1979).
    [Crossref]
  35. C. Xin, L. Chen, T. Li, Z. Zhang, T. Zhao, X. Li, and J. Zhang, “Highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs,” IEEE Electron Dev. Lett. 39, 1073–1076 (2018).
    [Crossref]
  36. H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, and J. Xiong, “Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring,” Sci. Rep. 9, 3916 (2019).
    [Crossref]

2019 (1)

H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, and J. Xiong, “Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring,” Sci. Rep. 9, 3916 (2019).
[Crossref]

2018 (9)

C. Xin, L. Chen, T. Li, Z. Zhang, T. Zhao, X. Li, and J. Zhang, “Highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs,” IEEE Electron Dev. Lett. 39, 1073–1076 (2018).
[Crossref]

A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation,” Science 360, 764–768 (2018).
[Crossref]

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

H. Cho, S. Han, J. Kwon, J. Jung, H. J. Kim, H. Kim, H. Eom, S. Hong, and S. H. Ko, “Self-assembled stretchable photonic crystal for a tunable color filter,” Opt. Lett. 43, 3501–3504 (2018).
[Crossref]

R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6, 3182–3199 (2018).
[Crossref]

T. W. Lu, C. C. Wu, and P. T. Lee, “1D photonic crystal strain sensors,” ACS Photon. 5, 2762–2772 (2018).
[Crossref]

Z. Gao, F. Gao, Y. Zhang, Y. Luo, and B. Zhang, “Flexible photonic topological insulator,” Adv. Opt. Mater. 6, 1800532 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5, 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

2017 (3)

J. A. Grieve, K. F. Ng, M. Rodrigues, J. Viana-Gomes, and A. Ling, “Mechanically tunable integrated beamsplitters on a flexible polymer platform,” Appl. Phys. Lett. 111, 211106 (2017).
[Crossref]

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

X. Gan, H. Clevenson, and D. Englund, “Polymer photonic crystal nanocavity for precision strain sensing,” ACS Photon. 4, 1591–1594 (2017).
[Crossref]

2016 (5)

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

H. P. Phan, T. Dinh, T. Kozeki, T. K. Nguyen, A. Qamar, T. Namazu, N. T. Nguyen, and D. V. Dao, “Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects,” Appl. Phys. Lett. 109, 123502 (2016).
[Crossref]

J. H. Choi, Y. S. No, J. P. So, J. M. Lee, K. H. Kim, M. S. Hwang, S. H. Kwon, and H. G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref]

T. W. Lu, C. Wang, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8, 16769–16775 (2016).
[Crossref]

S. Kim, H. Ko, C. Lee, M. K. Kim, K. S. Kim, Y. H. Lee, K. Shin, and Y. H. Cho, “Semiconductor photonic nanocavity on a paper substrate,” Adv. Mater. 28, 9765–9769 (2016).
[Crossref]

2015 (2)

M. H. Shih, K. S. Hsu, K. Lee, K. T. Lai, C. T. Lin, and P. T. Lee, “Compact tunable laser with InGaAsP photonic crystal nanorods for C-band communication,” IEEE J. Sel. Top. Quantum Electron. 21, 4900505 (2015).
[Crossref]

I. Zhu, J. Kapraun, J. Ferrara, and C. J. Chang-Hasnain, “Flexible photonic metastructures for tunable coloration,” Optica 2, 255–258 (2015).
[Crossref]

2014 (3)

C. Foucher, B. Guilhabert, N. Laurand, and M. D. Dawson, “Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass,” Appl. Phys. Lett. 104, 141108 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

2013 (4)

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Opt. Mater. Express 3, 1313–1331 (2013).
[Crossref]

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

H. Wang and K. Q. Zhang, “Photonic crystal structures with tunable structure color as colorimetric sensors,” Sensors 13, 4192–4213 (2013).
[Crossref]

2012 (2)

2011 (2)

T. W. Lu, L. H. Chiu, P. T. Lin, and P. T. Lee, “One-dimensional photonic crystal nanobeam lasers on a flexible substrate,” Appl. Phys. Lett. 99, 071101 (2011).
[Crossref]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express 19, 9221–9231 (2011).
[Crossref]

2010 (1)

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

2008 (1)

2005 (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

1979 (1)

S. M. Hu, “Film-edge-induced stress in substrates,” J. Appl. Phys. 50, 4661–4666 (1979).
[Crossref]

Agarwal, R.

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Alosno-Ramos, C.

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

Asano, T.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Bazin, A.

Bereyhi, M. J.

A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation,” Science 360, 764–768 (2018).
[Crossref]

Bhaskaran, M.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Cantarella, G.

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

Chakravarty, S.

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

Chang-Hasnain, C. J.

Chen, L.

C. Xin, L. Chen, T. Li, Z. Zhang, T. Zhao, X. Li, and J. Zhang, “Highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs,” IEEE Electron Dev. Lett. 39, 1073–1076 (2018).
[Crossref]

Chen, R. T.

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

Chen, W.

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

Chen, Y.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci. Rep. 2, 622 (2012).
[Crossref]

Chiu, L. H.

T. W. Lu, L. H. Chiu, P. T. Lin, and P. T. Lee, “One-dimensional photonic crystal nanobeam lasers on a flexible substrate,” Appl. Phys. Lett. 99, 071101 (2011).
[Crossref]

Cho, H.

Cho, Y. H.

S. Kim, H. Ko, C. Lee, M. K. Kim, K. S. Kim, Y. H. Lee, K. Shin, and Y. H. Cho, “Semiconductor photonic nanocavity on a paper substrate,” Adv. Mater. 28, 9765–9769 (2016).
[Crossref]

Choi, J. H.

J. H. Choi, Y. S. No, J. P. So, J. M. Lee, K. H. Kim, M. S. Hwang, S. H. Kwon, and H. G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref]

Clevenson, H.

X. Gan, H. Clevenson, and D. Englund, “Polymer photonic crystal nanocavity for precision strain sensing,” ACS Photon. 4, 1591–1594 (2017).
[Crossref]

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref]

Covey, J.

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

Danto, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Dao, D. V.

H. P. Phan, T. Dinh, T. Kozeki, T. K. Nguyen, A. Qamar, T. Namazu, N. T. Nguyen, and D. V. Dao, “Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects,” Appl. Phys. Lett. 109, 123502 (2016).
[Crossref]

Dawson, M. D.

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

C. Foucher, B. Guilhabert, N. Laurand, and M. D. Dawson, “Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass,” Appl. Phys. Lett. 104, 141108 (2014).
[Crossref]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

Dinh, T.

H. P. Phan, T. Dinh, T. Kozeki, T. K. Nguyen, A. Qamar, T. Namazu, N. T. Nguyen, and D. V. Dao, “Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects,” Appl. Phys. Lett. 109, 123502 (2016).
[Crossref]

Dong, H.

H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, and J. Xiong, “Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring,” Sci. Rep. 9, 3916 (2019).
[Crossref]

Engelsen, N. J.

A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation,” Science 360, 764–768 (2018).
[Crossref]

Englund, D.

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5, 44–51 (2018).
[Crossref]

X. Gan, H. Clevenson, and D. Englund, “Polymer photonic crystal nanocavity for precision strain sensing,” ACS Photon. 4, 1591–1594 (2017).
[Crossref]

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref]

Eom, H.

Estep, A. K.

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

Fan, L.

Fedorov, S. A.

A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation,” Science 360, 764–768 (2018).
[Crossref]

Ferrara, J.

Foucher, C.

C. Foucher, B. Guilhabert, N. Laurand, and M. D. Dawson, “Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass,” Appl. Phys. Lett. 104, 141108 (2014).
[Crossref]

Frank, I. W.

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Fumeaux, C.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Gan, X.

X. Gan, H. Clevenson, and D. Englund, “Polymer photonic crystal nanocavity for precision strain sensing,” ACS Photon. 4, 1591–1594 (2017).
[Crossref]

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref]

Gao, F.

Z. Gao, F. Gao, Y. Zhang, Y. Luo, and B. Zhang, “Flexible photonic topological insulator,” Adv. Opt. Mater. 6, 1800532 (2018).
[Crossref]

Gao, Q.

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

Gao, Z.

Z. Gao, F. Gao, Y. Zhang, Y. Luo, and B. Zhang, “Flexible photonic topological insulator,” Adv. Opt. Mater. 6, 1800532 (2018).
[Crossref]

Ghadimi, A. H.

A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation,” Science 360, 764–768 (2018).
[Crossref]

Greybush, N. J.

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

Grieve, J. A.

J. A. Grieve, K. F. Ng, M. Rodrigues, J. Viana-Gomes, and A. Ling, “Mechanically tunable integrated beamsplitters on a flexible polymer platform,” Appl. Phys. Lett. 111, 211106 (2017).
[Crossref]

Gu, T.

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5, 44–51 (2018).
[Crossref]

Guilhabert, B.

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

C. Foucher, B. Guilhabert, N. Laurand, and M. D. Dawson, “Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass,” Appl. Phys. Lett. 104, 141108 (2014).
[Crossref]

Guo, J.

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

Gutruf, P.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Halioua, Y.

Han, S.

Hong, S.

Hosseini, A.

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

Hsu, K. S.

M. H. Shih, K. S. Hsu, K. Lee, K. T. Lai, C. T. Lin, and P. T. Lee, “Compact tunable laser with InGaAsP photonic crystal nanorods for C-band communication,” IEEE J. Sel. Top. Quantum Electron. 21, 4900505 (2015).
[Crossref]

Hu, J.

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5, 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Opt. Mater. Express 3, 1313–1331 (2013).
[Crossref]

Hu, S. M.

S. M. Hu, “Film-edge-induced stress in substrates,” J. Appl. Phys. 50, 4661–4666 (1979).
[Crossref]

Huang, Y.

Huang, Y. Z.

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

Hurtado, A.

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

Hwang, M. S.

J. H. Choi, Y. S. No, J. P. So, J. M. Lee, K. H. Kim, M. S. Hwang, S. H. Kwon, and H. G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref]

Jagadish, C.

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

Jevtics, D.

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

Jiang, Y.

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

Jung, J.

Kagan, C. R.

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

Kapraun, J.

Karle, T. J.

Kim, H.

H. Cho, S. Han, J. Kwon, J. Jung, H. J. Kim, H. Kim, H. Eom, S. Hong, and S. H. Ko, “Self-assembled stretchable photonic crystal for a tunable color filter,” Opt. Lett. 43, 3501–3504 (2018).
[Crossref]

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Kim, H. J.

Kim, K. H.

J. H. Choi, Y. S. No, J. P. So, J. M. Lee, K. H. Kim, M. S. Hwang, S. H. Kwon, and H. G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref]

Kim, K. S.

S. Kim, H. Ko, C. Lee, M. K. Kim, K. S. Kim, Y. H. Lee, K. Shin, and Y. H. Cho, “Semiconductor photonic nanocavity on a paper substrate,” Adv. Mater. 28, 9765–9769 (2016).
[Crossref]

Kim, M. K.

S. Kim, H. Ko, C. Lee, M. K. Kim, K. S. Kim, Y. H. Lee, K. Shin, and Y. H. Cho, “Semiconductor photonic nanocavity on a paper substrate,” Adv. Mater. 28, 9765–9769 (2016).
[Crossref]

Kim, S.

S. Kim, H. Ko, C. Lee, M. K. Kim, K. S. Kim, Y. H. Lee, K. Shin, and Y. H. Cho, “Semiconductor photonic nanocavity on a paper substrate,” Adv. Mater. 28, 9765–9769 (2016).
[Crossref]

Kippenberg, T. J.

A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation,” Science 360, 764–768 (2018).
[Crossref]

Ko, H.

S. Kim, H. Ko, C. Lee, M. K. Kim, K. S. Kim, Y. H. Lee, K. Shin, and Y. H. Cho, “Semiconductor photonic nanocavity on a paper substrate,” Adv. Mater. 28, 9765–9769 (2016).
[Crossref]

Ko, S. H.

Kou, H.

H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, and J. Xiong, “Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring,” Sci. Rep. 9, 3916 (2019).
[Crossref]

Kozeki, T.

H. P. Phan, T. Dinh, T. Kozeki, T. K. Nguyen, A. Qamar, T. Namazu, N. T. Nguyen, and D. V. Dao, “Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects,” Appl. Phys. Lett. 109, 123502 (2016).
[Crossref]

Kuramochi, E.

Kwon, J.

Kwon, S. H.

J. H. Choi, Y. S. No, J. P. So, J. M. Lee, K. H. Kim, M. S. Hwang, S. H. Kwon, and H. G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref]

Kwong, D.

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

Lai, K. T.

M. H. Shih, K. S. Hsu, K. Lee, K. T. Lai, C. T. Lin, and P. T. Lee, “Compact tunable laser with InGaAsP photonic crystal nanorods for C-band communication,” IEEE J. Sel. Top. Quantum Electron. 21, 4900505 (2015).
[Crossref]

Lai, W. C.

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

Laurand, N.

C. Foucher, B. Guilhabert, N. Laurand, and M. D. Dawson, “Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass,” Appl. Phys. Lett. 104, 141108 (2014).
[Crossref]

Lee, C.

S. Kim, H. Ko, C. Lee, M. K. Kim, K. S. Kim, Y. H. Lee, K. Shin, and Y. H. Cho, “Semiconductor photonic nanocavity on a paper substrate,” Adv. Mater. 28, 9765–9769 (2016).
[Crossref]

Lee, J. M.

J. H. Choi, Y. S. No, J. P. So, J. M. Lee, K. H. Kim, M. S. Hwang, S. H. Kwon, and H. G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref]

Lee, K.

M. H. Shih, K. S. Hsu, K. Lee, K. T. Lai, C. T. Lin, and P. T. Lee, “Compact tunable laser with InGaAsP photonic crystal nanorods for C-band communication,” IEEE J. Sel. Top. Quantum Electron. 21, 4900505 (2015).
[Crossref]

Lee, P. T.

T. W. Lu, C. C. Wu, and P. T. Lee, “1D photonic crystal strain sensors,” ACS Photon. 5, 2762–2772 (2018).
[Crossref]

T. W. Lu, C. Wang, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8, 16769–16775 (2016).
[Crossref]

M. H. Shih, K. S. Hsu, K. Lee, K. T. Lai, C. T. Lin, and P. T. Lee, “Compact tunable laser with InGaAsP photonic crystal nanorods for C-band communication,” IEEE J. Sel. Top. Quantum Electron. 21, 4900505 (2015).
[Crossref]

T. W. Lu, L. H. Chiu, P. T. Lin, and P. T. Lee, “One-dimensional photonic crystal nanobeam lasers on a flexible substrate,” Appl. Phys. Lett. 99, 071101 (2011).
[Crossref]

Lee, Y. H.

S. Kim, H. Ko, C. Lee, M. K. Kim, K. S. Kim, Y. H. Lee, K. Shin, and Y. H. Cho, “Semiconductor photonic nanocavity on a paper substrate,” Adv. Mater. 28, 9765–9769 (2016).
[Crossref]

Leon, N.

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Li, H.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci. Rep. 2, 622 (2012).
[Crossref]

Li, J.

Li, J. Y.

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

Li, L.

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5, 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Opt. Mater. Express 3, 1313–1331 (2013).
[Crossref]

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref]

Li, M.

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci. Rep. 2, 622 (2012).
[Crossref]

Li, T.

C. Xin, L. Chen, T. Li, Z. Zhang, T. Zhao, X. Li, and J. Zhang, “Highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs,” IEEE Electron Dev. Lett. 39, 1073–1076 (2018).
[Crossref]

Li, X.

C. Xin, L. Chen, T. Li, Z. Zhang, T. Zhao, X. Li, and J. Zhang, “Highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs,” IEEE Electron Dev. Lett. 39, 1073–1076 (2018).
[Crossref]

Lin, C. T.

M. H. Shih, K. S. Hsu, K. Lee, K. T. Lai, C. T. Lin, and P. T. Lee, “Compact tunable laser with InGaAsP photonic crystal nanorods for C-band communication,” IEEE J. Sel. Top. Quantum Electron. 21, 4900505 (2015).
[Crossref]

Lin, H.

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5, 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Opt. Mater. Express 3, 1313–1331 (2013).
[Crossref]

Lin, P. T.

T. W. Lu, L. H. Chiu, P. T. Lin, and P. T. Lee, “One-dimensional photonic crystal nanobeam lasers on a flexible substrate,” Appl. Phys. Lett. 99, 071101 (2011).
[Crossref]

Ling, A.

J. A. Grieve, K. F. Ng, M. Rodrigues, J. Viana-Gomes, and A. Ling, “Mechanically tunable integrated beamsplitters on a flexible polymer platform,” Appl. Phys. Lett. 111, 211106 (2017).
[Crossref]

Liu, G.

H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, and J. Xiong, “Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring,” Sci. Rep. 9, 3916 (2019).
[Crossref]

Liu, M.

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Liu, W.

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

Loncar, M.

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Lu, T. W.

T. W. Lu, C. C. Wu, and P. T. Lee, “1D photonic crystal strain sensors,” ACS Photon. 5, 2762–2772 (2018).
[Crossref]

T. W. Lu, C. Wang, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8, 16769–16775 (2016).
[Crossref]

T. W. Lu, L. H. Chiu, P. T. Lin, and P. T. Lee, “One-dimensional photonic crystal nanobeam lasers on a flexible substrate,” Appl. Phys. Lett. 99, 071101 (2011).
[Crossref]

Lukin, M. D.

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Luo, Y.

Z. Gao, F. Gao, Y. Zhang, Y. Luo, and B. Zhang, “Flexible photonic topological insulator,” Adv. Opt. Mater. 6, 1800532 (2018).
[Crossref]

Ma, Z.

McCutcheon, M.

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

McPhillimy, J.

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

Michon, J.

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5, 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

Monnier, P.

Musgraves, J. D.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Namazu, T.

H. P. Phan, T. Dinh, T. Kozeki, T. K. Nguyen, A. Qamar, T. Namazu, N. T. Nguyen, and D. V. Dao, “Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects,” Appl. Phys. Lett. 109, 123502 (2016).
[Crossref]

Ng, K. F.

J. A. Grieve, K. F. Ng, M. Rodrigues, J. Viana-Gomes, and A. Ling, “Mechanically tunable integrated beamsplitters on a flexible polymer platform,” Appl. Phys. Lett. 111, 211106 (2017).
[Crossref]

Nguyen, N. T.

H. P. Phan, T. Dinh, T. Kozeki, T. K. Nguyen, A. Qamar, T. Namazu, N. T. Nguyen, and D. V. Dao, “Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects,” Appl. Phys. Lett. 109, 123502 (2016).
[Crossref]

Nguyen, T. K.

H. P. Phan, T. Dinh, T. Kozeki, T. K. Nguyen, A. Qamar, T. Namazu, N. T. Nguyen, and D. V. Dao, “Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects,” Appl. Phys. Lett. 109, 123502 (2016).
[Crossref]

Niu, B.

No, Y. S.

J. H. Choi, Y. S. No, J. P. So, J. M. Lee, K. H. Kim, M. S. Hwang, S. H. Kwon, and H. G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref]

Noda, S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Notomi, M.

Park, H.

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Park, H. G.

J. H. Choi, Y. S. No, J. P. So, J. M. Lee, K. H. Kim, M. S. Hwang, S. H. Kwon, and H. G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref]

Phan, H. P.

H. P. Phan, T. Dinh, T. Kozeki, T. K. Nguyen, A. Qamar, T. Namazu, N. T. Nguyen, and D. V. Dao, “Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects,” Appl. Phys. Lett. 109, 123502 (2016).
[Crossref]

Qamar, A.

H. P. Phan, T. Dinh, T. Kozeki, T. K. Nguyen, A. Qamar, T. Namazu, N. T. Nguyen, and D. V. Dao, “Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects,” Appl. Phys. Lett. 109, 123502 (2016).
[Crossref]

Qi, M.

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Quan, Q.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

Raineri, F.

Raj, R.

Richardson, K.

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5, 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Robinson, J. T.

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Rodrigues, M.

J. A. Grieve, K. F. Ng, M. Rodrigues, J. Viana-Gomes, and A. Ling, “Mechanically tunable integrated beamsplitters on a flexible polymer platform,” Appl. Phys. Lett. 111, 211106 (2017).
[Crossref]

Roelkens, G.

Sagnes, I.

Schilling, R.

A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation,” Science 360, 764–768 (2018).
[Crossref]

Shih, M. H.

M. H. Shih, K. S. Hsu, K. Lee, K. T. Lai, C. T. Lin, and P. T. Lee, “Compact tunable laser with InGaAsP photonic crystal nanorods for C-band communication,” IEEE J. Sel. Top. Quantum Electron. 21, 4900505 (2015).
[Crossref]

Shin, K.

S. Kim, H. Ko, C. Lee, M. K. Kim, K. S. Kim, Y. H. Lee, K. Shin, and Y. H. Cho, “Semiconductor photonic nanocavity on a paper substrate,” Adv. Mater. 28, 9765–9769 (2016).
[Crossref]

Shiue, R. J.

So, J. P.

J. H. Choi, Y. S. No, J. P. So, J. M. Lee, K. H. Kim, M. S. Hwang, S. H. Kwon, and H. G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Song, N.

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

Sriram, S.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Strain, M. J.

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

Subbaraman, H.

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

Tan, H. H.

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

Tan, Q.

H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, and J. Xiong, “Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring,” Sci. Rep. 9, 3916 (2019).
[Crossref]

Taniyama, H.

Tsai, C. C.

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref]

Turner, K. T.

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

Varghese, L. T.

Viana-Gomes, J.

J. A. Grieve, K. F. Ng, M. Rodrigues, J. Viana-Gomes, and A. Ling, “Mechanically tunable integrated beamsplitters on a flexible polymer platform,” Appl. Phys. Lett. 111, 211106 (2017).
[Crossref]

Vivien, L.

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

Wang, C.

T. W. Lu, C. Wang, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8, 16769–16775 (2016).
[Crossref]

Wang, H.

H. Wang and K. Q. Zhang, “Photonic crystal structures with tunable structure color as colorimetric sensors,” Sensors 13, 4192–4213 (2013).
[Crossref]

Wang, J.

Wang, Q.

R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6, 3182–3199 (2018).
[Crossref]

Wilson, D. J.

A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation,” Science 360, 764–768 (2018).
[Crossref]

Withayachumnankul, W.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Wu, C. C.

T. W. Lu, C. C. Wu, and P. T. Lee, “1D photonic crystal strain sensors,” ACS Photon. 5, 2762–2772 (2018).
[Crossref]

Xin, C.

C. Xin, L. Chen, T. Li, Z. Zhang, T. Zhao, X. Li, and J. Zhang, “Highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs,” IEEE Electron Dev. Lett. 39, 1073–1076 (2018).
[Crossref]

Xiong, J.

H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, and J. Xiong, “Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring,” Sci. Rep. 9, 3916 (2019).
[Crossref]

Xu, X.

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

Xuan, Y.

Yadav, A.

L. Li, H. Lin, Y. Huang, R. J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5, 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

Yu, C. L.

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

Yu, Y.

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

Zhang, B.

Z. Gao, F. Gao, Y. Zhang, Y. Luo, and B. Zhang, “Flexible photonic topological insulator,” Adv. Opt. Mater. 6, 1800532 (2018).
[Crossref]

Zhang, J.

C. Xin, L. Chen, T. Li, Z. Zhang, T. Zhao, X. Li, and J. Zhang, “Highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs,” IEEE Electron Dev. Lett. 39, 1073–1076 (2018).
[Crossref]

Zhang, K. Q.

H. Wang and K. Q. Zhang, “Photonic crystal structures with tunable structure color as colorimetric sensors,” Sensors 13, 4192–4213 (2013).
[Crossref]

Zhang, L.

H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, and J. Xiong, “Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring,” Sci. Rep. 9, 3916 (2019).
[Crossref]

Zhang, M.

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

Zhang, P.

Zhang, R.

R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6, 3182–3199 (2018).
[Crossref]

Zhang, W.

H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, and J. Xiong, “Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring,” Sci. Rep. 9, 3916 (2019).
[Crossref]

Zhang, Y.

Z. Gao, F. Gao, Y. Zhang, Y. Luo, and B. Zhang, “Flexible photonic topological insulator,” Adv. Opt. Mater. 6, 1800532 (2018).
[Crossref]

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

Zhang, Z.

C. Xin, L. Chen, T. Li, Z. Zhang, T. Zhao, X. Li, and J. Zhang, “Highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs,” IEEE Electron Dev. Lett. 39, 1073–1076 (2018).
[Crossref]

Zhao, T.

C. Xin, L. Chen, T. Li, Z. Zhang, T. Zhao, X. Li, and J. Zhang, “Highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs,” IEEE Electron Dev. Lett. 39, 1073–1076 (2018).
[Crossref]

Zheng, X.

R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6, 3182–3199 (2018).
[Crossref]

Zhou, W.

Zhu, I.

Zou, C.

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

Zou, Y.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

ACS Nano (3)

X. Xu, H. Subbaraman, S. Chakravarty, A. Hosseini, J. Covey, Y. Yu, D. Kwong, Y. Zhang, W. C. Lai, Y. Zou, N. Lu, and R. T. Chen, “Flexible single-crystal silicon nanomembrane photonic crystal cavity,” ACS Nano 8, 12265–12271 (2014).
[Crossref]

P. Gutruf, C. Zou, W. Withayachumnankul, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Mechanically tunable dielectric resonator metasurfaces at visible frequencies,” ACS Nano 10, 133–141 (2016).
[Crossref]

W. Chen, W. Liu, Y. Jiang, M. Zhang, N. Song, N. J. Greybush, J. Guo, A. K. Estep, K. T. Turner, R. Agarwal, and C. R. Kagan, “Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification,” ACS Nano 12, 10683–10692 (2018).
[Crossref]

ACS Photon. (2)

T. W. Lu, C. C. Wu, and P. T. Lee, “1D photonic crystal strain sensors,” ACS Photon. 5, 2762–2772 (2018).
[Crossref]

X. Gan, H. Clevenson, and D. Englund, “Polymer photonic crystal nanocavity for precision strain sensing,” ACS Photon. 4, 1591–1594 (2017).
[Crossref]

Adv. Mater. (1)

S. Kim, H. Ko, C. Lee, M. K. Kim, K. S. Kim, Y. H. Lee, K. Shin, and Y. H. Cho, “Semiconductor photonic nanocavity on a paper substrate,” Adv. Mater. 28, 9765–9769 (2016).
[Crossref]

Adv. Opt. Mater. (1)

Z. Gao, F. Gao, Y. Zhang, Y. Luo, and B. Zhang, “Flexible photonic topological insulator,” Adv. Opt. Mater. 6, 1800532 (2018).
[Crossref]

Appl. Phys. Lett. (5)

H. P. Phan, T. Dinh, T. Kozeki, T. K. Nguyen, A. Qamar, T. Namazu, N. T. Nguyen, and D. V. Dao, “Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects,” Appl. Phys. Lett. 109, 123502 (2016).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[Crossref]

T. W. Lu, L. H. Chiu, P. T. Lin, and P. T. Lee, “One-dimensional photonic crystal nanobeam lasers on a flexible substrate,” Appl. Phys. Lett. 99, 071101 (2011).
[Crossref]

J. A. Grieve, K. F. Ng, M. Rodrigues, J. Viana-Gomes, and A. Ling, “Mechanically tunable integrated beamsplitters on a flexible polymer platform,” Appl. Phys. Lett. 111, 211106 (2017).
[Crossref]

C. Foucher, B. Guilhabert, N. Laurand, and M. D. Dawson, “Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass,” Appl. Phys. Lett. 104, 141108 (2014).
[Crossref]

IEEE Electron Dev. Lett. (1)

C. Xin, L. Chen, T. Li, Z. Zhang, T. Zhao, X. Li, and J. Zhang, “Highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs,” IEEE Electron Dev. Lett. 39, 1073–1076 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. H. Shih, K. S. Hsu, K. Lee, K. T. Lai, C. T. Lin, and P. T. Lee, “Compact tunable laser with InGaAsP photonic crystal nanorods for C-band communication,” IEEE J. Sel. Top. Quantum Electron. 21, 4900505 (2015).
[Crossref]

J. Appl. Phys. (1)

S. M. Hu, “Film-edge-induced stress in substrates,” J. Appl. Phys. 50, 4661–4666 (1979).
[Crossref]

J. Mater. Chem. C (1)

R. Zhang, Q. Wang, and X. Zheng, “Flexible mechanochromic photonic crystals: routes to visual sensors and their mechanical properties,” J. Mater. Chem. C 6, 3182–3199 (2018).
[Crossref]

Light Sci. Appl. (1)

L. Li, H. Lin, S. Qiao, Y. Z. Huang, J. Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, A. Yadav, K. Richardson, N. Lu, and J. Hu, “Monolithically integrated stretchable photonics,” Light Sci. Appl. 7, 17138 (2018).
[Crossref]

Nano Lett. (2)

C. L. Yu, H. Kim, N. Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tenability,” Nano Lett. 13, 248–252 (2013).
[Crossref]

D. Jevtics, A. Hurtado, B. Guilhabert, J. McPhillimy, G. Cantarella, Q. Gao, H. H. Tan, C. Jagadish, M. J. Strain, and M. D. Dawson, “Integration of semiconductor nanowire lasers with polymeric waveguide devices on a mechanically flexible substrate,” Nano Lett. 17, 5990–5994 (2017).
[Crossref]

Nanoscale (1)

T. W. Lu, C. Wang, and P. T. Lee, “Tunable nanoblock lasers and stretching sensors,” Nanoscale 8, 16769–16775 (2016).
[Crossref]

Nat. Commun. (1)

J. H. Choi, Y. S. No, J. P. So, J. M. Lee, K. H. Kim, M. S. Hwang, S. H. Kwon, and H. G. Park, “A high-resolution strain-gauge nanolaser,” Nat. Commun. 7, 11569 (2016).
[Crossref]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[Crossref]

Nat. Photonics (1)

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (2)

Sci. Rep. (3)

H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong, W. Zhang, and J. Xiong, “Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring,” Sci. Rep. 9, 3916 (2019).
[Crossref]

X. Gan, H. Clevenson, C. C. Tsai, L. Li, and D. Englund, “Nanophotonic filters and integrated networks in flexible 2D polymer photonic crystals,” Sci. Rep. 3, 2145 (2013).
[Crossref]

Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Sci. Rep. 2, 622 (2012).
[Crossref]

Science (1)

A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, “Elastic strain engineering for ultralow mechanical dissipation,” Science 360, 764–768 (2018).
[Crossref]

Sensors (1)

H. Wang and K. Q. Zhang, “Photonic crystal structures with tunable structure color as colorimetric sensors,” Sensors 13, 4192–4213 (2013).
[Crossref]

Other (1)

COMSOL Multiphysics® Modeling Software.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Structure of 1D PhCs buried within a PDMS substrate and (b) the nanocavity design on it, where the t, l, a1, and w1 are 220, 930, 340, and 130 nm, respectively. Schematic of resonance mode profiles (in Ey fields) variation in cavities consisted of (c) homogeneous and (d) hetero-materials with different mechanical properties under compressive strain. (e) Theoretical x-strain distributions of PDMS with different embedded InGaAsP rods topologies.
Fig. 2.
Fig. 2. (a) Design and parameter definitions of the 1D PhC nanocavity with nanoclamps. Theoretical x-strain distributions and lattice constant shifts along the PhCs of the (b) unclamped and (c) clamped PhC nanocavities. Their cavity mode profiles in the |E| fields under ξtot=0.95 are also shown as the insets. (d) Theoretical Q and Veff of the clamped nanocavity under different ξtot.
Fig. 3.
Fig. 3. (a) Flowchart of manufacturing 1D PhC nanocavity with nanoclamps buried in a PDMS substrate. (b) Top- and tilted-view SEM pictures of the clamped nanocavity before embedding within the PDMS substrate, whose h, d, o, and L are 150 nm, 250 nm, 4, and 12 lattices, respectively. (c) The SEM pictures show the partially removed InP along different crystal orientations beneath the lattices. (d) Picture and OM image of the clamped PhC nanocavity array after embedding within the PDMS substrate. (e) OM images of the clamped PhC nanocavity under ξtot=1.00 (top) and 0.96 (bottom). (f) Lasing spectra and OM image of the (top) unclamped and (bottom) clamped nanocavities under ξtot from 1.00 to 0.96. (g) Optical excitation curves of the clamped PhC nanocavity under ξtot of 1.00 and 0.95. The inset shows the emission spectra of the nanolaser under excitation below (40 and 64 μW) and above (88, 123, and 248 μW) threshold. (h) The linewidth and wavelength variations of the nanolaser under different excitation powers. The lasing spectra under ξtot of 1.00 and 0.95 are shown with the emission spectra of InGaAsP MQWs.
Fig. 4.
Fig. 4. Theoretical Q, wavelength shifts under ξtot of 0.95, and measured Rs of the clamped nanocavities with different (a), (b) h, (c), (d) L, and (e), (f) d. The lasing spectra of the clamped nanolaser with d=200  nm under ξtot=1.000.96 are shown as the inset in (e).
Fig. 5.
Fig. 5. (a) Schematic of the 1D PhC waveguide with nanoclamps. Theoretical lattice constant distributions of the (b) clamped and (c) unclamped PhC waveguides under ξtot of 1.00, 0.95, and 0.90. Their x-strain distributions are shown as the insets. Theoretical Q and Veff of the (d) clamped and (e) unclamped PhC waveguides. The confined mode profiles (in the |E| field) of these two devices under ξtot of 1.00 and 0.92 are shown as the insets.
Fig. 6.
Fig. 6. (a) SEM image of the 1D PhC waveguide with nanoclamps. Parameters a, w, d, h, o, and L are 340, 130, 200, 130 nm, 4, and 14 lattices, respectively. (b) Lasing spectra of the clamped (right) and unclamped (left) PhC waveguides under ξtot from 1.00 to 0.95. (c) Optical excitation curves of the clamped PhC waveguide under ξtot of 1.00 and 0.95, whose lasing spectra are shown with the emission spectra of the InGaAsP MQWs in the inset. (d) Theoretical Q of the clamped PhC waveguides with d from 150 to 600 nm under different ξtot.

Metrics