Abstract

Transparent conductive oxides have attracted escalating research interest for integrated photonic devices and metasurfaces due to the extremely large electro-optic modulation of the refractive index by the free-carrier-induced plasma dispersion effect. In this paper, we have designed and fabricated a silicon microring resonator using an indium-tin oxide gate as the electric-tuning electrode. It achieved an ultralarge resonance wavelength tunability of 271 pm/V, which is obtained through the reduced width of the ring waveguide and a high-dielectric-constant HfO2 insulator. We demonstrated a broad resonance wavelength tuning range of over 2 nm with an ultrafast response time of less than 12 ns and near-zero static power consumption, which outperforms traditional thermal tuning.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide

Qian Gao, Erwen Li, and Alan X. Wang
Photon. Res. 6(4) 277-281 (2018)

Comparative analysis of transparent conductive oxide electro-absorption modulators [Invited]

Qian Gao, Erwen Li, and Alan X. Wang
Opt. Mater. Express 8(9) 2850-2862 (2018)

All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor

Kapil Debnath, David J. Thomson, Weiwei Zhang, Ali Z. Khokhar, Callum Littlejohns, James Byers, Lorenzo Mastronardi, Muhammad K. Husain, Kouta Ibukuro, Frederic Y. Gardes, Graham T. Reed, and Shinichi Saito
Photon. Res. 6(5) 373-379 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  2. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25  Gb/s 1 V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
    [Crossref]
  3. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
    [Crossref]
  4. O. Dubray, S. Menezo, B. Blampey, P. Le Maitre, J. F. Carpentier, B. Ben Bakir, M. Fournier, and S. Messaoudène, “20  Gb/s PAM-4 transmission from 35 to 90°C by modulating a silicon ring resonator modulator with 2Vpp,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.31.
  5. R. Dubé-Demers, S. LaRochelle, and W. Shi, “Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator,” Optica 3, 622–627 (2016).
    [Crossref]
  6. J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits 47, 1309–1322 (2012).
    [Crossref]
  7. O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30  Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” in IEEE Optical Interconnects Conference (OI) (IEEE, 2016), pp. 6–7.
  8. X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “25  Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express 20, 2507–2515 (2012).
    [Crossref]
  9. Z. Yong, W. D. Sacher, Y. Huang, J. C. Mikkelsen, Y. Yang, X. Luo, P. Dumais, D. Goodwill, H. Bahrami, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “U-shaped PN junctions for efficient silicon Mach–Zehnder and microring modulators in the O-band,” Opt. Express 25, 8425–8439 (2017).
    [Crossref]
  10. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33, 2185–2187 (2008).
    [Crossref]
  11. K. Padmaraju, D. F. Logan, X. Zhu, J. J. Ackert, A. P. Knights, and K. Bergman, “Integrated thermal stabilization of a microring modulator,” Opt. Express 21, 14342–14350 (2013).
    [Crossref]
  12. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.
  13. D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III–V-on-Si MOS microring resonator with negligible tuning power consumption,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1K.4.
  14. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
    [Crossref]
  15. M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5, 233–236 (2018).
    [Crossref]
  16. R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
    [Crossref]
  17. E. Li, Q. Gao, S. Liverman, and A. X. Wang, “One-volt silicon photonic crystal nanocavity modulator with indium oxide gate,” Opt. Lett. 43, 4429–4432 (2018).
    [Crossref]
  18. B. Meng, J. Booske, and R. Cooper, “Extended cavity perturbation technique to determine the complex permittivity of dielectric materials,” IEEE Trans. Microw. Theory Tech. 43, 2633–2636 (1995).
    [Crossref]
  19. E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18, 1075–1081 (2018).
    [Crossref]
  20. S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
    [Crossref]

2018 (4)

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5, 233–236 (2018).
[Crossref]

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
[Crossref]

E. Li, Q. Gao, S. Liverman, and A. X. Wang, “One-volt silicon photonic crystal nanocavity modulator with indium oxide gate,” Opt. Lett. 43, 4429–4432 (2018).
[Crossref]

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18, 1075–1081 (2018).
[Crossref]

2017 (2)

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
[Crossref]

Z. Yong, W. D. Sacher, Y. Huang, J. C. Mikkelsen, Y. Yang, X. Luo, P. Dumais, D. Goodwill, H. Bahrami, P. G.-Q. Lo, E. Bernier, and J. K. S. Poon, “U-shaped PN junctions for efficient silicon Mach–Zehnder and microring modulators in the O-band,” Opt. Express 25, 8425–8439 (2017).
[Crossref]

2016 (1)

2013 (1)

2012 (3)

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits 47, 1309–1322 (2012).
[Crossref]

X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “25  Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express 20, 2507–2515 (2012).
[Crossref]

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

2011 (1)

2010 (1)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref]

2009 (1)

2008 (1)

1995 (1)

B. Meng, J. Booske, and R. Cooper, “Extended cavity perturbation technique to determine the complex permittivity of dielectric materials,” IEEE Trans. Microw. Theory Tech. 43, 2633–2636 (1995).
[Crossref]

Ackert, J. J.

Amin, R.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
[Crossref]

Apsel, A. B.

Asghari, M.

Atwater, H. A.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref]

Baets, R.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bahrami, H.

Barwicz, T.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

Beausoleil, R. G.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30  Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” in IEEE Optical Interconnects Conference (OI) (IEEE, 2016), pp. 6–7.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III–V-on-Si MOS microring resonator with negligible tuning power consumption,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1K.4.

Ben Bakir, B.

O. Dubray, S. Menezo, B. Blampey, P. Le Maitre, J. F. Carpentier, B. Ben Bakir, M. Fournier, and S. Messaoudène, “20  Gb/s PAM-4 transmission from 35 to 90°C by modulating a silicon ring resonator modulator with 2Vpp,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.31.

Bergman, K.

Bernier, E.

Bienstman, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Blampey, B.

O. Dubray, S. Menezo, B. Blampey, P. Le Maitre, J. F. Carpentier, B. Ben Bakir, M. Fournier, and S. Messaoudène, “20  Gb/s PAM-4 transmission from 35 to 90°C by modulating a silicon ring resonator modulator with 2Vpp,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.31.

Bogaerts, W.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Booske, J.

B. Meng, J. Booske, and R. Cooper, “Extended cavity perturbation technique to determine the complex permittivity of dielectric materials,” IEEE Trans. Microw. Theory Tech. 43, 2633–2636 (1995).
[Crossref]

Bowers, J. E.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III–V-on-Si MOS microring resonator with negligible tuning power consumption,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1K.4.

Buckwalter, J. F.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits 47, 1309–1322 (2012).
[Crossref]

Campione, S.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5, 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
[Crossref]

Carfano, C.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
[Crossref]

Carpentier, J. F.

O. Dubray, S. Menezo, B. Blampey, P. Le Maitre, J. F. Carpentier, B. Ben Bakir, M. Fournier, and S. Messaoudène, “20  Gb/s PAM-4 transmission from 35 to 90°C by modulating a silicon ring resonator modulator with 2Vpp,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.31.

Charbonnier, B.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30  Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” in IEEE Optical Interconnects Conference (OI) (IEEE, 2016), pp. 6–7.

Chen, C. H.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30  Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” in IEEE Optical Interconnects Conference (OI) (IEEE, 2016), pp. 6–7.

Chen, R. T.

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18, 1075–1081 (2018).
[Crossref]

Chu, T.

Claes, T.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Cooper, R.

B. Meng, J. Booske, and R. Cooper, “Extended cavity perturbation technique to determine the complex permittivity of dielectric materials,” IEEE Trans. Microw. Theory Tech. 43, 2633–2636 (1995).
[Crossref]

Cunningham, J. E.

Dahlem, M. S.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

Dalir, H.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
[Crossref]

de Heyn, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

de Vos, K.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Descos, A.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30  Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” in IEEE Optical Interconnects Conference (OI) (IEEE, 2016), pp. 6–7.

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref]

Dokania, R. K.

Dong, P.

Dubé-Demers, R.

Dubray, O.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30  Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” in IEEE Optical Interconnects Conference (OI) (IEEE, 2016), pp. 6–7.

O. Dubray, S. Menezo, B. Blampey, P. Le Maitre, J. F. Carpentier, B. Ben Bakir, M. Fournier, and S. Messaoudène, “20  Gb/s PAM-4 transmission from 35 to 90°C by modulating a silicon ring resonator modulator with 2Vpp,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.31.

Dumais, P.

Dumon, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref]

Feng, D.

Fiorentino, M.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III–V-on-Si MOS microring resonator with negligible tuning power consumption,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1K.4.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30  Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” in IEEE Optical Interconnects Conference (OI) (IEEE, 2016), pp. 6–7.

Fournier, M.

O. Dubray, S. Menezo, B. Blampey, P. Le Maitre, J. F. Carpentier, B. Ben Bakir, M. Fournier, and S. Messaoudène, “20  Gb/s PAM-4 transmission from 35 to 90°C by modulating a silicon ring resonator modulator with 2Vpp,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.31.

Gan, F.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

Gao, Q.

E. Li, Q. Gao, S. Liverman, and A. X. Wang, “One-volt silicon photonic crystal nanocavity modulator with indium oxide gate,” Opt. Lett. 43, 4429–4432 (2018).
[Crossref]

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18, 1075–1081 (2018).
[Crossref]

Geib, K. M.

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
[Crossref]

Goodwill, D.

Holzwarth, C. W.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

Hu, Y.

Huang, Y.

Ihlefeld, J.

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
[Crossref]

Ippen, E. P.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

Kartner, F. X.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

Keeler, G. A.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5, 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
[Crossref]

Knights, A. P.

Krishnamoorthy, A. V.

Kumar Selvaraja, S.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Kung, C.-C.

Kurczveil, G.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III–V-on-Si MOS microring resonator with negligible tuning power consumption,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1K.4.

LaRochelle, S.

Le Maitre, P.

O. Dubray, S. Menezo, B. Blampey, P. Le Maitre, J. F. Carpentier, B. Ben Bakir, M. Fournier, and S. Messaoudène, “20  Gb/s PAM-4 transmission from 35 to 90°C by modulating a silicon ring resonator modulator with 2Vpp,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.31.

Li, E.

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18, 1075–1081 (2018).
[Crossref]

E. Li, Q. Gao, S. Liverman, and A. X. Wang, “One-volt silicon photonic crystal nanocavity modulator with indium oxide gate,” Opt. Lett. 43, 4429–4432 (2018).
[Crossref]

Li, G.

Li, X.

Li, Z.

Liang, D.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III–V-on-Si MOS microring resonator with negligible tuning power consumption,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1K.4.

Liang, H.

Liao, S.

Lilach, Y.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
[Crossref]

Lipson, M.

Liverman, S.

Lo, P. G.-Q.

Logan, D. F.

Luk, T. S.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5, 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
[Crossref]

Luo, X.

Luo, Y.

Ma, Z.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
[Crossref]

Maiti, R.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
[Crossref]

Manipatruni, S.

Menezo, S.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30  Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” in IEEE Optical Interconnects Conference (OI) (IEEE, 2016), pp. 6–7.

O. Dubray, S. Menezo, B. Blampey, P. Le Maitre, J. F. Carpentier, B. Ben Bakir, M. Fournier, and S. Messaoudène, “20  Gb/s PAM-4 transmission from 35 to 90°C by modulating a silicon ring resonator modulator with 2Vpp,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.31.

Meng, B.

B. Meng, J. Booske, and R. Cooper, “Extended cavity perturbation technique to determine the complex permittivity of dielectric materials,” IEEE Trans. Microw. Theory Tech. 43, 2633–2636 (1995).
[Crossref]

Messaoudène, S.

O. Dubray, S. Menezo, B. Blampey, P. Le Maitre, J. F. Carpentier, B. Ben Bakir, M. Fournier, and S. Messaoudène, “20  Gb/s PAM-4 transmission from 35 to 90°C by modulating a silicon ring resonator modulator with 2Vpp,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.31.

Mikkelsen, J. C.

Padmaraju, K.

Parameswaran, S.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5, 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
[Crossref]

Poitras, C. B.

Poon, J. K. S.

Popovic, M. A.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

Qian, W.

Raj, K.

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits 47, 1309–1322 (2012).
[Crossref]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25  Gb/s 1 V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[Crossref]

Rakich, P. T.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

Ratnayake, D.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
[Crossref]

Sacher, W. D.

Schmidt, B.

Serkland, D. K.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5, 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
[Crossref]

Seyedi, M. A.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30  Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” in IEEE Optical Interconnects Conference (OI) (IEEE, 2016), pp. 6–7.

Shafiiha, R.

Sherwood-Droz, N.

Shi, W.

Shubin, I.

Smith, H. I.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

Sorger, V. J.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
[Crossref]

Srinivasan, S.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III–V-on-Si MOS microring resonator with negligible tuning power consumption,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1K.4.

Tahersima, M. H.

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
[Crossref]

Thacker, H.

van Thourhout, D.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

van Vaerenbergh, T.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Wang, A. X.

E. Li, Q. Gao, S. Liverman, and A. X. Wang, “One-volt silicon photonic crystal nanocavity modulator with indium oxide gate,” Opt. Lett. 43, 4429–4432 (2018).
[Crossref]

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18, 1075–1081 (2018).
[Crossref]

Wendt, J. R.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5, 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
[Crossref]

Wood, M. G.

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5, 233–236 (2018).
[Crossref]

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
[Crossref]

Xiao, X.

Xiong, K.

Xu, H.

Yang, Y.

Yao, J.

Yong, Z.

Yu, J.

Yu, Y.

Zheng, D.

Zheng, X.

Zhu, X.

APL Photon. (1)

R. Amin, R. Maiti, C. Carfano, Z. Ma, M. H. Tahersima, Y. Lilach, D. Ratnayake, H. Dalir, and V. J. Sorger, “0.52  V·mm ITO-based Mach–Zehnder modulator in silicon photonics,” APL Photon. 3, 126104 (2018).
[Crossref]

IEEE J. Solid-State Circuits (1)

J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, “A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process,” IEEE J. Solid-State Circuits 47, 1309–1322 (2012).
[Crossref]

IEEE Photon. J. (1)

S. Campione, M. G. Wood, D. K. Serkland, S. Parameswaran, J. Ihlefeld, T. S. Luk, J. R. Wendt, K. M. Geib, and G. A. Keeler, “Submicrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide,” IEEE Photon. J. 9, 6601307 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

B. Meng, J. Booske, and R. Cooper, “Extended cavity perturbation technique to determine the complex permittivity of dielectric materials,” IEEE Trans. Microw. Theory Tech. 43, 2633–2636 (1995).
[Crossref]

Laser Photon. Rev. (1)

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Nano Lett. (2)

E. Li, Q. Gao, R. T. Chen, and A. X. Wang, “Ultracompact silicon-conductive oxide nanocavity modulator with 0.02 lambda-cubic active volume,” Nano Lett. 18, 1075–1081 (2018).
[Crossref]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (2)

Other (4)

O. Dubray, S. Menezo, B. Blampey, P. Le Maitre, J. F. Carpentier, B. Ben Bakir, M. Fournier, and S. Messaoudène, “20  Gb/s PAM-4 transmission from 35 to 90°C by modulating a silicon ring resonator modulator with 2Vpp,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.31.

O. Dubray, M. A. Seyedi, C. H. Chen, B. Charbonnier, A. Descos, M. Fiorentino, R. G. Beausoleil, and S. Menezo, “30  Gbit/s PAM-4 transmission by modulating a dual silicon ring resonator modulator,” in IEEE Optical Interconnects Conference (OI) (IEEE, 2016), pp. 6–7.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (IEEE, 2007), pp. 67–68.

D. Liang, G. Kurczveil, M. Fiorentino, S. Srinivasan, J. E. Bowers, and R. G. Beausoleil, “A tunable hybrid III–V-on-Si MOS microring resonator with negligible tuning power consumption,” in Optical Fiber Communication Conference (OSA, 2016), paper Th1K.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Cross-sectional and (b) top view schematic of the hybrid TCO–silicon tunable microring filter. (c) Simulated tunability (solid lines) and Q-factor (dashed lines) of the tunable microring filters as functions of the waveguide width. Two different thicknesses of gate oxide layer are simulated (16 nm of HfO2 and 5 nm of HfO2). (d) and (e) Simulated cross-sectional electrical energy (ε|E|2) distribution of the microring filter at different waveguide widths of 300 and 400 nm, respectively. Zoomed-in views of the distributions in the interface region (white dashed box) are plotted on the right.
Fig. 2.
Fig. 2. (a) Optical image of a fabricated tunable microring filter with a radius of 12 μm. The ITO gate (highlighted by a red line) covers the majority of the microring except the coupling region. The ground electrodes are connected to the silicon ring through a partially etched silicon slab. (b) Scanning electron micrograph (SEM) of the fabricated silicon microring, showing side-wall roughness after the RIE process.
Fig. 3.
Fig. 3. (a) Measured transmission spectra of a tunable microring filter under different applied gate biases. The microring has a waveguide width of 300 nm and a HfO2 gate oxide layer thickness of 16 nm. (b) Resonance shift (blue line, left axis) and Q-factor (red line, right axis) of the microring filter as functions of applied gate bias. (c) Simulated Q-factor of a microring with a waveguide width of 300 nm and 16 nm of HfO2 gate oxide as a function of applied bias.
Fig. 4.
Fig. 4. Leakage current density of a testing Si/HfO2/Au MOS capacitor as a function of applied voltage with a 16-nm-thick HfO2 gate oxide layer.
Fig. 5.
Fig. 5. (a) Voltage swing of 0 to 3  V applied on the tunable microring filter. (b) Output response of the microring filter. (c) and (d) Rising and falling edge of the output in (b), respectively.

Metrics