Abstract

InGaAs/InP avalanche photodiodes typically work in the gated Geiger mode to achieve near-infrared single-photon detection. By using ultrashort gates and combining with the robust spike-canceling technique that consists of the capacitance-balancing and low-pass filtering technique, we demonstrate an InGaAs/InP single-photon detector (SPD) with widely tunable repetition rates in this paper. The operation frequency could be tuned conveniently from 100 MHz to 1.25 GHz with the SPD’s performance measured to maintain good performance, making it quite suitable for quantum key distribution, laser ranging, and optical time domain reflectometry. Furthermore, the SPD exhibited extremely low-noise characteristics. The detection efficiency of this SPD could reach 20% with the dark count rate of 2.5×106/gate and after-pulse probability of 4.1% at 1 GHz.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode

Naoto Namekata, Shunsuke Adachi, and Shuichiro Inoue
Opt. Express 17(8) 6275-6282 (2009)

800 MHz Single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating

N. Namekata, S. Sasamori, and S. Inoue
Opt. Express 14(21) 10043-10049 (2006)

Quantum witness of high-speed low-noise single-photon detection

Lin Zhao, Kun Huang, Yan Liang, Jie Chen, Xueshun Shi, E Wu, and Heping Zeng
Opt. Express 23(25) 31857-31863 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
    [Crossref]
  2. G. Wang, Z. Y. Li, Y. C. Qiao, Z. Y. Chen, X. Peng, and H. Guo, “Light source monitoring in quantum key distribution with single-photon detector at room temperature,” IEEE J. Quantum Electron. 54, 9300110 (2018).
    [Crossref]
  3. O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, and W. Pernice, “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits,” Optica 4, 557–562 (2017).
    [Crossref]
  4. B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
    [Crossref]
  5. J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser Raman spectroscopy,” Opt. Lett. 36, 3672–3674 (2011).
    [Crossref]
  6. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [Crossref]
  7. M. Legre, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55  μm up-conversion photon-counting module,” Opt. Express 15, 8237–8242 (2007).
    [Crossref]
  8. W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
    [Crossref]
  9. J. H. Ma, X. L. Chen, H. Q. Hu, H. F. Pan, E. Wu, and H. P. Zeng, “Quantum detector tomography of a single-photon frequency upconversion detection system,” Opt. Express 24, 272685 (2016).
    [Crossref]
  10. W. H. Jiang, J. H. Liu, Y. Liu, G. Jin, J. Zhang, and J. W. Pan, “1.25  GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit,” Opt. Lett. 42, 5090–5093 (2017).
    [Crossref]
  11. M. Stipcevic, B. G. Christensen, P. G. Kwiat, and D. J. Gauthier, “Advanced active quenching circuit for ultrafast quantum cryptography,” Opt. Express 25, 21861–21876 (2017).
    [Crossref]
  12. N. Namekata, S. Adachi, and S. Inoue, “1.5  GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17, 6275–6282 (2009).
    [Crossref]
  13. Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96, 071102 (2010).
    [Crossref]
  14. A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30  ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
    [Crossref]
  15. J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
    [Crossref]
  16. Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, and H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photon. Technol. Lett. 23, 887–889 (2011).
    [Crossref]
  17. J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler, and X. Jiang, “Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes,” IEEE J. Quantum Electron. 48, 1505–1511 (2012).
    [Crossref]
  18. A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310  nm with an InGaAs/InP avalanche diode gated at 1.25  GHz,” Appl. Phys. Lett. 102, 141104 (2013).
    [Crossref]
  19. D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, and Z. F. Han, “Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse,” Appl. Phys. Lett. 110, 111104 (2017).
    [Crossref]
  20. Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
    [Crossref]
  21. H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
    [Crossref]
  22. X. L. Chen, E. Wu, L. L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118 (2009).
    [Crossref]

2018 (2)

G. Wang, Z. Y. Li, Y. C. Qiao, Z. Y. Chen, X. Peng, and H. Guo, “Light source monitoring in quantum key distribution with single-photon detector at room temperature,” IEEE J. Quantum Electron. 54, 9300110 (2018).
[Crossref]

B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

2017 (5)

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, and Z. F. Han, “Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse,” Appl. Phys. Lett. 110, 111104 (2017).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, A. Vetter, G. Lewes-Malandrakis, C. Nebel, A. Korneev, G. Goltsman, and W. Pernice, “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits,” Optica 4, 557–562 (2017).
[Crossref]

M. Stipcevic, B. G. Christensen, P. G. Kwiat, and D. J. Gauthier, “Advanced active quenching circuit for ultrafast quantum cryptography,” Opt. Express 25, 21861–21876 (2017).
[Crossref]

W. H. Jiang, J. H. Liu, Y. Liu, G. Jin, J. Zhang, and J. W. Pan, “1.25  GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit,” Opt. Lett. 42, 5090–5093 (2017).
[Crossref]

2016 (3)

Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

J. H. Ma, X. L. Chen, H. Q. Hu, H. F. Pan, E. Wu, and H. P. Zeng, “Quantum detector tomography of a single-photon frequency upconversion detection system,” Opt. Express 24, 272685 (2016).
[Crossref]

2015 (1)

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

2013 (1)

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310  nm with an InGaAs/InP avalanche diode gated at 1.25  GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

2012 (2)

J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler, and X. Jiang, “Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes,” IEEE J. Quantum Electron. 48, 1505–1511 (2012).
[Crossref]

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30  ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[Crossref]

2011 (2)

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, and H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photon. Technol. Lett. 23, 887–889 (2011).
[Crossref]

J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser Raman spectroscopy,” Opt. Lett. 36, 3672–3674 (2011).
[Crossref]

2010 (1)

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96, 071102 (2010).
[Crossref]

2009 (4)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

N. Namekata, S. Adachi, and S. Inoue, “1.5  GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17, 6275–6282 (2009).
[Crossref]

X. L. Chen, E. Wu, L. L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118 (2009).
[Crossref]

2007 (1)

Acerbi, F.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30  ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[Crossref]

Adachi, S.

Anti, M.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30  ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[Crossref]

Barreiro, C.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

Bienfang, J. C.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310  nm with an InGaAs/InP avalanche diode gated at 1.25  GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

Blacksberg, J.

Campbell, J. C.

J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler, and X. Jiang, “Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes,” IEEE J. Quantum Electron. 48, 1505–1511 (2012).
[Crossref]

Charbon, E.

Chen, H.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Chen, S. J.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Chen, T. Y.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Chen, W.

D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, and Z. F. Han, “Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse,” Appl. Phys. Lett. 110, 111104 (2017).
[Crossref]

Chen, X.

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, and H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photon. Technol. Lett. 23, 887–889 (2011).
[Crossref]

Chen, X. L.

J. H. Ma, X. L. Chen, H. Q. Hu, H. F. Pan, E. Wu, and H. P. Zeng, “Quantum detector tomography of a single-photon frequency upconversion detection system,” Opt. Express 24, 272685 (2016).
[Crossref]

X. L. Chen, E. Wu, L. L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118 (2009).
[Crossref]

Chen, Z. Y.

G. Wang, Z. Y. Li, Y. C. Qiao, Z. Y. Chen, X. Peng, and H. Guo, “Light source monitoring in quantum key distribution with single-photon detector at room temperature,” IEEE J. Quantum Electron. 54, 9300110 (2018).
[Crossref]

Christensen, B. G.

Dixon, A. R.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96, 071102 (2010).
[Crossref]

Du, B. C.

B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Dynes, J. F.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96, 071102 (2010).
[Crossref]

Ferrari, S.

Gauthier, D. J.

Gisin, N.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

M. Legre, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55  μm up-conversion photon-counting module,” Opt. Express 15, 8237–8242 (2007).
[Crossref]

Goltsman, G.

Guo, G. C.

D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, and Z. F. Han, “Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse,” Appl. Phys. Lett. 110, 111104 (2017).
[Crossref]

Guo, H.

G. Wang, Z. Y. Li, Y. C. Qiao, Z. Y. Chen, X. Peng, and H. Guo, “Light source monitoring in quantum key distribution with single-photon detector at room temperature,” IEEE J. Quantum Electron. 54, 9300110 (2018).
[Crossref]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

Han, Z. F.

D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, and Z. F. Han, “Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse,” Appl. Phys. Lett. 110, 111104 (2017).
[Crossref]

He, D. Y.

D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, and Z. F. Han, “Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse,” Appl. Phys. Lett. 110, 111104 (2017).
[Crossref]

Houlmann, R.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Hu, H. Q.

J. H. Ma, X. L. Chen, H. Q. Hu, H. F. Pan, E. Wu, and H. P. Zeng, “Quantum detector tomography of a single-photon frequency upconversion detection system,” Opt. Express 24, 272685 (2016).
[Crossref]

Huang, J.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

Huang, M. Q.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Inoue, S.

Itzler, M. A.

J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler, and X. Jiang, “Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes,” IEEE J. Quantum Electron. 48, 1505–1511 (2012).
[Crossref]

Jian, Y.

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, and H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photon. Technol. Lett. 23, 887–889 (2011).
[Crossref]

Jiang, W. H.

Jiang, X.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler, and X. Jiang, “Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes,” IEEE J. Quantum Electron. 48, 1505–1511 (2012).
[Crossref]

Jin, G.

Kahl, O.

Korneev, A.

Korzh, B.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Kovalyuk, V.

Kwiat, P. G.

Legre, M.

Lewes-Malandrakis, G.

Li, H.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

Li, M. J.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Li, Z. H.

B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Li, Z. Y.

G. Wang, Z. Y. Li, Y. C. Qiao, Z. Y. Chen, X. Peng, and H. Guo, “Light source monitoring in quantum key distribution with single-photon detector at room temperature,” IEEE J. Quantum Electron. 54, 9300110 (2018).
[Crossref]

Liang, Y.

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, and H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photon. Technol. Lett. 23, 887–889 (2011).
[Crossref]

X. L. Chen, E. Wu, L. L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118 (2009).
[Crossref]

Lim, C. C. W.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Liu, H.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Liu, J. H.

Liu, X. Y.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

Liu, Y.

Lu, Z.

J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler, and X. Jiang, “Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes,” IEEE J. Quantum Electron. 48, 1505–1511 (2012).
[Crossref]

Lv, C. L.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

Ma, J. H.

J. H. Ma, X. L. Chen, H. Q. Hu, H. F. Pan, E. Wu, and H. P. Zeng, “Quantum detector tomography of a single-photon frequency upconversion detection system,” Opt. Express 24, 272685 (2016).
[Crossref]

Mao, Y. Q.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Maruyama, Y.

Migdall, A. L.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310  nm with an InGaAs/InP avalanche diode gated at 1.25  GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

Namekata, N.

Nebel, C.

Nolan, D.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Pan, H. F.

J. H. Ma, X. L. Chen, H. Q. Hu, H. F. Pan, E. Wu, and H. P. Zeng, “Quantum detector tomography of a single-photon frequency upconversion detection system,” Opt. Express 24, 272685 (2016).
[Crossref]

Pan, J. W.

W. H. Jiang, J. H. Liu, Y. Liu, G. Jin, J. Zhang, and J. W. Pan, “1.25  GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit,” Opt. Lett. 42, 5090–5093 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Pang, C. K.

B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Peng, H.

B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Peng, X.

G. Wang, Z. Y. Li, Y. C. Qiao, Z. Y. Chen, X. Peng, and H. Guo, “Light source monitoring in quantum key distribution with single-photon detector at room temperature,” IEEE J. Quantum Electron. 54, 9300110 (2018).
[Crossref]

Pernice, W.

Qian, Y. J.

D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, and Z. F. Han, “Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse,” Appl. Phys. Lett. 110, 111104 (2017).
[Crossref]

Qiao, Y. C.

G. Wang, Z. Y. Li, Y. C. Qiao, Z. Y. Chen, X. Peng, and H. Guo, “Light source monitoring in quantum key distribution with single-photon detector at room temperature,” IEEE J. Quantum Electron. 54, 9300110 (2018).
[Crossref]

Ren, M.

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, and H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photon. Technol. Lett. 23, 887–889 (2011).
[Crossref]

Restelli, A.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310  nm with an InGaAs/InP avalanche diode gated at 1.25  GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

Rossman, G. R.

Sanguinetti, B.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Sharpe, A. W.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96, 071102 (2010).
[Crossref]

Shields, A. J.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96, 071102 (2010).
[Crossref]

Stipcevic, M.

Sun, W.

J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler, and X. Jiang, “Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes,” IEEE J. Quantum Electron. 48, 1505–1511 (2012).
[Crossref]

Tao, Y. L.

B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Thew, R.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

M. Legre, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55  μm up-conversion photon-counting module,” Opt. Express 15, 8237–8242 (2007).
[Crossref]

Tosi, A.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30  ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[Crossref]

Vetter, A.

Wang, G.

G. Wang, Z. Y. Li, Y. C. Qiao, Z. Y. Chen, X. Peng, and H. Guo, “Light source monitoring in quantum key distribution with single-photon detector at room temperature,” IEEE J. Quantum Electron. 54, 9300110 (2018).
[Crossref]

Wang, S.

D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, and Z. F. Han, “Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse,” Appl. Phys. Lett. 110, 111104 (2017).
[Crossref]

Wang, X. B.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

Wang, Z.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Wu, D.

B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Wu, E.

B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

J. H. Ma, X. L. Chen, H. Q. Hu, H. F. Pan, E. Wu, and H. P. Zeng, “Quantum detector tomography of a single-photon frequency upconversion detection system,” Opt. Express 24, 272685 (2016).
[Crossref]

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, and H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photon. Technol. Lett. 23, 887–889 (2011).
[Crossref]

X. L. Chen, E. Wu, L. L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118 (2009).
[Crossref]

Wu, G.

B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, and H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photon. Technol. Lett. 23, 887–889 (2011).
[Crossref]

X. L. Chen, E. Wu, L. L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118 (2009).
[Crossref]

Wu, J. J.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

Xie, X. M.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

Xu, L. L.

X. L. Chen, E. Wu, L. L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118 (2009).
[Crossref]

Yin, H. L.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Yin, Z. Q.

D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, and Z. F. Han, “Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse,” Appl. Phys. Lett. 110, 111104 (2017).
[Crossref]

You, L. X.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Yu, Z. W.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

Yuan, Z. L.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96, 071102 (2010).
[Crossref]

Zappa, F.

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30  ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[Crossref]

Zbinden, H.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

M. Legre, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55  μm up-conversion photon-counting module,” Opt. Express 15, 8237–8242 (2007).
[Crossref]

Zeng, H.

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, and H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photon. Technol. Lett. 23, 887–889 (2011).
[Crossref]

X. L. Chen, E. Wu, L. L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118 (2009).
[Crossref]

Zeng, H. P.

J. H. Ma, X. L. Chen, H. Q. Hu, H. F. Pan, E. Wu, and H. P. Zeng, “Quantum detector tomography of a single-photon frequency upconversion detection system,” Opt. Express 24, 272685 (2016).
[Crossref]

Zhang, J.

W. H. Jiang, J. H. Liu, Y. Liu, G. Jin, J. Zhang, and J. W. Pan, “1.25  GHz sine wave gating InGaAs/InP single-photon detector with a monolithically integrated readout circuit,” Opt. Lett. 42, 5090–5093 (2017).
[Crossref]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

Zhang, L.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

Zhang, Q.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Zhang, W. J.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Zhou, F.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Zhou, Y. H.

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

Zhou, Z.

D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, and Z. F. Han, “Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse,” Appl. Phys. Lett. 110, 111104 (2017).
[Crossref]

Appl. Phys. Lett. (5)

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96, 071102 (2010).
[Crossref]

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310  nm with an InGaAs/InP avalanche diode gated at 1.25  GHz,” Appl. Phys. Lett. 102, 141104 (2013).
[Crossref]

D. Y. He, S. Wang, W. Chen, Z. Q. Yin, Y. J. Qian, Z. Zhou, G. C. Guo, and Z. F. Han, “Sine-wave gating InGaAs/InP single photon detector with ultralow afterpulse,” Appl. Phys. Lett. 110, 111104 (2017).
[Crossref]

X. L. Chen, E. Wu, L. L. Xu, Y. Liang, G. Wu, and H. Zeng, “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates,” Appl. Phys. Lett. 95, 131118 (2009).
[Crossref]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95, 091103 (2009).
[Crossref]

IEEE J. Quantum Electron. (3)

J. C. Campbell, W. Sun, Z. Lu, M. A. Itzler, and X. Jiang, “Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes,” IEEE J. Quantum Electron. 48, 1505–1511 (2012).
[Crossref]

A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30  ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012).
[Crossref]

G. Wang, Z. Y. Li, Y. C. Qiao, Z. Y. Chen, X. Peng, and H. Guo, “Light source monitoring in quantum key distribution with single-photon detector at room temperature,” IEEE J. Quantum Electron. 54, 9300110 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Liang, E. Wu, X. Chen, M. Ren, Y. Jian, G. Wu, and H. Zeng, “Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode,” IEEE Photon. Technol. Lett. 23, 887–889 (2011).
[Crossref]

Nat. Photonics (2)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[Crossref]

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307  km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (1)

Y. H. Zhou, Z. W. Yu, and X. B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

Phys. Rev. Lett. (1)

H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Q. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, “Measurement-device-independent quantum key distribution over a 404  km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Sci. China: Phys., Mech. Astron. (1)

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550  nm wavelength operational at compact cryocooler temperature,” Sci. China: Phys., Mech. Astron. 60, 120314 (2017).
[Crossref]

Sci. Rep. (1)

B. C. Du, C. K. Pang, D. Wu, Z. H. Li, H. Peng, Y. L. Tao, E. Wu, and G. Wu, “High-speed photon-counting laser ranging for broad range of distances,” Sci. Rep. 8, 4198 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic setup of the InGaAs/InP SPD with ultrashort gates. SG, signal generator; LD, laser diode; Attn1, variable optical attenuator; PG, pulse-generating module; Cap, adjustable capacitor; PS, phase shifter; Attn2, variable electric attenuator; MTNT, so-called magic-T network consisting of a broadband transformer; LPF, low-pass filter; AMP: RF amplifier; OSC, oscilloscope. Inset, waveform of 1-GHz signal output of the PG.
Fig. 2.
Fig. 2. (a)–(c) Oscilloscope trace of the output of the APD, the MTNT, and the RF amplifier, respectively; (d) and (e) frequency spectrum of the output of the MTNT and the RF amplifier, respectively.
Fig. 3.
Fig. 3. (a) Waveforms of the amplified output signal of the MTNT and LPF at 100 MHz captured by the oscilloscope in the single mode; (b) DCR and AP as functions of DE of the SPD at 100 MHz.
Fig. 4.
Fig. 4. (a) Waveforms of the amplified output signal of the MTNT and LPF at 700 MHz captured by the oscilloscope in the single mode; (b) DCR and AP as functions of DE of the SPD at 700 MHz.
Fig. 5.
Fig. 5. (a) and (b) DCR and AP as functions of DE of the SPD at 1 and 1.25 GHz; (c) count rate dependent on the laser pulse delay.

Tables (1)

Tables Icon

Table 1. Performance of the SPD at Different Repetition Frequencies

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PA=(INIID)IphINIR,

Metrics