Abstract

Photonics-based radar with a photonic de-chirp receiver has the advantages of broadband operation and real-time signal processing, but it suffers from interference from image frequencies and other undesired frequency-mixing components, due to single-channel real-valued photonic frequency mixing. In this paper, we propose a photonics-based radar with a photonic frequency-doubling transmitter and a balanced in-phase and quadrature (I/Q) de-chirp receiver. This radar transmits broadband linearly frequency-modulated signals generated by photonic frequency doubling and performs I/Q de-chirping of the radar echoes based on a balanced photonic I/Q frequency mixer, which is realized by applying a 90° optical hybrid followed by balanced photodetectors. The proposed radar has a high range resolution because of the large operation bandwidth and achieves interference-free detection by suppressing the image frequencies and other undesired frequency-mixing components. In the experiment, a photonics-based K-band radar with a bandwidth of 8 GHz is demonstrated. The balanced I/Q de-chirping receiver achieves an image-rejection ratio of over 30 dB and successfully eliminates the interference due to the baseband envelope and the frequency mixing between radar echoes of different targets. In addition, the desired de-chirped signal power is also enhanced with balanced detection. Based on the established photonics-based radar, inverse synthetic aperture radar imaging is also implemented, through which the advantages of the proposed radar are verified.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging

Fangzheng Zhang, Qingshui Guo, Ziqian Wang, Pei Zhou, Guoqiang Zhang, Jun Sun, and Shilong Pan
Opt. Express 25(14) 16274-16281 (2017)

Photonics-based MIMO radar with high-resolution and fast detection capability

Fangzheng Zhang, Bindong Gao, and Shilong Pan
Opt. Express 26(13) 17529-17540 (2018)

Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer

Ziyi Meng, Jianqiang Li, Chunjing Yin, Yuting Fan, Feifei Yin, Yue Zhou, Yitang Dai, and Kun Xu
Opt. Express 25(18) 22055-22065 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Skolnik, “An introduction and overview of radar,” in Radar Handbook (McGraw-Hill, 2008), pp. 1.1–1.24.
  2. M. Cheney and B. Borden, “The radar ambiguity function,” in Fundamentals of Radar Imaging (Society for Industrial and Applied Mathematics, 2008), pp. 35–48.
  3. S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35, 3498–3513 (2017).
    [Crossref]
  4. S. Pan, D. Zhu, S. Liu, and K. Xu, “Satellite payloads pay off,” IEEE Microw. Mag. 16, 61–73 (2015).
    [Crossref]
  5. Y. Li, A. Rashidinejad, J.-M. Wun, D. E. Leaird, J.-W. Shi, and A. M. Weiner, “Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9  mm range resolution,” Optica 1, 446–454 (2014).
    [Crossref]
  6. S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett. 30, 1028–1031 (2018).
    [Crossref]
  7. S. Peng, S. Li, X. Xue, X. Xiao, D. Wu, X. Zheng, and B. Zhou, “High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter,” Opt. Express 26, 1978–1987 (2018).
    [Crossref]
  8. X. Wang, T. Niu, E. H. W. Chan, X. Feng, B. O. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J. 9, 5501710 (2017).
    [Crossref]
  9. I. Aryanfar, D. Marpaung, A. Choudhary, Y. Liu, K. Vu, D.-Y. Choi, P. Ma, S. Madden, and B. J. Eggleton, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett. 42, 1313–1316 (2017).
    [Crossref]
  10. Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54, 0700112 (2018).
    [Crossref]
  11. Z. Tang and S. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightwave Technol. 34, 4729–4735 (2016).
    [Crossref]
  12. Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Tech. 64, 3017–3025 (2016).
    [Crossref]
  13. Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver,” IEEE Trans. Microw. Theory Tech. 65, 4513–4525 (2017).
    [Crossref]
  14. J. Li, J. Xiao, X. Song, Y. Zheng, C. Yin, Q. Lv, Y. Fan, F. Yin, Y. Dai, and K. Xu, “Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer,” Chin. Opt. Lett. 15, 010014 (2017).
  15. D. Zhu, W. Chen, and S. Pan, “Photonics-enabled balanced Hartley architecture for broadband image-reject microwave mixing,” Opt. Express 26, 28022–28029 (2018).
    [Crossref]
  16. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [Crossref]
  17. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
    [Crossref]
  18. X. Zhu, D. Zhu, and S. Pan, “A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring,” in International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2017), pp. 1–3.
  19. W. Li, W. T. Wang, W. H. Sun, W. Y. Wang, and N. H. Zhu, “Stable radio-frequency phase distribution over optical fiber by phase-drift auto-cancellation,” Opt. Lett. 39, 4294–4296 (2014).
    [Crossref]
  20. S. Pan, J. Wei, and F. Zhang, “Passive phase correction for stable radio frequency transfer via optical fiber,” Photon. Netw. Commun. 31, 327–335 (2016).
    [Crossref]
  21. D. Wang, T. Jiang, C. Liu, S. Zhou, and S. Yu, “Stable radio frequency dissemination via a 1007  km fiber link based on a high-performance phase lock loop,” Opt. Express 26, 24479–24486 (2018).
    [Crossref]
  22. X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett. 41, 3956–3959 (2016).
    [Crossref]
  23. X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightwave Technol. 35, 5010–5019 (2017).
    [Crossref]
  24. Z. G. Tegegne, C. Decroze, P. D. Bin, T. Fromenteze, and C. Aupetit-Berthelemot, “Single channel microwave photonics digital beamforming radar imaging system,” J. Lightwave Technol. 36, 675–681 (2018).
    [Crossref]
  25. Marki Microwave, “Passive GaAs MMIC IQ mixer, MMIQ-0626H,” 2017, https://www.markimicrowave.com/Assets/datasheets/MMIQ-0626H.pdf?v=070218 .
  26. Analog Devices, “Datasheet, HMC8191,” 2018, https://www.analog.com/media/en/technical-documentation/data-sheets/hmc8191.pdf .
  27. R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, “Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing,” Opt. Express 25, 14334–14340 (2017).
    [Crossref]
  28. A. Wang, J. Wo, X. Luo, Y. Wang, W. Cong, P. Du, J. Zhang, B. Zhao, J. Zhang, Y. Zhu, J. Lan, and L. Yu, “Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information,” Opt. Express 26, 20708–20717 (2018).
    [Crossref]
  29. Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, and S. Pan, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California (OSA, 2018), paper Th3G.5.
  30. F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep. 7, 13848 (2017).
    [Crossref]
  31. F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25, 16274–16281 (2017).
    [Crossref]
  32. F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15, 112801 (2017).
  33. F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express 26, 17529–17540 (2018).
    [Crossref]
  34. F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photon. Res. 2, B5–B10 (2014).
    [Crossref]
  35. Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 27, 2260–2263 (2015).
    [Crossref]
  36. M. A. Richards, “Pulsed radar data acquisition,” in Fundamentals of Radar Signal Processing (McGraw-Hill, 2014), pp. 183–229.
  37. F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved pilot-aided optical carrier phase recovery for coherent M-QAM,” IEEE Photon. Technol. Lett. 24, 1577–1580 (2012).
    [Crossref]

2018 (8)

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett. 30, 1028–1031 (2018).
[Crossref]

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54, 0700112 (2018).
[Crossref]

S. Peng, S. Li, X. Xue, X. Xiao, D. Wu, X. Zheng, and B. Zhou, “High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter,” Opt. Express 26, 1978–1987 (2018).
[Crossref]

Z. G. Tegegne, C. Decroze, P. D. Bin, T. Fromenteze, and C. Aupetit-Berthelemot, “Single channel microwave photonics digital beamforming radar imaging system,” J. Lightwave Technol. 36, 675–681 (2018).
[Crossref]

F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express 26, 17529–17540 (2018).
[Crossref]

A. Wang, J. Wo, X. Luo, Y. Wang, W. Cong, P. Du, J. Zhang, B. Zhao, J. Zhang, Y. Zhu, J. Lan, and L. Yu, “Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information,” Opt. Express 26, 20708–20717 (2018).
[Crossref]

D. Wang, T. Jiang, C. Liu, S. Zhou, and S. Yu, “Stable radio frequency dissemination via a 1007  km fiber link based on a high-performance phase lock loop,” Opt. Express 26, 24479–24486 (2018).
[Crossref]

D. Zhu, W. Chen, and S. Pan, “Photonics-enabled balanced Hartley architecture for broadband image-reject microwave mixing,” Opt. Express 26, 28022–28029 (2018).
[Crossref]

2017 (10)

J. Li, J. Xiao, X. Song, Y. Zheng, C. Yin, Q. Lv, Y. Fan, F. Yin, Y. Dai, and K. Xu, “Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer,” Chin. Opt. Lett. 15, 010014 (2017).

I. Aryanfar, D. Marpaung, A. Choudhary, Y. Liu, K. Vu, D.-Y. Choi, P. Ma, S. Madden, and B. J. Eggleton, “Chip-based Brillouin radio frequency photonic phase shifter and wideband time delay,” Opt. Lett. 42, 1313–1316 (2017).
[Crossref]

R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, “Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing,” Opt. Express 25, 14334–14340 (2017).
[Crossref]

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25, 16274–16281 (2017).
[Crossref]

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35, 3498–3513 (2017).
[Crossref]

F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15, 112801 (2017).

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightwave Technol. 35, 5010–5019 (2017).
[Crossref]

X. Wang, T. Niu, E. H. W. Chan, X. Feng, B. O. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J. 9, 5501710 (2017).
[Crossref]

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver,” IEEE Trans. Microw. Theory Tech. 65, 4513–4525 (2017).
[Crossref]

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep. 7, 13848 (2017).
[Crossref]

2016 (4)

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett. 41, 3956–3959 (2016).
[Crossref]

Z. Tang and S. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightwave Technol. 34, 4729–4735 (2016).
[Crossref]

S. Pan, J. Wei, and F. Zhang, “Passive phase correction for stable radio frequency transfer via optical fiber,” Photon. Netw. Commun. 31, 327–335 (2016).
[Crossref]

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Tech. 64, 3017–3025 (2016).
[Crossref]

2015 (2)

S. Pan, D. Zhu, S. Liu, and K. Xu, “Satellite payloads pay off,” IEEE Microw. Mag. 16, 61–73 (2015).
[Crossref]

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 27, 2260–2263 (2015).
[Crossref]

2014 (4)

2012 (1)

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved pilot-aided optical carrier phase recovery for coherent M-QAM,” IEEE Photon. Technol. Lett. 24, 1577–1580 (2012).
[Crossref]

2007 (1)

Aryanfar, I.

Aupetit-Berthelemot, C.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Bin, P. D.

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Borden, B.

M. Cheney and B. Borden, “The radar ambiguity function,” in Fundamentals of Radar Imaging (Society for Industrial and Applied Mathematics, 2008), pp. 35–48.

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Chan, E. H. W.

X. Wang, T. Niu, E. H. W. Chan, X. Feng, B. O. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J. 9, 5501710 (2017).
[Crossref]

Chen, J.

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett. 30, 1028–1031 (2018).
[Crossref]

Chen, W.

Cheney, M.

M. Cheney and B. Borden, “The radar ambiguity function,” in Fundamentals of Radar Imaging (Society for Industrial and Applied Mathematics, 2008), pp. 35–48.

Choi, D.-Y.

Choudhary, A.

Cong, W.

Dai, Y.

Decroze, C.

Ding, M.

Du, P.

Eggleton, B. J.

Fan, Y.

J. Li, J. Xiao, X. Song, Y. Zheng, C. Yin, Q. Lv, Y. Fan, F. Yin, Y. Dai, and K. Xu, “Full-band direct-conversion receiver with enhanced port isolation and I/Q phase balance using microwave photonic I/Q mixer,” Chin. Opt. Lett. 15, 010014 (2017).

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver,” IEEE Trans. Microw. Theory Tech. 65, 4513–4525 (2017).
[Crossref]

Feng, X.

X. Wang, T. Niu, E. H. W. Chan, X. Feng, B. O. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J. 9, 5501710 (2017).
[Crossref]

Fromenteze, T.

Gao, B.

Gao, Y.

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver,” IEEE Trans. Microw. Theory Tech. 65, 4513–4525 (2017).
[Crossref]

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 27, 2260–2263 (2015).
[Crossref]

Ge, J.

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver,” IEEE Trans. Microw. Theory Tech. 65, 4513–4525 (2017).
[Crossref]

Ge, X.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Guan, B. O.

X. Wang, T. Niu, E. H. W. Chan, X. Feng, B. O. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J. 9, 5501710 (2017).
[Crossref]

Guo, P.

Guo, Q.

Hong, X.

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved pilot-aided optical carrier phase recovery for coherent M-QAM,” IEEE Photon. Technol. Lett. 24, 1577–1580 (2012).
[Crossref]

Jiang, T.

Jiang, W.

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver,” IEEE Trans. Microw. Theory Tech. 65, 4513–4525 (2017).
[Crossref]

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 27, 2260–2263 (2015).
[Crossref]

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Lan, J.

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Leaird, D. E.

Li, J.

Li, R.

Li, S.

Li, W.

Li, Y.

Liang, D.

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 27, 2260–2263 (2015).
[Crossref]

Liang, X.

Lin, J.

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved pilot-aided optical carrier phase recovery for coherent M-QAM,” IEEE Photon. Technol. Lett. 24, 1577–1580 (2012).
[Crossref]

Liu, C.

Liu, S.

S. Pan, D. Zhu, S. Liu, and K. Xu, “Satellite payloads pay off,” IEEE Microw. Mag. 16, 61–73 (2015).
[Crossref]

Liu, W.

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 27, 2260–2263 (2015).
[Crossref]

Liu, Y.

Luan, Y.

Luo, X.

Lv, Q.

Ma, P.

Madden, S.

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Marpaung, D.

Niu, T.

X. Wang, T. Niu, E. H. W. Chan, X. Feng, B. O. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J. 9, 5501710 (2017).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Pan, S.

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54, 0700112 (2018).
[Crossref]

F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express 26, 17529–17540 (2018).
[Crossref]

D. Zhu, W. Chen, and S. Pan, “Photonics-enabled balanced Hartley architecture for broadband image-reject microwave mixing,” Opt. Express 26, 28022–28029 (2018).
[Crossref]

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep. 7, 13848 (2017).
[Crossref]

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightwave Technol. 35, 5010–5019 (2017).
[Crossref]

F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15, 112801 (2017).

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25, 16274–16281 (2017).
[Crossref]

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35, 3498–3513 (2017).
[Crossref]

Z. Tang and S. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightwave Technol. 34, 4729–4735 (2016).
[Crossref]

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett. 41, 3956–3959 (2016).
[Crossref]

S. Pan, J. Wei, and F. Zhang, “Passive phase correction for stable radio frequency transfer via optical fiber,” Photon. Netw. Commun. 31, 327–335 (2016).
[Crossref]

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Tech. 64, 3017–3025 (2016).
[Crossref]

S. Pan, D. Zhu, S. Liu, and K. Xu, “Satellite payloads pay off,” IEEE Microw. Mag. 16, 61–73 (2015).
[Crossref]

F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photon. Res. 2, B5–B10 (2014).
[Crossref]

Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, and S. Pan, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California (OSA, 2018), paper Th3G.5.

X. Zhu, D. Zhu, and S. Pan, “A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring,” in International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2017), pp. 1–3.

Peng, S.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Qian, N.

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett. 30, 1028–1031 (2018).
[Crossref]

Rashidinejad, A.

Richards, M. A.

M. A. Richards, “Pulsed radar data acquisition,” in Fundamentals of Radar Signal Processing (McGraw-Hill, 2014), pp. 183–229.

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Shi, J.-W.

Skolnik, M. I.

M. I. Skolnik, “An introduction and overview of radar,” in Radar Handbook (McGraw-Hill, 2008), pp. 1.1–1.24.

Song, X.

Sun, J.

Sun, W. H.

Tang, Z.

Z. Tang and S. Pan, “Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter,” J. Lightwave Technol. 34, 4729–4735 (2016).
[Crossref]

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Tech. 64, 3017–3025 (2016).
[Crossref]

Tegegne, Z. G.

Tian, Y.

Valley, G. C.

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Vu, K.

Wang, A.

Wang, D.

Wang, W. T.

Wang, W. Y.

Wang, X.

X. Wang, T. Niu, E. H. W. Chan, X. Feng, B. O. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J. 9, 5501710 (2017).
[Crossref]

Wang, Y.

Wang, Z.

Wei, J.

S. Pan, J. Wei, and F. Zhang, “Passive phase correction for stable radio frequency transfer via optical fiber,” Photon. Netw. Commun. 31, 327–335 (2016).
[Crossref]

Weiner, A. M.

Wen, A.

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver,” IEEE Trans. Microw. Theory Tech. 65, 4513–4525 (2017).
[Crossref]

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 27, 2260–2263 (2015).
[Crossref]

Wen, Z.

Wo, J.

Wu, D.

Wu, J.

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved pilot-aided optical carrier phase recovery for coherent M-QAM,” IEEE Photon. Technol. Lett. 24, 1577–1580 (2012).
[Crossref]

Wun, J.-M.

Xiang, S.

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 27, 2260–2263 (2015).
[Crossref]

Xiao, J.

Xiao, X.

Xing, T.

Xu, K.

Xue, X.

Yao, J.

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35, 3498–3513 (2017).
[Crossref]

X. Wang, T. Niu, E. H. W. Chan, X. Feng, B. O. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J. 9, 5501710 (2017).
[Crossref]

Yao, Y.

F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15, 112801 (2017).

Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, and S. Pan, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California (OSA, 2018), paper Th3G.5.

Ye, X.

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightwave Technol. 35, 5010–5019 (2017).
[Crossref]

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett. 41, 3956–3959 (2016).
[Crossref]

Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, and S. Pan, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California (OSA, 2018), paper Th3G.5.

Yin, C.

Yin, F.

Yu, L.

Yu, S.

Zhang, F.

F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express 26, 17529–17540 (2018).
[Crossref]

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25, 16274–16281 (2017).
[Crossref]

F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15, 112801 (2017).

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep. 7, 13848 (2017).
[Crossref]

S. Pan, J. Wei, and F. Zhang, “Passive phase correction for stable radio frequency transfer via optical fiber,” Photon. Netw. Commun. 31, 327–335 (2016).
[Crossref]

X. Ye, F. Zhang, and S. Pan, “Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements,” Opt. Lett. 41, 3956–3959 (2016).
[Crossref]

F. Zhang, X. Ge, and S. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photon. Res. 2, B5–B10 (2014).
[Crossref]

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved pilot-aided optical carrier phase recovery for coherent M-QAM,” IEEE Photon. Technol. Lett. 24, 1577–1580 (2012).
[Crossref]

Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, and S. Pan, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California (OSA, 2018), paper Th3G.5.

Zhang, G.

Zhang, J.

Zhang, S.

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett. 30, 1028–1031 (2018).
[Crossref]

Zhang, W.

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver,” IEEE Trans. Microw. Theory Tech. 65, 4513–4525 (2017).
[Crossref]

Zhang, Y.

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54, 0700112 (2018).
[Crossref]

F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15, 112801 (2017).

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightwave Technol. 35, 5010–5019 (2017).
[Crossref]

Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, and S. Pan, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California (OSA, 2018), paper Th3G.5.

Zhao, B.

Zheng, X.

Zheng, Y.

Zhou, B.

Zhou, L.

Zhou, P.

Zhou, S.

Zhu, D.

D. Zhu, W. Chen, and S. Pan, “Photonics-enabled balanced Hartley architecture for broadband image-reject microwave mixing,” Opt. Express 26, 28022–28029 (2018).
[Crossref]

F. Zhang, Q. Guo, Y. Zhang, Y. Yao, P. Zhou, D. Zhu, and S. Pan, “Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target,” Chin. Opt. Lett. 15, 112801 (2017).

X. Ye, D. Zhu, Y. Zhang, S. Li, and S. Pan, “Analysis of photonics-based RF beamforming with large instantaneous bandwidth,” J. Lightwave Technol. 35, 5010–5019 (2017).
[Crossref]

S. Pan, D. Zhu, S. Liu, and K. Xu, “Satellite payloads pay off,” IEEE Microw. Mag. 16, 61–73 (2015).
[Crossref]

Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, and S. Pan, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California (OSA, 2018), paper Th3G.5.

X. Zhu, D. Zhu, and S. Pan, “A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring,” in International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2017), pp. 1–3.

Zhu, N. H.

Zhu, X.

X. Zhu, D. Zhu, and S. Pan, “A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring,” in International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2017), pp. 1–3.

Zhu, Y.

Zou, W.

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett. 30, 1028–1031 (2018).
[Crossref]

Chin. Opt. Lett. (2)

IEEE J. Quantum Electron. (1)

Y. Zhang and S. Pan, “Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters,” IEEE J. Quantum Electron. 54, 0700112 (2018).
[Crossref]

IEEE Microw. Mag. (1)

S. Pan, D. Zhu, S. Liu, and K. Xu, “Satellite payloads pay off,” IEEE Microw. Mag. 16, 61–73 (2015).
[Crossref]

IEEE Photon. J. (1)

X. Wang, T. Niu, E. H. W. Chan, X. Feng, B. O. Guan, and J. Yao, “Photonics-based wideband microwave phase shifter,” IEEE Photon. J. 9, 5501710 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (3)

S. Zhang, W. Zou, N. Qian, and J. Chen, “Enlarged range and filter-tuned reception in photonic time-stretched microwave radar,” IEEE Photon. Technol. Lett. 30, 1028–1031 (2018).
[Crossref]

Y. Gao, A. Wen, W. Jiang, D. Liang, W. Liu, and S. Xiang, “Photonic microwave generation with frequency octupling based on a DP-QPSK modulator,” IEEE Photon. Technol. Lett. 27, 2260–2263 (2015).
[Crossref]

F. Zhang, Y. Li, J. Wu, W. Li, X. Hong, and J. Lin, “Improved pilot-aided optical carrier phase recovery for coherent M-QAM,” IEEE Photon. Technol. Lett. 24, 1577–1580 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

Z. Tang and S. Pan, “A reconfigurable photonic microwave mixer using a 90° optical hybrid,” IEEE Trans. Microw. Theory Tech. 64, 3017–3025 (2016).
[Crossref]

Y. Gao, A. Wen, W. Zhang, W. Jiang, J. Ge, and Y. Fan, “Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver,” IEEE Trans. Microw. Theory Tech. 65, 4513–4525 (2017).
[Crossref]

J. Lightwave Technol. (4)

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Opt. Express (8)

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
[Crossref]

F. Zhang, B. Gao, and S. Pan, “Photonics-based MIMO radar with high-resolution and fast detection capability,” Opt. Express 26, 17529–17540 (2018).
[Crossref]

A. Wang, J. Wo, X. Luo, Y. Wang, W. Cong, P. Du, J. Zhang, B. Zhao, J. Zhang, Y. Zhu, J. Lan, and L. Yu, “Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information,” Opt. Express 26, 20708–20717 (2018).
[Crossref]

D. Wang, T. Jiang, C. Liu, S. Zhou, and S. Yu, “Stable radio frequency dissemination via a 1007  km fiber link based on a high-performance phase lock loop,” Opt. Express 26, 24479–24486 (2018).
[Crossref]

D. Zhu, W. Chen, and S. Pan, “Photonics-enabled balanced Hartley architecture for broadband image-reject microwave mixing,” Opt. Express 26, 28022–28029 (2018).
[Crossref]

S. Peng, S. Li, X. Xue, X. Xiao, D. Wu, X. Zheng, and B. Zhou, “High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter,” Opt. Express 26, 1978–1987 (2018).
[Crossref]

R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, “Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing,” Opt. Express 25, 14334–14340 (2017).
[Crossref]

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25, 16274–16281 (2017).
[Crossref]

Opt. Lett. (3)

Optica (1)

Photon. Netw. Commun. (1)

S. Pan, J. Wei, and F. Zhang, “Passive phase correction for stable radio frequency transfer via optical fiber,” Photon. Netw. Commun. 31, 327–335 (2016).
[Crossref]

Photon. Res. (1)

Sci. Rep. (1)

F. Zhang, Q. Guo, and S. Pan, “Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing,” Sci. Rep. 7, 13848 (2017).
[Crossref]

Other (7)

M. A. Richards, “Pulsed radar data acquisition,” in Fundamentals of Radar Signal Processing (McGraw-Hill, 2014), pp. 183–229.

Marki Microwave, “Passive GaAs MMIC IQ mixer, MMIQ-0626H,” 2017, https://www.markimicrowave.com/Assets/datasheets/MMIQ-0626H.pdf?v=070218 .

Analog Devices, “Datasheet, HMC8191,” 2018, https://www.analog.com/media/en/technical-documentation/data-sheets/hmc8191.pdf .

Y. Yao, F. Zhang, Y. Zhang, X. Ye, D. Zhu, and S. Pan, “Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California (OSA, 2018), paper Th3G.5.

X. Zhu, D. Zhu, and S. Pan, “A photonic analog-to-digital converter with multiplied sampling rate using a fiber ring,” in International Topical Meeting on Microwave Photonics (MWP) (IEEE, 2017), pp. 1–3.

M. I. Skolnik, “An introduction and overview of radar,” in Radar Handbook (McGraw-Hill, 2008), pp. 1.1–1.24.

M. Cheney and B. Borden, “The radar ambiguity function,” in Fundamentals of Radar Imaging (Society for Industrial and Applied Mathematics, 2008), pp. 35–48.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of the proposed photonics-based radar. LD, laser diode; ESG, electrical signal generator; OC, optical coupler; MZM, Mach–Zehnder modulator; OBPF, optical bandpass filter; PA, power amplifier; LNA, low-noise amplifier; PD/BPD, (balanced) photodetector; ADC, analog-to-digital conversion; DSP, digital signal processing. (Insets, optical spectra at several key points in the system.)
Fig. 2.
Fig. 2. Optical spectra at several key points in the proposed photonic radar. Dotted blue line, output of the MZM in the transmitter (point A); solid red line, output of the OBPF (point B); dashed green line, output of the MZM in the receiver (point C).
Fig. 3.
Fig. 3. Spectrograms of the signals (a) before and (b) after the photonic frequency doubling in the transmitter. The power profiles are projected to the time and frequency domains.
Fig. 4.
Fig. 4. Comparison between the de-chirped signals obtained by single-end PD (SPD, dotted blue line) and BPD (solid red line), including time-domain waveforms of (a) the I channel and (b) the Q channel, and the corresponding spectra of (c) the I channel and (d) the Q channel by FFT.
Fig. 5.
Fig. 5. Results of the photonic I/Q radar receiver. (a) Zoom-in view of the captured waveforms; (b) spectra of the real de-chirped signal from the I channel and the combined complex de-chirped signal; (c) and (d) zoom-in views of the spectra around the peaks for indicating the range resolution of the proposed photonic radar.
Fig. 6.
Fig. 6. (a) and (b) Experimental setup, and (c)–(e) results of the ISAR demonstration.
Fig. 7.
Fig. 7. ISAR imaging results when using a laser source with (a)  < 2 -fm wavelength dither and (b) 800-fm wavelength dither.
Fig. 8.
Fig. 8. Simulated results on the FoM of the image with different laser wavelength dithers and different uncompensated differential delays between two branches. The hyperbolic fit of the contour line at 0.5, which is considered as the threshold of the acceptable imaging, is plotted as the dotted blue line. Images under four typical conditions at points A, B, C, and D are also depicted as the insets.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

e A ( t ) = cos [ β cos ( ω RF t + π k t 2 ) ] exp ( j ω 0 t ) J 2 ( β ) exp [ j ( ω 0 t 2 ω RF t 2 π k t 2 ) ] + J 0 ( β ) exp ( j ω 0 t ) J 2 ( β ) exp [ j ( ω 0 t + 2 ω RF t + 2 π k t 2 ) ] ,
i AC ( t ) J 0 ( β ) J 2 ( β ) cos ( 2 ω RF t + 2 π k t 2 ) .
e B ( t ) = J 2 ( β ) exp [ j ( ω 0 t + 2 ω RF t + 2 π k t 2 ) ] ,
e C ( t ) = exp ( j ω 0 t ) · sin { γ cos [ 2 ω RF ( t Δ τ ) + 2 π k ( t Δ τ ) 2 ] } J 1 ( γ ) exp ( j ω 0 t ) · { exp { j [ 2 ω RF ( t Δ τ ) + 2 π k ( t Δ τ ) 2 ] } + exp { j [ 2 ω RF ( t Δ τ ) + 2 π k ( t Δ τ ) 2 ) ] } } ,
[ e I + ( t ) e I ( t ) e Q + ( t ) e Q ( t ) ] [ 1 1 1 1 1 j 1 j ] [ e B ( t ) e C ( t ) ] .
[ s I ( t ) s Q ( t ) ] [ | e I + ( t ) | 2 | e I ( t ) | 2 | e Q + ( t ) | 2 | e Q ( t ) | 2 ] [ cos [ ( 4 π k Δ τ ) t + 2 ω RF Δ τ 2 π k Δ τ 2 ] sin [ ( 4 π k Δ τ ) t + 2 ω RF Δ τ 2 π k Δ τ 2 ] ] .
s C ( t ) = s I ( t ) + j s Q ( t ) = exp { j [ ( 4 π k Δ τ ) t + 2 ω RF Δ τ 2 π k Δ τ 2 ] } .
Δ τ = 2 R / c τ ref ,
[ s I ( t ) s Q ( t ) ] = [ 1 0 tan ϕ 1 ( 1 + ε ) cos ϕ ] [ s I ( t ) s Q ( t ) ] ,

Metrics