Abstract

High-efficiency superconducting nanowire single-photon detectors (SNSPDs), which have numerous applications in quantum information systems, function by using the optical cavity and the ultrasensitive photon response of their ultra-thin superconducting nanowires. However, the wideband response of superconducting nanowires is limited due to the resonance of the traditional optical cavity. Here, we report on a supercontinuum SNSPD that can efficiently detect single photons over an ultra-broad spectral range from visible to mid-infrared light. Our detection approach relies on using multiple cavities with well-separated absorbed resonances formed by fabricating multilayer superconducting nanowires on metallic mirrors with silica acting as spacer layers. Thus, we are able to extend the absorption spectral bandwidth while maintaining considerable efficiency, as opposed to a conventional single-layer SNSPD. Our calculations show that the proposed supercontinuum SNSPD exhibits an extended absorption bandwidth with increased nanowire layers. Its absorption efficiency is greater than 70% over the entire range from 400 to 2500 nm (or 400 to 3000 nm), when using two-layer (or three-layer) nanowires. As a proof of principle, the SNSPD with bilayer nanowires is fabricated based on the proposed detector architecture with simplified geometrical parameters. The detector achieves broadband detection efficiency over 60% from 950 to 1650 nm. This type of detector may replace multiple narrow band detectors in a system and find uses in the emerging and rapidly advancing field of atomic and molecular broadband spectroscopy.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Multispectral superconducting nanowire single photon detector

Hao Li, Heqing Wang, Lixing You, Peng Hu, Weidong Shen, Weijun Zhang, Xiaoyan Yang, Lu Zhang, Hui Zhou, Zhen Wang, and Xiaoming Xie
Opt. Express 27(4) 4727-4733 (2019)

Ultra-broadband microfiber-coupled superconducting single-photon detector

Xintong Hou, Ni Yao, Lixing You, Hao Li, Yong Wang, Weijun Zhang, Heqing Wang, Xiaoyu Liu, Wei Fang, Limin Tong, Zhen Wang, and Xiaoming Xie
Opt. Express 27(18) 25241-25250 (2019)

Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths

Lixing You, Junjie Wu, Yingxin Xu, Xintong Hou, Wei Fang, Hao Li, Weijun Zhang, Lu Zhang, Xiaoyu Liu, Limin Tong, Zhen Wang, and Xiaoming Xie
Opt. Express 25(25) 31221-31229 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
    [Crossref]
  2. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [Crossref]
  3. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
    [Crossref]
  4. T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
    [Crossref]
  5. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
    [Crossref]
  6. V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23, 33792–33801 (2015).
    [Crossref]
  7. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013).
    [Crossref]
  8. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  9. W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
    [Crossref]
  10. H. Le Jeannic, V. B. Verma, A. Cavailles, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41, 5341–5344 (2016).
    [Crossref]
  11. H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
    [Crossref]
  12. M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
    [Crossref]
  13. Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
    [Crossref]
  14. D. H. Slichter, V. B. Verma, D. Leibfried, R. P. Mirin, S. W. Nam, and D. J. Wineland, “UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap,” Opt. Express 25, 8705–8720 (2017).
    [Crossref]
  15. H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
    [Crossref]
  16. L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, and Y. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41, 3848–3851 (2016).
    [Crossref]
  17. N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21, 5005–5013 (2014).
    [Crossref]
  18. L. Chen, J. A. Lau, D. Schwarzer, J. Meyer, V. B. Verma, and A. M. Wodtke, “The Sommerfeld ground-wave limit for a molecule adsorbed at a surface,” Science 363, 158–161 (2019).
    [Crossref]
  19. L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Tech. 29, 065016 (2016).
    [Crossref]
  20. Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
    [Crossref]
  21. I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44, 221–225 (2018).
    [Crossref]
  22. A. J. Salim, A. Eftekharian, and A. H. Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115, 054514 (2014).
    [Crossref]
  23. V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108, 131108 (2016).
    [Crossref]
  24. M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting single-photon detectors with enhanced high-efficiency bandwidth,” arXiv:1706.00004 (2017).
  25. B. Sareni, L. Krähenbühl, A. Beroual, and C. Brosseau, “Effective dielectric constant of periodic composite materials,” J. Appl. Phys. 80, 1688–1696 (1996).
    [Crossref]
  26. H. Li, H. Wang, L. You, P. Hu, W. Shen, W. Zhang, X. Yang, L. Zhang, H. Zhou, Z. Wang, and X. Xie, “Multispectral superconducting nanowire single photon detector,” Opt. Express 27, 4727–4733 (2019).
    [Crossref]
  27. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
    [Crossref]
  28. F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
    [Crossref]
  29. S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25, 6796–6804 (2017).
    [Crossref]
  30. L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
    [Crossref]
  31. L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
    [Crossref]

2019 (2)

L. Chen, J. A. Lau, D. Schwarzer, J. Meyer, V. B. Verma, and A. M. Wodtke, “The Sommerfeld ground-wave limit for a molecule adsorbed at a surface,” Science 363, 158–161 (2019).
[Crossref]

H. Li, H. Wang, L. You, P. Hu, W. Shen, W. Zhang, X. Yang, L. Zhang, H. Zhou, Z. Wang, and X. Xie, “Multispectral superconducting nanowire single photon detector,” Opt. Express 27, 4727–4733 (2019).
[Crossref]

2018 (4)

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44, 221–225 (2018).
[Crossref]

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref]

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

2017 (4)

D. H. Slichter, V. B. Verma, D. Leibfried, R. P. Mirin, S. W. Nam, and D. J. Wineland, “UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap,” Opt. Express 25, 8705–8720 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25, 6796–6804 (2017).
[Crossref]

2016 (5)

2015 (1)

2014 (3)

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21, 5005–5013 (2014).
[Crossref]

A. J. Salim, A. Eftekharian, and A. H. Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115, 054514 (2014).
[Crossref]

2013 (5)

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[Crossref]

2012 (2)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

2008 (1)

2006 (1)

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

1996 (1)

B. Sareni, L. Krähenbühl, A. Beroual, and C. Brosseau, “Effective dielectric constant of periodic composite materials,” J. Appl. Phys. 80, 1688–1696 (1996).
[Crossref]

Anant, V.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Bai, B.

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

Bellei, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

Berggren, K. K.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[Crossref]

Beroual, A.

B. Sareni, L. Krähenbühl, A. Beroual, and C. Brosseau, “Effective dielectric constant of periodic composite materials,” J. Appl. Phys. 80, 1688–1696 (1996).
[Crossref]

Boroson, D. M.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Brosseau, C.

B. Sareni, L. Krähenbühl, A. Beroual, and C. Brosseau, “Effective dielectric constant of periodic composite materials,” J. Appl. Phys. 80, 1688–1696 (1996).
[Crossref]

Bulgarini, G.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Tech. 29, 065016 (2016).
[Crossref]

Buller, G. S.

Burianek, D. A.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Bussières, F.

Cavailles, A.

Chen, J.

Chen, L.

L. Chen, J. A. Lau, D. Schwarzer, J. Meyer, V. B. Verma, and A. M. Wodtke, “The Sommerfeld ground-wave limit for a molecule adsorbed at a surface,” Science 363, 158–161 (2019).
[Crossref]

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref]

Chen, S.

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Cornwell, D. M.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Dane, A. E.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

Dauler, E.

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

Dauler, E. A.

Devizenko, A. Y.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44, 221–225 (2018).
[Crossref]

Dobrovolskiy, S.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Tech. 29, 065016 (2016).
[Crossref]

Dorenbos, S. D.

Dorenbos, S. N.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Tech. 29, 065016 (2016).
[Crossref]

Dyer, S. D.

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Eftekharian, A.

A. J. Salim, A. Eftekharian, and A. H. Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115, 054514 (2014).
[Crossref]

Fan, J.

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

Florya, I. N.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44, 221–225 (2018).
[Crossref]

Gemmell, N. R.

Gérard, J. M.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Tech. 29, 065016 (2016).
[Crossref]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Gol’tsman, G. N.

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Goltsman, G. N.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44, 221–225 (2018).
[Crossref]

Guan, J.

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

Hadfield, R. H.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

He, Y.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

Hemmati, H.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Horansky, R. D.

Hu, P.

Huang, J.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

Huang, K.

Kang, L.

Kerman, A. J.

Khatri, F.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Korneev, A. A.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44, 221–225 (2018).
[Crossref]

Korneeva, Y. P.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44, 221–225 (2018).
[Crossref]

Korzh, B.

Kovalik, J. M.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Krähenbühl, L.

B. Sareni, L. Krähenbühl, A. Beroual, and C. Brosseau, “Effective dielectric constant of periodic composite materials,” J. Appl. Phys. 80, 1688–1696 (1996).
[Crossref]

Krapick, M. H. S.

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting single-photon detectors with enhanced high-efficiency bandwidth,” arXiv:1706.00004 (2017).

Lau, J. A.

L. Chen, J. A. Lau, D. Schwarzer, J. Meyer, V. B. Verma, and A. M. Wodtke, “The Sommerfeld ground-wave limit for a molecule adsorbed at a surface,” Science 363, 158–161 (2019).
[Crossref]

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref]

Laurat, J.

Le Jeannic, H.

Leibfried, D.

Li, H.

H. Li, H. Wang, L. You, P. Hu, W. Shen, W. Zhang, X. Yang, L. Zhang, H. Zhou, Z. Wang, and X. Xie, “Multispectral superconducting nanowire single photon detector,” Opt. Express 27, 4727–4733 (2019).
[Crossref]

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
[Crossref]

Li, M.

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, and Y. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41, 3848–3851 (2016).
[Crossref]

Li, Y.

Li, Z.

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Lita, A. E.

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108, 131108 (2016).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23, 33792–33801 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Liu, B.

Liu, D.

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

Liu, W.

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Liu, X.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

Liu, Y.

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Lv, C.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

Ma, X.

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

Majedi, A. H.

A. J. Salim, A. Eftekharian, and A. H. Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115, 054514 (2014).
[Crossref]

Marsili, F.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref]

H. Le Jeannic, V. B. Verma, A. Cavailles, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41, 5341–5344 (2016).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23, 33792–33801 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

McCarthy, A.

Meng, W.

Meyer, J.

L. Chen, J. A. Lau, D. Schwarzer, J. Meyer, V. B. Verma, and A. M. Wodtke, “The Sommerfeld ground-wave limit for a molecule adsorbed at a surface,” Science 363, 158–161 (2019).
[Crossref]

Mikhailov, M. Y.

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44, 221–225 (2018).
[Crossref]

Miki, S.

Mirin, R. P.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref]

D. H. Slichter, V. B. Verma, D. Leibfried, R. P. Mirin, S. W. Nam, and D. J. Wineland, “UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap,” Opt. Express 25, 8705–8720 (2017).
[Crossref]

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108, 131108 (2016).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23, 33792–33801 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting single-photon detectors with enhanced high-efficiency bandwidth,” arXiv:1706.00004 (2017).

Molnar, R. J.

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

Monroy, E.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Tech. 29, 065016 (2016).
[Crossref]

Morin, O.

Munro, W. J.

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Murphy, D. V.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Najafi, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

Nam, S. W.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref]

D. H. Slichter, V. B. Verma, D. Leibfried, R. P. Mirin, S. W. Nam, and D. J. Wineland, “UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap,” Opt. Express 25, 8705–8720 (2017).
[Crossref]

H. Le Jeannic, V. B. Verma, A. Cavailles, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41, 5341–5344 (2016).
[Crossref]

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108, 131108 (2016).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23, 33792–33801 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting single-photon detectors with enhanced high-efficiency bandwidth,” arXiv:1706.00004 (2017).

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Pan, J.

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

Patterson, M. S.

Peng, C.

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Redaelli, L.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Tech. 29, 065016 (2016).
[Crossref]

Robinson, B. S.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Rosenberg, D.

Rosfjord, K. M.

Salim, A. J.

A. J. Salim, A. Eftekharian, and A. H. Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115, 054514 (2014).
[Crossref]

Sareni, B.

B. Sareni, L. Krähenbühl, A. Beroual, and C. Brosseau, “Effective dielectric constant of periodic composite materials,” J. Appl. Phys. 80, 1688–1696 (1996).
[Crossref]

Schwarzer, D.

L. Chen, J. A. Lau, D. Schwarzer, J. Meyer, V. B. Verma, and A. M. Wodtke, “The Sommerfeld ground-wave limit for a molecule adsorbed at a surface,” Science 363, 158–161 (2019).
[Crossref]

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Shaw, M. D.

Shen, W.

Slichter, D. H.

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Sodnik, Z.

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Stevens, M. J.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref]

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108, 131108 (2016).
[Crossref]

Tang, K.

Tanner, M. G.

Terai, H.

Vayshenker, I.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23, 33792–33801 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting single-photon detectors with enhanced high-efficiency bandwidth,” arXiv:1706.00004 (2017).

Verma, V. B.

L. Chen, J. A. Lau, D. Schwarzer, J. Meyer, V. B. Verma, and A. M. Wodtke, “The Sommerfeld ground-wave limit for a molecule adsorbed at a surface,” Science 363, 158–161 (2019).
[Crossref]

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref]

D. H. Slichter, V. B. Verma, D. Leibfried, R. P. Mirin, S. W. Nam, and D. J. Wineland, “UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap,” Opt. Express 25, 8705–8720 (2017).
[Crossref]

H. Le Jeannic, V. B. Verma, A. Cavailles, F. Marsili, M. D. Shaw, K. Huang, O. Morin, S. W. Nam, and J. Laurat, “High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared,” Opt. Lett. 41, 5341–5344 (2016).
[Crossref]

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108, 131108 (2016).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23, 33792–33801 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting single-photon detectors with enhanced high-efficiency bandwidth,” arXiv:1706.00004 (2017).

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Voronov, B. M.

Wang, H.

Wang, Y.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

Wang, Z.

H. Li, H. Wang, L. You, P. Hu, W. Shen, W. Zhang, X. Yang, L. Zhang, H. Zhou, Z. Wang, and X. Xie, “Multispectral superconducting nanowire single photon detector,” Opt. Express 27, 4727–4733 (2019).
[Crossref]

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
[Crossref]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

Wilson, B. C.

Wineland, D. J.

Wodtke, A. M.

L. Chen, J. A. Lau, D. Schwarzer, J. Meyer, V. B. Verma, and A. M. Wodtke, “The Sommerfeld ground-wave limit for a molecule adsorbed at a surface,” Science 363, 158–161 (2019).
[Crossref]

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref]

Wu, C.

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

Wu, J.

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

Wu, P.

Wu, Z.

Xie, X.

H. Li, H. Wang, L. You, P. Hu, W. Shen, W. Zhang, X. Yang, L. Zhang, H. Zhou, Z. Wang, and X. Xie, “Multispectral superconducting nanowire single photon detector,” Opt. Express 27, 4727–4733 (2019).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

Xiong, Y.

Xue, L.

Yabuno, M.

Yamashita, T.

Yang, J. K. W.

Yang, X.

Yin, J.

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

You, L.

H. Li, H. Wang, L. You, P. Hu, W. Shen, W. Zhang, X. Yang, L. Zhang, H. Zhou, Z. Wang, and X. Xie, “Multispectral superconducting nanowire single photon detector,” Opt. Express 27, 4727–4733 (2019).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

Yuan, X.

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

Zbinden, H.

Zhai, D.

Zhang, J.

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

Zhang, L.

H. Li, H. Wang, L. You, P. Hu, W. Shen, W. Zhang, X. Yang, L. Zhang, H. Zhou, Z. Wang, and X. Xie, “Multispectral superconducting nanowire single photon detector,” Opt. Express 27, 4727–4733 (2019).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

L. Xue, Z. Li, L. Zhang, D. Zhai, Y. Li, S. Zhang, M. Li, L. Kang, J. Chen, P. Wu, and Y. Xiong, “Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength,” Opt. Lett. 41, 3848–3851 (2016).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

Zhang, Q.

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Zhang, S.

Zhang, W.

H. Li, H. Wang, L. You, P. Hu, W. Shen, W. Zhang, X. Yang, L. Zhang, H. Zhou, Z. Wang, and X. Xie, “Multispectral superconducting nanowire single photon detector,” Opt. Express 27, 4727–4733 (2019).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

Zhang, Y.

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

Zhang, Z.

Zhao, Q.

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Zhou, H.

Zwiller, V.

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Tech. 29, 065016 (2016).
[Crossref]

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21, 5005–5013 (2014).
[Crossref]

AIP Adv. (1)

L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Adv. 3, 072135 (2013).
[Crossref]

Appl. Phys. Lett. (3)

V. B. Verma, A. E. Lita, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Athermal avalanche in bilayer superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 108, 131108 (2016).
[Crossref]

F. Marsili, F. Najafi, E. Dauler, R. J. Molnar, and K. K. Berggren, “Afterpulsing and instability in superconducting nanowire avalanche photodetectors,” Appl. Phys. Lett. 100, 112601 (2012).
[Crossref]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%,” IEEE Trans. Appl. Supercond. 27, 2200904 (2017).
[Crossref]

J. Appl. Phys. (2)

B. Sareni, L. Krähenbühl, A. Beroual, and C. Brosseau, “Effective dielectric constant of periodic composite materials,” J. Appl. Phys. 80, 1688–1696 (1996).
[Crossref]

A. J. Salim, A. Eftekharian, and A. H. Majedi, “High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors,” J. Appl. Phys. 115, 054514 (2014).
[Crossref]

Low Temp. Phys. (1)

I. N. Florya, Y. P. Korneeva, M. Y. Mikhailov, A. Y. Devizenko, A. A. Korneev, and G. N. Goltsman, “Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film,” Low Temp. Phys. 44, 221–225 (2018).
[Crossref]

Nano Lett. (1)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref]

Nat. Photonics (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Nature (1)

Y. Liu, Q. Zhao, M. Li, J. Guan, Y. Zhang, B. Bai, W. Zhang, W. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J. Pan, “Device-independent quantum random-number generation,” Nature 562, 548–551 (2018).
[Crossref]

Opt. Express (12)

D. H. Slichter, V. B. Verma, D. Leibfried, R. P. Mirin, S. W. Nam, and D. J. Wineland, “UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap,” Opt. Express 25, 8705–8720 (2017).
[Crossref]

H. Li, S. Chen, L. You, W. Meng, Z. Wu, Z. Zhang, K. Tang, L. Zhang, W. Zhang, X. Yang, X. Liu, Z. Wang, and X. Xie, “Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging,” Opt. Express 24, 3535–3542 (2016).
[Crossref]

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21, 5005–5013 (2014).
[Crossref]

K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express 14, 527–534 (2006).
[Crossref]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21, 27177–27184 (2013).
[Crossref]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23, 33792–33801 (2015).
[Crossref]

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013).
[Crossref]

H. Li, H. Wang, L. You, P. Hu, W. Shen, W. Zhang, X. Yang, L. Zhang, H. Zhou, Z. Wang, and X. Xie, “Multispectral superconducting nanowire single photon detector,” Opt. Express 27, 4727–4733 (2019).
[Crossref]

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16, 10750–10761 (2008).
[Crossref]

S. Miki, M. Yabuno, T. Yamashita, and H. Terai, “Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector,” Opt. Express 25, 6796–6804 (2017).
[Crossref]

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26, 14859–14868 (2018).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

M. Li, C. Wu, Y. Zhang, W. Liu, B. Bai, Y. Liu, W. Zhang, Q. Zhao, H. Li, Z. Wang, L. You, W. J. Munro, J. Yin, J. Zhang, C. Peng, X. Ma, Q. Zhang, J. Fan, and J. Pan, “Test of local realism into the past without detection and locality loopholes,” Phys. Rev. Lett. 121, 080404 (2018).
[Crossref]

Proc. SPIE (1)

H. Hemmati, D. M. Boroson, D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Sci. China Phys. Mech. (1)

W. Zhang, L. You, H. Li, J. Huang, C. Lv, L. Zhang, X. Liu, J. Wu, Z. Wang, and X. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. 60, 120314 (2017).
[Crossref]

Science (1)

L. Chen, J. A. Lau, D. Schwarzer, J. Meyer, V. B. Verma, and A. M. Wodtke, “The Sommerfeld ground-wave limit for a molecule adsorbed at a surface,” Science 363, 158–161 (2019).
[Crossref]

Supercond. Sci. Tech. (1)

L. Redaelli, G. Bulgarini, S. Dobrovolskiy, S. N. Dorenbos, V. Zwiller, E. Monroy, and J. M. Gérard, “Design of broadband high-efficiency superconducting-nanowire single photon detectors,” Supercond. Sci. Tech. 29, 065016 (2016).
[Crossref]

Other (1)

M. H. S. Krapick, V. B. Verma, I. Vayshenker, S. W. Nam, and R. P. Mirin, “Superconducting single-photon detectors with enhanced high-efficiency bandwidth,” arXiv:1706.00004 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Cross-sectional schematics of multilayer SNSPDs with (a) two- and (c) three-layer superconducting nanowires. The detector structure includes the following: (bottom to top) Si substrate, Al, SiO2 layer, and multiple-layer superconducting nanowires. The total absorption (red line) and separated absorption of each layer nanowire of multilayer SNSPDs with (b) two- and (d) three-layer nanowires.
Fig. 2.
Fig. 2. SEM image of the active area of a bilayer nanowire detector. The inset shows the magnified image of the nanowire. The device diameter, the nanowire width, and the nanowire pitch are 15 μm, 80 nm, and 160 nm, respectively.
Fig. 3.
Fig. 3. (a) SDE versus bias current at different wavelengths (the dark square line is DCR as a function of bias current). (b) SDE as a function of wavelength from 500 to 1700 nm (blue line), and the red line is the simulated absorptance for comparison.
Fig. 4.
Fig. 4. (a) Histogram of time-correlated photon counts measured at a wavelength of 1550 nm (blue circle; the red line is the fitted curve using Gaussian distribution). (b) Oscilloscope persistence map of the response at a bias current of 14.5 μA.
Fig. 5.
Fig. 5. Autocorrelation function G(τ) at the bias current of 14.5 μA.

Metrics