Abstract

We propose and experimentally demonstrate a novel physical layer encryption scheme for high-speed optical communication. A 10 Gb/s on-off keying signal is secretly transmitted over 100 km standard single-mode fiber. The intensity-modulated message is secured by the encryption mechanism, which is composed of an external noise source and an internal time-delayed feedback loop. The external noise serves as an entropy source with sufficient randomness. The feedback loop structure in the transmitter introduces a time-domain encryption key space, and a corresponding open-loop configuration at the receiver side is used for synchronization and decryption. Experiment results show the effectiveness of the proposed scheme. For a legitimate terminal, bit error rate below 108 can be obtained. Decryption degradations with the mismatch of different hardware parameters are researched. The time delay in the feedback loop provides a sensitive encryption key. For other hardware parameters, the system is robust enough for synchronization. Meanwhile, the time-delay signature of the loop is able to be well concealed by the external noise. Moreover, the proposed scheme can support density wavelength division multiplexing transmission with a relatively simple structure. This work also provides a new concept to establish optical secure communication by combining a time-delayed feedback chaotic system and random noise.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Maximizing the security of chaotic optical communications

T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu
Opt. Express 24(20) 23439-23449 (2016)

Security-enhanced chaotic communications with optical temporal encryption based on phase modulation and phase-to-intensity conversion

Ning Jiang, Anke Zhao, Yajun Wang, Shiqin Liu, Jianming Tang, and Kun Qiu
OSA Continuum 2(12) 3422-3437 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. Wu, B. J. Shastri, and P. R. Prucnal, “Secure communication in fiber-optic networks,” in Emerging Trends in ICT Security, B. Akhgar and H. Arabnia, eds. (Elsevier, 2014), pp. 173–183.
  2. E. Wohlgemuth, Y. Yoffe, T. Yeminy, Z. Zalevsky, and D. Sadot, “Photonic-layer encryption and steganography over IM/DD communication system,” Opt. Express 26, 32691–32703 (2018).
    [Crossref]
  3. R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435 (2010).
    [Crossref]
  4. K. Tanizawa and F. Futami, “Digital coherent 20-Gbit/s DP-PSK Y-00 quantum stream cipher transmission over 800-km SSMF,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.7.
  5. N. Jiang, A. Zhao, C. Xue, J. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44, 1536–1539 (2019).
    [Crossref]
  6. B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion deployment and compensation for optical steganography based on noise,” IEEE Photon. Technol. Lett. 28, 421–424 (2016).
    [Crossref]
  7. B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21, 2065–2071 (2013).
    [Crossref]
  8. B. Wu, Z. Wang, B. J. Shastri, M. P. Chang, N. A. Frost, and P. R. Prucnal, “Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise,” Opt. Express 22, 954–961 (2014).
    [Crossref]
  9. B. Wu, Y. Huang, S. Zhang, B. J. Shastri, and P. R. Prucnal, “Long range secure key distribution over multiple amplified fiber spans based on environmental instabilities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF1F.4.
  10. B. Wu, M. P. Chang, B. J. Shastri, Z. Wang, and P. R. Prucnal, “Analog noise protected optical encryption with two-dimensional key space,” Opt. Express 22, 14568–14574 (2014).
    [Crossref]
  11. Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.
  12. S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, and F. Jiang, “Research on optical security based on simulated noise induced encryption scheme,” J. Phys. Conf. Ser. 1176, 062059 (2019).
    [Crossref]
  13. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
    [Crossref]
  14. M. R. Chatterjee, A. Mohamed, and F. S. Almehmadi, “Secure free-space communication, turbulence mitigation, and other applications using acousto-optic chaos,” Appl. Opt. 57, C1–C13 (2018).
    [Crossref]
  15. F. S. Almehmadi and M. R. Chatterjee, “Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation,” Appl. Opt. 54, 195–203 (2015).
    [Crossref]
  16. F. S. Almehmadi and M. R. Chatterjee, “Improved performance of analog and digital acousto-optic modulation with feedback under profiled beam propagation for secure communication using chaos,” Opt. Eng. 53, 126102 (2014).
    [Crossref]
  17. A. Mohamed and M. R. Chatterjee, “Image intensity recovery with mitigation in the presence of gamma-gamma atmospheric turbulence using encrypted chaos,” Opt. Eng. 58, 036110 (2019).
    [Crossref]
  18. J. Ke, L. Yi, G. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43, 1323–1326 (2018).
    [Crossref]
  19. D. M. Wang, L. S. Wang, Y. Y. Guo, Y. C. Wang, and A. B. Wang, “Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser,” Opt. Express 27, 3065–3073 (2019).
    [Crossref]
  20. T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu, “Maximizing the security of chaotic optical communications,” Opt. Express 24, 23439–23449 (2016).
    [Crossref]
  21. V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
    [Crossref]
  22. V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, “Time delay identification in chaotic cryptosystems ruled by delay-differential equations,” J. Opt. Technol. 72, 373–377 (2005).
    [Crossref]
  23. Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
    [Crossref]
  24. P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
    [Crossref]
  25. C. Xue, N. Jiang, G. Li, C. Wang, S. Lin, Y. Lv, and K. Qiu, “Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu5A.105.
  26. D. Wang, L. Wang, T. Zhao, H. Gao, Y. Wang, X. Chen, and A. Wang, “Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG,” Opt. Express 25, 10911–10924 (2017).
    [Crossref]
  27. R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
    [Crossref]
  28. R. Nguimdo and P. Colet, “Electro-optic phase chaos systems with an internal variable and a digital key,” Opt. Express 20, 25333–25344 (2012).
    [Crossref]
  29. C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41, 3690–3693 (2016).
    [Crossref]
  30. M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22, 5241–5251 (2014).
    [Crossref]
  31. N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40, 4416–4419 (2015).
    [Crossref]
  32. P. Mu, W. Pan, L. Yan, B. Luo, N. Li, and M. Xu, “Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections,” IEEE Photon. Technol. Lett. 28, 131–134 (2016).
    [Crossref]
  33. C. Cheng, Y. Chen, and F. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23, 2308–2319 (2015).
    [Crossref]
  34. A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21, 531–540 (2015).
    [Crossref]
  35. J. Wu, Z. Wu, G. Xia, and G. Feng, “Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system,” Opt. Express 20, 1741–1753 (2012).
    [Crossref]
  36. N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25, 14359–14367 (2017).
    [Crossref]
  37. M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
    [Crossref]
  38. A. Zhao, N. Jiang, C. Wang, J. Zhang, and K. Qiu, “Wideband complexity-enhanced optical chaos generation and its application for fast random bit generation,” in CLEO Pacific Rim Conference, OSA Technical Digest (Optical Society of America, 2018), paper F2D.4.
  39. D. Rontani, E. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41, 4637–4640 (2016).
    [Crossref]
  40. P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, and Y. Wang, “Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter,” Opt. Express 27, 17859–17867 (2019).
    [Crossref]
  41. H. Kantz and E. Olbrich, “Coarse grained dynamical entropies: investigation of high-entropic dynamical systems,” Physica A 280, 34–48 (2000).
    [Crossref]
  42. Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, and D. Liu, “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 36–40.
  43. H. Chi, X. Zou, and J. Yao, “Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device,” J. Lightwave Technol. 27, 511–521 (2009).
    [Crossref]
  44. M. Li, X. Zhang, Y. Hong, Y. Zhang, Y. Shi, and X. Chen, “Confidentiality-enhanced chaotic optical communication system with variable RF amplifier gain,” Opt. Express 27, 25953–25963 (2019).
    [Crossref]
  45. L. Yi, J. Ke, G. Xia, and W. Hu, “Phase chaos generation and security enhancement by introducing fine-controllable dispersion,” J. Opt. 20, 024004 (2018).
    [Crossref]
  46. B. Romeira, F. Kong, W. Li, J. M. L. Figueiredo, J. Javaloyes, and J. Yao, “Broadband chaotic signals and breather oscillations in an optoelectronic oscillator incorporating a microwave photonic filter,” J. Lightwave Technol. 32, 3933–3942 (2014).
    [Crossref]
  47. R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization,” Phys. Rev. E 80, 026207 (2009).
    [Crossref]
  48. Q. Li, D. Chen, Q. Bao, R. Zeng, and M. Hu, “Numerical investigations of synchronization and communication based on an electro-optic phase chaos system with concealment of time delay,” Appl. Opt. 58, 1715–1722 (2019).
    [Crossref]
  49. M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
    [Crossref]
  50. C. Wang, Y. Ji, H. Wang, and L. Bai, “Security-enhanced electro-optic feedback phase chaotic system based on nonlinear coupling of two delayed interfering branches,” IEEE Photon. J. 10, 7203415 (2018).
    [Crossref]
  51. Q. C. Zhao and H. X. Yin, “Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels,” Opt. Commun. 285, 693–698 (2012).
    [Crossref]
  52. N. Jiang, J. Wang, D. Liu, C. Xue, and K. Qiu, “Secure WDM-PON based on chaos synchronization and subcarrier modulation multiplexing,” J. Opt. Soc. Am. B 33, 637–642 (2016).
    [Crossref]

2019 (8)

S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, and F. Jiang, “Research on optical security based on simulated noise induced encryption scheme,” J. Phys. Conf. Ser. 1176, 062059 (2019).
[Crossref]

A. Mohamed and M. R. Chatterjee, “Image intensity recovery with mitigation in the presence of gamma-gamma atmospheric turbulence using encrypted chaos,” Opt. Eng. 58, 036110 (2019).
[Crossref]

Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
[Crossref]

D. M. Wang, L. S. Wang, Y. Y. Guo, Y. C. Wang, and A. B. Wang, “Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser,” Opt. Express 27, 3065–3073 (2019).
[Crossref]

Q. Li, D. Chen, Q. Bao, R. Zeng, and M. Hu, “Numerical investigations of synchronization and communication based on an electro-optic phase chaos system with concealment of time delay,” Appl. Opt. 58, 1715–1722 (2019).
[Crossref]

N. Jiang, A. Zhao, C. Xue, J. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44, 1536–1539 (2019).
[Crossref]

P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, and Y. Wang, “Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter,” Opt. Express 27, 17859–17867 (2019).
[Crossref]

M. Li, X. Zhang, Y. Hong, Y. Zhang, Y. Shi, and X. Chen, “Confidentiality-enhanced chaotic optical communication system with variable RF amplifier gain,” Opt. Express 27, 25953–25963 (2019).
[Crossref]

2018 (5)

2017 (2)

2016 (6)

2015 (6)

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21, 531–540 (2015).
[Crossref]

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

F. S. Almehmadi and M. R. Chatterjee, “Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation,” Appl. Opt. 54, 195–203 (2015).
[Crossref]

C. Cheng, Y. Chen, and F. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23, 2308–2319 (2015).
[Crossref]

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40, 4416–4419 (2015).
[Crossref]

M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
[Crossref]

2014 (5)

2013 (2)

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
[Crossref]

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21, 2065–2071 (2013).
[Crossref]

2012 (3)

2011 (1)

R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[Crossref]

2010 (1)

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435 (2010).
[Crossref]

2009 (2)

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization,” Phys. Rev. E 80, 026207 (2009).
[Crossref]

H. Chi, X. Zou, and J. Yao, “Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device,” J. Lightwave Technol. 27, 511–521 (2009).
[Crossref]

2005 (2)

V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, “Time delay identification in chaotic cryptosystems ruled by delay-differential equations,” J. Opt. Technol. 72, 373–377 (2005).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

2003 (1)

V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
[Crossref]

2000 (1)

H. Kantz and E. Olbrich, “Coarse grained dynamical entropies: investigation of high-entropic dynamical systems,” Physica A 280, 34–48 (2000).
[Crossref]

Almehmadi, F. S.

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Bai, L.

C. Wang, Y. Ji, H. Wang, and L. Bai, “Security-enhanced electro-optic feedback phase chaotic system based on nonlinear coupling of two delayed interfering branches,” IEEE Photon. J. 10, 7203415 (2018).
[Crossref]

Bao, Q.

Bao, X.

Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
[Crossref]

Bogris, A.

Cai, Q.

Chang, M. P.

Chatterjee, M. R.

A. Mohamed and M. R. Chatterjee, “Image intensity recovery with mitigation in the presence of gamma-gamma atmospheric turbulence using encrypted chaos,” Opt. Eng. 58, 036110 (2019).
[Crossref]

M. R. Chatterjee, A. Mohamed, and F. S. Almehmadi, “Secure free-space communication, turbulence mitigation, and other applications using acousto-optic chaos,” Appl. Opt. 57, C1–C13 (2018).
[Crossref]

F. S. Almehmadi and M. R. Chatterjee, “Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation,” Appl. Opt. 54, 195–203 (2015).
[Crossref]

F. S. Almehmadi and M. R. Chatterjee, “Improved performance of analog and digital acousto-optic modulation with feedback under profiled beam propagation for secure communication using chaos,” Opt. Eng. 53, 126102 (2014).
[Crossref]

Chen, D.

Chen, L.

Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
[Crossref]

Chen, X.

Chen, Y.

Cheng, C.

Cheng, M.

M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
[Crossref]

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22, 5241–5251 (2014).
[Crossref]

Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, and D. Liu, “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 36–40.

Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.

Chi, H.

Citrin, D. S.

Colet, P.

R. Nguimdo and P. Colet, “Electro-optic phase chaos systems with an internal variable and a digital key,” Opt. Express 20, 25333–25344 (2012).
[Crossref]

R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Cuenot, J.-B.

V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
[Crossref]

Deng, L.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
[Crossref]

M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22, 5241–5251 (2014).
[Crossref]

Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, and D. Liu, “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 36–40.

Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.

Deng, T.

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
[Crossref]

Deng, Y.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

Dudley, J.

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization,” Phys. Rev. E 80, 026207 (2009).
[Crossref]

Fan, L.

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
[Crossref]

Feng, G.

Figueiredo, J. M. L.

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Fok, M. P.

Frost, N. A.

Fu, S.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.

Fu, Y.

Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, and D. Liu, “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 36–40.

Futami, F.

K. Tanizawa and F. Futami, “Digital coherent 20-Gbit/s DP-PSK Y-00 quantum stream cipher transmission over 800-km SSMF,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.7.

Gao, H.

Gao, X.

M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
[Crossref]

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Goedgebuer, J. P.

V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, “Time delay identification in chaotic cryptosystems ruled by delay-differential equations,” J. Opt. Technol. 72, 373–377 (2005).
[Crossref]

V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
[Crossref]

Guo, Y. Y.

Hong, Y.

Hou, T. T.

Hu, M.

Hu, W.

J. Ke, L. Yi, G. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43, 1323–1326 (2018).
[Crossref]

L. Yi, J. Ke, G. Xia, and W. Hu, “Phase chaos generation and security enhancement by introducing fine-controllable dispersion,” J. Opt. 20, 024004 (2018).
[Crossref]

Hu, W. S.

Hu, Y.

Huang, Y.

B. Wu, Y. Huang, S. Zhang, B. J. Shastri, and P. R. Prucnal, “Long range secure key distribution over multiple amplified fiber spans based on environmental instabilities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF1F.4.

Jacquot, M.

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435 (2010).
[Crossref]

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization,” Phys. Rev. E 80, 026207 (2009).
[Crossref]

Javaloyes, J.

Ji, Y.

C. Wang, Y. Ji, H. Wang, and L. Bai, “Security-enhanced electro-optic feedback phase chaotic system based on nonlinear coupling of two delayed interfering branches,” IEEE Photon. J. 10, 7203415 (2018).
[Crossref]

Jiang, F.

S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, and F. Jiang, “Research on optical security based on simulated noise induced encryption scheme,” J. Phys. Conf. Ser. 1176, 062059 (2019).
[Crossref]

Jiang, L.

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
[Crossref]

Jiang, N.

N. Jiang, A. Zhao, C. Xue, J. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44, 1536–1539 (2019).
[Crossref]

N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25, 14359–14367 (2017).
[Crossref]

C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41, 3690–3693 (2016).
[Crossref]

N. Jiang, J. Wang, D. Liu, C. Xue, and K. Qiu, “Secure WDM-PON based on chaos synchronization and subcarrier modulation multiplexing,” J. Opt. Soc. Am. B 33, 637–642 (2016).
[Crossref]

C. Xue, N. Jiang, G. Li, C. Wang, S. Lin, Y. Lv, and K. Qiu, “Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu5A.105.

A. Zhao, N. Jiang, C. Wang, J. Zhang, and K. Qiu, “Wideband complexity-enhanced optical chaos generation and its application for fast random bit generation,” in CLEO Pacific Rim Conference, OSA Technical Digest (Optical Society of America, 2018), paper F2D.4.

Jiang, X.

Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, and D. Liu, “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 36–40.

Kanoff, D. R.

Kantz, H.

H. Kantz and E. Olbrich, “Coarse grained dynamical entropies: investigation of high-entropic dynamical systems,” Physica A 280, 34–48 (2000).
[Crossref]

Ke, J.

L. Yi, J. Ke, G. Xia, and W. Hu, “Phase chaos generation and security enhancement by introducing fine-controllable dispersion,” J. Opt. 20, 024004 (2018).
[Crossref]

J. Ke, L. Yi, G. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43, 1323–1326 (2018).
[Crossref]

Ke, J. X.

Kong, F.

Larger, L.

R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[Crossref]

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435 (2010).
[Crossref]

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization,” Phys. Rev. E 80, 026207 (2009).
[Crossref]

V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, “Time delay identification in chaotic cryptosystems ruled by delay-differential equations,” J. Opt. Technol. 72, 373–377 (2005).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
[Crossref]

Lavrov, R.

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435 (2010).
[Crossref]

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization,” Phys. Rev. E 80, 026207 (2009).
[Crossref]

Levy, P.

V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
[Crossref]

Li, G.

N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25, 14359–14367 (2017).
[Crossref]

C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41, 3690–3693 (2016).
[Crossref]

C. Xue, N. Jiang, G. Li, C. Wang, S. Lin, Y. Lv, and K. Qiu, “Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu5A.105.

Li, H.

M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
[Crossref]

M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22, 5241–5251 (2014).
[Crossref]

Li, L.

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21, 531–540 (2015).
[Crossref]

Li, M.

Li, N.

P. Mu, W. Pan, L. Yan, B. Luo, N. Li, and M. Xu, “Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections,” IEEE Photon. Technol. Lett. 28, 131–134 (2016).
[Crossref]

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40, 4416–4419 (2015).
[Crossref]

Li, P.

Li, Q.

Li, W.

Lin, F.

Lin, S.

N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25, 14359–14367 (2017).
[Crossref]

C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41, 3690–3693 (2016).
[Crossref]

C. Xue, N. Jiang, G. Li, C. Wang, S. Lin, Y. Lv, and K. Qiu, “Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu5A.105.

Liu, D.

N. Jiang, J. Wang, D. Liu, C. Xue, and K. Qiu, “Secure WDM-PON based on chaos synchronization and subcarrier modulation multiplexing,” J. Opt. Soc. Am. B 33, 637–642 (2016).
[Crossref]

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22, 5241–5251 (2014).
[Crossref]

Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, and D. Liu, “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 36–40.

Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.

Liu, L.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

Liu, Y.

Locquet, A.

Lu, P.

Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
[Crossref]

Luo, B.

P. Mu, W. Pan, L. Yan, B. Luo, N. Li, and M. Xu, “Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections,” IEEE Photon. Technol. Lett. 28, 131–134 (2016).
[Crossref]

Lv, Y.

C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41, 3690–3693 (2016).
[Crossref]

C. Xue, N. Jiang, G. Li, C. Wang, S. Lin, Y. Lv, and K. Qiu, “Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu5A.105.

Ma, P. Y.

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion deployment and compensation for optical steganography based on noise,” IEEE Photon. Technol. Lett. 28, 421–424 (2016).
[Crossref]

Mercier, E.

Mihailov, S.

Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
[Crossref]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Mohamed, A.

A. Mohamed and M. R. Chatterjee, “Image intensity recovery with mitigation in the presence of gamma-gamma atmospheric turbulence using encrypted chaos,” Opt. Eng. 58, 036110 (2019).
[Crossref]

M. R. Chatterjee, A. Mohamed, and F. S. Almehmadi, “Secure free-space communication, turbulence mitigation, and other applications using acousto-optic chaos,” Appl. Opt. 57, C1–C13 (2018).
[Crossref]

Mu, P.

P. Mu, W. Pan, L. Yan, B. Luo, N. Li, and M. Xu, “Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections,” IEEE Photon. Technol. Lett. 28, 131–134 (2016).
[Crossref]

Nguimdo, R.

Nguimdo, R. M.

R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[Crossref]

Olbrich, E.

H. Kantz and E. Olbrich, “Coarse grained dynamical entropies: investigation of high-entropic dynamical systems,” Physica A 280, 34–48 (2000).
[Crossref]

Pan, W.

P. Mu, W. Pan, L. Yan, B. Luo, N. Li, and M. Xu, “Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections,” IEEE Photon. Technol. Lett. 28, 131–134 (2016).
[Crossref]

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40, 4416–4419 (2015).
[Crossref]

Peil, M.

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization,” Phys. Rev. E 80, 026207 (2009).
[Crossref]

Pesquera, L.

R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Prucnal, P. R.

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion deployment and compensation for optical steganography based on noise,” IEEE Photon. Technol. Lett. 28, 421–424 (2016).
[Crossref]

B. Wu, M. P. Chang, B. J. Shastri, Z. Wang, and P. R. Prucnal, “Analog noise protected optical encryption with two-dimensional key space,” Opt. Express 22, 14568–14574 (2014).
[Crossref]

B. Wu, Z. Wang, B. J. Shastri, M. P. Chang, N. A. Frost, and P. R. Prucnal, “Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise,” Opt. Express 22, 954–961 (2014).
[Crossref]

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21, 2065–2071 (2013).
[Crossref]

B. Wu, B. J. Shastri, and P. R. Prucnal, “Secure communication in fiber-optic networks,” in Emerging Trends in ICT Security, B. Akhgar and H. Arabnia, eds. (Elsevier, 2014), pp. 173–183.

B. Wu, Y. Huang, S. Zhang, B. J. Shastri, and P. R. Prucnal, “Long range secure key distribution over multiple amplified fiber spans based on environmental instabilities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF1F.4.

Qiu, K.

N. Jiang, A. Zhao, C. Xue, J. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44, 1536–1539 (2019).
[Crossref]

N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25, 14359–14367 (2017).
[Crossref]

C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41, 3690–3693 (2016).
[Crossref]

N. Jiang, J. Wang, D. Liu, C. Xue, and K. Qiu, “Secure WDM-PON based on chaos synchronization and subcarrier modulation multiplexing,” J. Opt. Soc. Am. B 33, 637–642 (2016).
[Crossref]

C. Xue, N. Jiang, G. Li, C. Wang, S. Lin, Y. Lv, and K. Qiu, “Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu5A.105.

A. Zhao, N. Jiang, C. Wang, J. Zhang, and K. Qiu, “Wideband complexity-enhanced optical chaos generation and its application for fast random bit generation,” in CLEO Pacific Rim Conference, OSA Technical Digest (Optical Society of America, 2018), paper F2D.4.

Rhodes, W. T.

V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
[Crossref]

Romeira, B.

Rontani, D.

Sadot, D.

Sciamanna, M.

Shastri, B. J.

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion deployment and compensation for optical steganography based on noise,” IEEE Photon. Technol. Lett. 28, 421–424 (2016).
[Crossref]

B. Wu, Z. Wang, B. J. Shastri, M. P. Chang, N. A. Frost, and P. R. Prucnal, “Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise,” Opt. Express 22, 954–961 (2014).
[Crossref]

B. Wu, M. P. Chang, B. J. Shastri, Z. Wang, and P. R. Prucnal, “Analog noise protected optical encryption with two-dimensional key space,” Opt. Express 22, 14568–14574 (2014).
[Crossref]

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21, 2065–2071 (2013).
[Crossref]

B. Wu, B. J. Shastri, and P. R. Prucnal, “Secure communication in fiber-optic networks,” in Emerging Trends in ICT Security, B. Akhgar and H. Arabnia, eds. (Elsevier, 2014), pp. 173–183.

B. Wu, Y. Huang, S. Zhang, B. J. Shastri, and P. R. Prucnal, “Long range secure key distribution over multiple amplified fiber spans based on environmental instabilities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF1F.4.

Shi, Y.

Shore, K. A.

P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, and Y. Wang, “Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter,” Opt. Express 27, 17859–17867 (2019).
[Crossref]

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21, 531–540 (2015).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Tang, J.

Tang, M.

M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
[Crossref]

Tang, X.

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
[Crossref]

Tanizawa, K.

K. Tanizawa and F. Futami, “Digital coherent 20-Gbit/s DP-PSK Y-00 quantum stream cipher transmission over 800-km SSMF,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.7.

Tian, Y.

Udaltsov, V.

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization,” Phys. Rev. E 80, 026207 (2009).
[Crossref]

Udaltsov, V. S.

V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, “Time delay identification in chaotic cryptosystems ruled by delay-differential equations,” J. Opt. Technol. 72, 373–377 (2005).
[Crossref]

V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
[Crossref]

Wang, A.

Wang, A. B.

D. M. Wang, L. S. Wang, Y. Y. Guo, Y. C. Wang, and A. B. Wang, “Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser,” Opt. Express 27, 3065–3073 (2019).
[Crossref]

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21, 531–540 (2015).
[Crossref]

Wang, B. J.

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21, 531–540 (2015).
[Crossref]

Wang, C.

C. Wang, Y. Ji, H. Wang, and L. Bai, “Security-enhanced electro-optic feedback phase chaotic system based on nonlinear coupling of two delayed interfering branches,” IEEE Photon. J. 10, 7203415 (2018).
[Crossref]

N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25, 14359–14367 (2017).
[Crossref]

C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41, 3690–3693 (2016).
[Crossref]

A. Zhao, N. Jiang, C. Wang, J. Zhang, and K. Qiu, “Wideband complexity-enhanced optical chaos generation and its application for fast random bit generation,” in CLEO Pacific Rim Conference, OSA Technical Digest (Optical Society of America, 2018), paper F2D.4.

C. Xue, N. Jiang, G. Li, C. Wang, S. Lin, Y. Lv, and K. Qiu, “Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu5A.105.

Wang, D.

Wang, D. M.

Wang, H.

C. Wang, Y. Ji, H. Wang, and L. Bai, “Security-enhanced electro-optic feedback phase chaotic system based on nonlinear coupling of two delayed interfering branches,” IEEE Photon. J. 10, 7203415 (2018).
[Crossref]

Wang, J.

S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, and F. Jiang, “Research on optical security based on simulated noise induced encryption scheme,” J. Phys. Conf. Ser. 1176, 062059 (2019).
[Crossref]

N. Jiang, J. Wang, D. Liu, C. Xue, and K. Qiu, “Secure WDM-PON based on chaos synchronization and subcarrier modulation multiplexing,” J. Opt. Soc. Am. B 33, 637–642 (2016).
[Crossref]

Wang, L.

Wang, L. S.

Wang, S.

S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, and F. Jiang, “Research on optical security based on simulated noise induced encryption scheme,” J. Phys. Conf. Ser. 1176, 062059 (2019).
[Crossref]

Wang, Y.

Wang, Y. C.

D. M. Wang, L. S. Wang, Y. Y. Guo, Y. C. Wang, and A. B. Wang, “Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser,” Opt. Express 27, 3065–3073 (2019).
[Crossref]

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21, 531–540 (2015).
[Crossref]

Wang, Z.

Wohlgemuth, E.

Wolfersberger, D.

Wu, B.

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion deployment and compensation for optical steganography based on noise,” IEEE Photon. Technol. Lett. 28, 421–424 (2016).
[Crossref]

B. Wu, Z. Wang, B. J. Shastri, M. P. Chang, N. A. Frost, and P. R. Prucnal, “Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise,” Opt. Express 22, 954–961 (2014).
[Crossref]

B. Wu, M. P. Chang, B. J. Shastri, Z. Wang, and P. R. Prucnal, “Analog noise protected optical encryption with two-dimensional key space,” Opt. Express 22, 14568–14574 (2014).
[Crossref]

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21, 2065–2071 (2013).
[Crossref]

B. Wu, B. J. Shastri, and P. R. Prucnal, “Secure communication in fiber-optic networks,” in Emerging Trends in ICT Security, B. Akhgar and H. Arabnia, eds. (Elsevier, 2014), pp. 173–183.

B. Wu, Y. Huang, S. Zhang, B. J. Shastri, and P. R. Prucnal, “Long range secure key distribution over multiple amplified fiber spans based on environmental instabilities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF1F.4.

Wu, J.

Wu, J. G.

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
[Crossref]

Wu, Z.

Wu, Z. M.

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
[Crossref]

Xia, G.

Xia, G. Q.

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
[Crossref]

Xiao, P.

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
[Crossref]

Xing, T.

S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, and F. Jiang, “Research on optical security based on simulated noise induced encryption scheme,” J. Phys. Conf. Ser. 1176, 062059 (2019).
[Crossref]

Xu, B.

Xu, M.

P. Mu, W. Pan, L. Yan, B. Luo, N. Li, and M. Xu, “Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections,” IEEE Photon. Technol. Lett. 28, 131–134 (2016).
[Crossref]

Xua, Y.

Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
[Crossref]

Xue, C.

Yan, L.

P. Mu, W. Pan, L. Yan, B. Luo, N. Li, and M. Xu, “Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections,” IEEE Photon. Technol. Lett. 28, 131–134 (2016).
[Crossref]

Yang, Q.

Yang, X. L.

Yao, J.

Yeminy, T.

Yi, L.

J. Ke, L. Yi, G. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43, 1323–1326 (2018).
[Crossref]

L. Yi, J. Ke, G. Xia, and W. Hu, “Phase chaos generation and security enhancement by introducing fine-controllable dispersion,” J. Opt. 20, 024004 (2018).
[Crossref]

Yi, L. L.

Yin, H. X.

Q. C. Zhao and H. X. Yin, “Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels,” Opt. Commun. 285, 693–698 (2012).
[Crossref]

Yoffe, Y.

Yu, Q.

Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.

Zalevsky, Z.

Zeng, R.

Zhang, J.

P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, and Y. Wang, “Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter,” Opt. Express 27, 17859–17867 (2019).
[Crossref]

A. Zhao, N. Jiang, C. Wang, J. Zhang, and K. Qiu, “Wideband complexity-enhanced optical chaos generation and its application for fast random bit generation,” in CLEO Pacific Rim Conference, OSA Technical Digest (Optical Society of America, 2018), paper F2D.4.

Zhang, L.

Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
[Crossref]

Zhang, M.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, and D. Liu, “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 36–40.

Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.

Zhang, S.

B. Wu, Y. Huang, S. Zhang, B. J. Shastri, and P. R. Prucnal, “Long range secure key distribution over multiple amplified fiber spans based on environmental instabilities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF1F.4.

Zhang, X.

Zhang, Y.

Zhao, A.

N. Jiang, A. Zhao, C. Xue, J. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44, 1536–1539 (2019).
[Crossref]

A. Zhao, N. Jiang, C. Wang, J. Zhang, and K. Qiu, “Wideband complexity-enhanced optical chaos generation and its application for fast random bit generation,” in CLEO Pacific Rim Conference, OSA Technical Digest (Optical Society of America, 2018), paper F2D.4.

Zhao, Q. C.

Q. C. Zhao and H. X. Yin, “Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels,” Opt. Commun. 285, 693–698 (2012).
[Crossref]

Zhao, T.

Zhao, Z.

Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.

Zhou, P.

Zou, X.

Zou, Z.

S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, and F. Jiang, “Research on optical security based on simulated noise induced encryption scheme,” J. Phys. Conf. Ser. 1176, 062059 (2019).
[Crossref]

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21, 531–540 (2015).
[Crossref]

IEEE Photon. J. (1)

C. Wang, Y. Ji, H. Wang, and L. Bai, “Security-enhanced electro-optic feedback phase chaotic system based on nonlinear coupling of two delayed interfering branches,” IEEE Photon. J. 10, 7203415 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (4)

M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
[Crossref]

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

P. Mu, W. Pan, L. Yan, B. Luo, N. Li, and M. Xu, “Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections,” IEEE Photon. Technol. Lett. 28, 131–134 (2016).
[Crossref]

B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion deployment and compensation for optical steganography based on noise,” IEEE Photon. Technol. Lett. 28, 421–424 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

L. Yi, J. Ke, G. Xia, and W. Hu, “Phase chaos generation and security enhancement by introducing fine-controllable dispersion,” J. Opt. 20, 024004 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

J. Phys. Conf. Ser. (1)

S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, and F. Jiang, “Research on optical security based on simulated noise induced encryption scheme,” J. Phys. Conf. Ser. 1176, 062059 (2019).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Opt. Commun. (2)

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
[Crossref]

Q. C. Zhao and H. X. Yin, “Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels,” Opt. Commun. 285, 693–698 (2012).
[Crossref]

Opt. Eng. (2)

F. S. Almehmadi and M. R. Chatterjee, “Improved performance of analog and digital acousto-optic modulation with feedback under profiled beam propagation for secure communication using chaos,” Opt. Eng. 53, 126102 (2014).
[Crossref]

A. Mohamed and M. R. Chatterjee, “Image intensity recovery with mitigation in the presence of gamma-gamma atmospheric turbulence using encrypted chaos,” Opt. Eng. 58, 036110 (2019).
[Crossref]

Opt. Express (14)

B. Wu, M. P. Chang, B. J. Shastri, Z. Wang, and P. R. Prucnal, “Analog noise protected optical encryption with two-dimensional key space,” Opt. Express 22, 14568–14574 (2014).
[Crossref]

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21, 2065–2071 (2013).
[Crossref]

B. Wu, Z. Wang, B. J. Shastri, M. P. Chang, N. A. Frost, and P. R. Prucnal, “Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise,” Opt. Express 22, 954–961 (2014).
[Crossref]

E. Wohlgemuth, Y. Yoffe, T. Yeminy, Z. Zalevsky, and D. Sadot, “Photonic-layer encryption and steganography over IM/DD communication system,” Opt. Express 26, 32691–32703 (2018).
[Crossref]

D. Wang, L. Wang, T. Zhao, H. Gao, Y. Wang, X. Chen, and A. Wang, “Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG,” Opt. Express 25, 10911–10924 (2017).
[Crossref]

D. M. Wang, L. S. Wang, Y. Y. Guo, Y. C. Wang, and A. B. Wang, “Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser,” Opt. Express 27, 3065–3073 (2019).
[Crossref]

T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu, “Maximizing the security of chaotic optical communications,” Opt. Express 24, 23439–23449 (2016).
[Crossref]

C. Cheng, Y. Chen, and F. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23, 2308–2319 (2015).
[Crossref]

J. Wu, Z. Wu, G. Xia, and G. Feng, “Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system,” Opt. Express 20, 1741–1753 (2012).
[Crossref]

N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25, 14359–14367 (2017).
[Crossref]

R. Nguimdo and P. Colet, “Electro-optic phase chaos systems with an internal variable and a digital key,” Opt. Express 20, 25333–25344 (2012).
[Crossref]

M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22, 5241–5251 (2014).
[Crossref]

M. Li, X. Zhang, Y. Hong, Y. Zhang, Y. Shi, and X. Chen, “Confidentiality-enhanced chaotic optical communication system with variable RF amplifier gain,” Opt. Express 27, 25953–25963 (2019).
[Crossref]

P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, and Y. Wang, “Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter,” Opt. Express 27, 17859–17867 (2019).
[Crossref]

Opt. Laser Technol. (1)

Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
[Crossref]

Opt. Lett. (5)

Phys. Lett. A (1)

V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
[Crossref]

Phys. Rev. E (1)

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization,” Phys. Rev. E 80, 026207 (2009).
[Crossref]

Phys. Rev. Lett. (1)

R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[Crossref]

Physica A (1)

H. Kantz and E. Olbrich, “Coarse grained dynamical entropies: investigation of high-entropic dynamical systems,” Physica A 280, 34–48 (2000).
[Crossref]

Other (7)

Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, and D. Liu, “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 36–40.

A. Zhao, N. Jiang, C. Wang, J. Zhang, and K. Qiu, “Wideband complexity-enhanced optical chaos generation and its application for fast random bit generation,” in CLEO Pacific Rim Conference, OSA Technical Digest (Optical Society of America, 2018), paper F2D.4.

C. Xue, N. Jiang, G. Li, C. Wang, S. Lin, Y. Lv, and K. Qiu, “Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu5A.105.

Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.

B. Wu, B. J. Shastri, and P. R. Prucnal, “Secure communication in fiber-optic networks,” in Emerging Trends in ICT Security, B. Akhgar and H. Arabnia, eds. (Elsevier, 2014), pp. 173–183.

K. Tanizawa and F. Futami, “Digital coherent 20-Gbit/s DP-PSK Y-00 quantum stream cipher transmission over 800-km SSMF,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.7.

B. Wu, Y. Huang, S. Zhang, B. J. Shastri, and P. R. Prucnal, “Long range secure key distribution over multiple amplified fiber spans based on environmental instabilities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF1F.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Experimental setup of the secure communication system. LD, tunable laser diode; PC, polarization controller; RF, radio-frequency amplifier; IM, intensity modulator; EDFA, erbium-doped fiber amplifier; PD, photodetector; PM, phase modulator; FBG, fiber Bragg grating; DL, tunable delay line; OC, optical coupler; SSMF, standard single-mode fiber; SPMF, self-phase-modulated optical feedback.
Fig. 2.
Fig. 2. (a) Time series of the original data signal at the output of intensity modulator; (b) time series of the encrypted signal at the output of FBG2; (c) time series of the decrypted signal at the output of FBG4; (d) eye diagram of the original data signal at the output of intensity modulator; (e) eye diagram of the encrypted signal at the output of FBG2; (f) eye diagram of the decrypted signal at the output of FBG4.
Fig. 3.
Fig. 3. (a) RF spectrum of the data signal; (b) RF spectrum of the encrypted signal; (c) RF spectrum of the decrypted signal.
Fig. 4.
Fig. 4. (a) BER variation of the decrypted signal with time-delay mismatch between DL1 and DL2; (b) BER variation of the decrypted signal with dispersion mismatch between FBG2 and FBG3; (c) BER variation of the decrypted signal with dispersion mismatch between FBG1 and FBG4.
Fig. 5.
Fig. 5. (a) ACF of time series with original parameter settings; (b) ACF of time series with time-delay concealment.
Fig. 6.
Fig. 6. (a) Peak size of ACF values under different dispersions of FBG1; (b) peak size of ACF values under different dispersions of FBG2.
Fig. 7.
Fig. 7. System structures for complexity measurement. (a) Phase chaos structure; (b) phase chaos with an external phase noise source; (c) SPMF loop with an external phase noise source.
Fig. 8.
Fig. 8. Experiment structure of the proposed encryption scheme for WDM.
Fig. 9.
Fig. 9. Spectra of DWDM channels.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E0(t)=P0m(t)exp(jω0t+Φ0),
Ep(t)=E0(t)exp[jπC1n(t)2],
H(ω)=exp[jB2(ωω0)2],
Ep(t)=F1{F[Ep(t)]H(ω)},
V(t)+τdV(t)dt+1θtntV(ε)dε=ηGS|Ep(ttD)|2,
C(s)=[v(t)v(t)][v(ts)v(t)][v(t)v(t)]2,

Metrics