Abstract

Er/Ho co-doped oxyfluoride germanosilicate glass and glass ceramics are prepared and compared. The results indicate that the glass consists of SiO4 and GeO4 structural units, while the network of the glass ceramics consists of SiO4, GeO4, and GeO6 units together with NaYF4 nanocrystals. The presence of multiple local structures in glass ceramics creates a range of dipole environments, which is beneficial to the broadening of 2.7 μm emission. Two other reasons are attributed to the broadening of 2.7 μm emission in glass ceramics: the energy-level splitting of Er3+ and the enhancement of the Ho3+:I65I75 transition in NaYF4 nanocrystals.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
2.7 μm emission in Er3+ doped glass ceramics containing lutetium oxyfluoride nanocrystals

Y. Liu, X. Y. Liu, W. C. Wang, W. J. Zhang, and Q. Y. Zhang
Opt. Mater. Express 6(9) 2759-2768 (2016)

Enhanced emission and spectroscopic properties in oxyfluoride glass ceramics containing LaOF:Er3+ nanocrystals

S. L. Kang, X. Q. Song, X. J. Huang, J. R. Qiu, and G. P. Dong
Opt. Mater. Express 6(7) 2351-2359 (2016)

Thermal and luminescent properties of 2  μm emission in thulium-sensitized holmium-doped silicate-germanate glass

Rong Chen, Ying Tian, Bingpeng Li, Xufeng Jing, Junjie Zhang, Shiqing Xu, Hellmut Eckert, and Xianghua Zhang
Photon. Res. 4(6) 214-221 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33, 1282–1284 (2008).
    [Crossref]
  2. T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
    [Crossref]
  3. M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5, 710–727 (2017).
    [Crossref]
  4. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  5. W. J. Chung, K. H. Kim, B. J. Park, H. S. Seo, J. T. Ahn, and Y. G. Choi, “Radiative emission at mid-infrared wavelengths from rare-earth ions via nanocrystal formation in oxyfluoride glasses,” J. Am. Ceram. Soc. 93, 2952–2955 (2010).
    [Crossref]
  6. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7  μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36, 1173–1175 (2011).
    [Crossref]
  7. A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett. 36, 740–742 (2011).
    [Crossref]
  8. Y. Tian, T. Wei, X. Jing, J. Zhang, and X. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+, doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
    [Crossref]
  9. P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluorine Chem. 172, 22–50 (2015).
    [Crossref]
  10. G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
    [Crossref]
  11. G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26, 6330–6350 (2016).
    [Crossref]
  12. Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, and S. Xu, “Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments,” Phys. Chem. Chem. Phys. 19, 29833–29839 (2017).
    [Crossref]
  13. V. Lupei, “Laser materials: relationship between materials and laser properties,” in Reference Module in Materials Science and Materials Engineering (2016), pp. 4416–4423.
  14. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
    [Crossref]
  15. Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass,” J. Lumin. 190, 76–80 (2017).
    [Crossref]
  16. Q. Chen, H. Wang, Q. Wang, and Q. Chen, “Structural study of the origin of the largest 1.5  μm Er3+ luminescence band width in multicomponent silicate glass,” J. Non-Cryst. Solids 404, 145–150 (2014).
    [Crossref]
  17. J. Kimpton, T. H. Randle, and J. Drennan, “Investigation of electrical conductivity as a function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc),” Solid State Ionics 149, 89–98 (2002).
    [Crossref]
  18. H. A. Elbatal, Z. S. Mandouh, H. A. Zayed, S. Y. Marzouk, G. M. Elkomy, and A. Hosny, “Thermal, structure and morphological properties of lithium disilicate glasses doped with copper oxide and their glass-ceramic derivatives,” J. Non-Cryst. Solids 358, 1806–1813 (2012).
    [Crossref]
  19. D. Di Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids 293-295, 394–401 (2001).
    [Crossref]
  20. P. Pascuta, L. Pop, S. Rada, M. Bosca, and E. Culea, “The local structure of bismuth germanate glasses and glass ceramics doped with europium ions evidenced by FT-IR spectroscopy,” Vib. Spectrosc. 48, 281–284 (2008).
    [Crossref]
  21. L. R. Moorthy, T. S. Rao, K. Janardhnam, and A. Radhapathy, “Absorption and emission characteristics of Er3+ ions in alkali chloroborophosphate glasses,” Spectrochim. Acta A 56, 1759–1771 (2000).
    [Crossref]
  22. X. Qiao, X. Fan, M. Wang, and X. Zhang, “Spectroscopic properties of Er3+–Yb3+ co-doped glass ceramics containing BaF2 nanocrystals,” J. Non-Cryst. Solids 354, 3273–3277 (2008).
    [Crossref]
  23. F. Zeng, G. Ren, X. Qiu, Q. Yang, and J. Chen, “The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2–PbF2–PbO glass ceramics,” J. Non-Cryst. Solids 354, 3428–3432 (2008).
    [Crossref]
  24. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
    [Crossref]
  25. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [Crossref]
  26. Y. Tian, R. Xu, L. Hu, and J. Zhang, “Intense 2.7  μm and broadband 2.0  μm emission from diode-pumped Er3+/Tm3+/Ho3+-doped fluorophosphate glass,” Opt. Lett. 36, 3218–3220 (2011).
    [Crossref]
  27. T. Wei, C. Tian, M. Cai, Y. Tian, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quantum Spectrosc. Radiat. Transfer 161, 95–104 (2015).
    [Crossref]
  28. T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
    [Crossref]
  29. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [Crossref]
  30. A. D. Sontakke and K. Annapurna, “Energy transfer kinetics in oxy-fluoride glass and glass-ceramics doped with rare-earth ions,” J. Appl. Phys. 112, 013510 (2012).
    [Crossref]
  31. D. E. McCumber, “Theory of phonon terminated optical lasers,” Phys. Rev. 134, A299–A306 (1964).
    [Crossref]

2017 (4)

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
[Crossref]

M. Klimczak, B. Siwicki, A. Heidt, and R. Buczyński, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5, 710–727 (2017).
[Crossref]

Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, and S. Xu, “Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments,” Phys. Chem. Chem. Phys. 19, 29833–29839 (2017).
[Crossref]

Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass,” J. Lumin. 190, 76–80 (2017).
[Crossref]

2016 (3)

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
[Crossref]

G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26, 6330–6350 (2016).
[Crossref]

Y. Tian, T. Wei, X. Jing, J. Zhang, and X. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+, doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

2015 (3)

P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluorine Chem. 172, 22–50 (2015).
[Crossref]

T. Wei, C. Tian, M. Cai, Y. Tian, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quantum Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
[Crossref]

2014 (2)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Q. Chen, H. Wang, Q. Wang, and Q. Chen, “Structural study of the origin of the largest 1.5  μm Er3+ luminescence band width in multicomponent silicate glass,” J. Non-Cryst. Solids 404, 145–150 (2014).
[Crossref]

2012 (3)

H. A. Elbatal, Z. S. Mandouh, H. A. Zayed, S. Y. Marzouk, G. M. Elkomy, and A. Hosny, “Thermal, structure and morphological properties of lithium disilicate glasses doped with copper oxide and their glass-ceramic derivatives,” J. Non-Cryst. Solids 358, 1806–1813 (2012).
[Crossref]

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

A. D. Sontakke and K. Annapurna, “Energy transfer kinetics in oxy-fluoride glass and glass-ceramics doped with rare-earth ions,” J. Appl. Phys. 112, 013510 (2012).
[Crossref]

2011 (3)

2010 (1)

W. J. Chung, K. H. Kim, B. J. Park, H. S. Seo, J. T. Ahn, and Y. G. Choi, “Radiative emission at mid-infrared wavelengths from rare-earth ions via nanocrystal formation in oxyfluoride glasses,” J. Am. Ceram. Soc. 93, 2952–2955 (2010).
[Crossref]

2008 (4)

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33, 1282–1284 (2008).
[Crossref]

P. Pascuta, L. Pop, S. Rada, M. Bosca, and E. Culea, “The local structure of bismuth germanate glasses and glass ceramics doped with europium ions evidenced by FT-IR spectroscopy,” Vib. Spectrosc. 48, 281–284 (2008).
[Crossref]

X. Qiao, X. Fan, M. Wang, and X. Zhang, “Spectroscopic properties of Er3+–Yb3+ co-doped glass ceramics containing BaF2 nanocrystals,” J. Non-Cryst. Solids 354, 3273–3277 (2008).
[Crossref]

F. Zeng, G. Ren, X. Qiu, Q. Yang, and J. Chen, “The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2–PbF2–PbO glass ceramics,” J. Non-Cryst. Solids 354, 3428–3432 (2008).
[Crossref]

2002 (1)

J. Kimpton, T. H. Randle, and J. Drennan, “Investigation of electrical conductivity as a function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc),” Solid State Ionics 149, 89–98 (2002).
[Crossref]

2001 (1)

D. Di Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids 293-295, 394–401 (2001).
[Crossref]

2000 (1)

L. R. Moorthy, T. S. Rao, K. Janardhnam, and A. Radhapathy, “Absorption and emission characteristics of Er3+ ions in alkali chloroborophosphate glasses,” Spectrochim. Acta A 56, 1759–1771 (2000).
[Crossref]

1964 (1)

D. E. McCumber, “Theory of phonon terminated optical lasers,” Phys. Rev. 134, A299–A306 (1964).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Ahn, J. T.

W. J. Chung, K. H. Kim, B. J. Park, H. S. Seo, J. T. Ahn, and Y. G. Choi, “Radiative emission at mid-infrared wavelengths from rare-earth ions via nanocrystal formation in oxyfluoride glasses,” J. Am. Ceram. Soc. 93, 2952–2955 (2010).
[Crossref]

Almeida, R. M.

D. Di Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids 293-295, 394–401 (2001).
[Crossref]

Annapurna, K.

A. D. Sontakke and K. Annapurna, “Energy transfer kinetics in oxy-fluoride glass and glass-ceramics doped with rare-earth ions,” J. Appl. Phys. 112, 013510 (2012).
[Crossref]

Bai, G.

G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26, 6330–6350 (2016).
[Crossref]

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
[Crossref]

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Binks, D.

Bosca, M.

P. Pascuta, L. Pop, S. Rada, M. Bosca, and E. Culea, “The local structure of bismuth germanate glasses and glass ceramics doped with europium ions evidenced by FT-IR spectroscopy,” Vib. Spectrosc. 48, 281–284 (2008).
[Crossref]

Buczynski, R.

Cai, M.

T. Wei, C. Tian, M. Cai, Y. Tian, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quantum Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
[Crossref]

Chai, Y.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
[Crossref]

Chen, J.

F. Zeng, G. Ren, X. Qiu, Q. Yang, and J. Chen, “The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2–PbF2–PbO glass ceramics,” J. Non-Cryst. Solids 354, 3428–3432 (2008).
[Crossref]

Chen, Q.

Q. Chen, H. Wang, Q. Wang, and Q. Chen, “Structural study of the origin of the largest 1.5  μm Er3+ luminescence band width in multicomponent silicate glass,” J. Non-Cryst. Solids 404, 145–150 (2014).
[Crossref]

Q. Chen, H. Wang, Q. Wang, and Q. Chen, “Structural study of the origin of the largest 1.5  μm Er3+ luminescence band width in multicomponent silicate glass,” J. Non-Cryst. Solids 404, 145–150 (2014).
[Crossref]

Chen, R.

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
[Crossref]

Choi, S. Y.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
[Crossref]

Choi, Y. G.

W. J. Chung, K. H. Kim, B. J. Park, H. S. Seo, J. T. Ahn, and Y. G. Choi, “Radiative emission at mid-infrared wavelengths from rare-earth ions via nanocrystal formation in oxyfluoride glasses,” J. Am. Ceram. Soc. 93, 2952–2955 (2010).
[Crossref]

Chung, W. J.

W. J. Chung, K. H. Kim, B. J. Park, H. S. Seo, J. T. Ahn, and Y. G. Choi, “Radiative emission at mid-infrared wavelengths from rare-earth ions via nanocrystal formation in oxyfluoride glasses,” J. Am. Ceram. Soc. 93, 2952–2955 (2010).
[Crossref]

Culea, E.

P. Pascuta, L. Pop, S. Rada, M. Bosca, and E. Culea, “The local structure of bismuth germanate glasses and glass ceramics doped with europium ions evidenced by FT-IR spectroscopy,” Vib. Spectrosc. 48, 281–284 (2008).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[Crossref]

Di Martino, D.

D. Di Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids 293-295, 394–401 (2001).
[Crossref]

Dong, B.

Drennan, J.

J. Kimpton, T. H. Randle, and J. Drennan, “Investigation of electrical conductivity as a function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc),” Solid State Ionics 149, 89–98 (2002).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Elbatal, H. A.

H. A. Elbatal, Z. S. Mandouh, H. A. Zayed, S. Y. Marzouk, G. M. Elkomy, and A. Hosny, “Thermal, structure and morphological properties of lithium disilicate glasses doped with copper oxide and their glass-ceramic derivatives,” J. Non-Cryst. Solids 358, 1806–1813 (2012).
[Crossref]

Elkomy, G. M.

H. A. Elbatal, Z. S. Mandouh, H. A. Zayed, S. Y. Marzouk, G. M. Elkomy, and A. Hosny, “Thermal, structure and morphological properties of lithium disilicate glasses doped with copper oxide and their glass-ceramic derivatives,” J. Non-Cryst. Solids 358, 1806–1813 (2012).
[Crossref]

Fan, X.

X. Qiao, X. Fan, M. Wang, and X. Zhang, “Spectroscopic properties of Er3+–Yb3+ co-doped glass ceramics containing BaF2 nanocrystals,” J. Non-Cryst. Solids 354, 3273–3277 (2008).
[Crossref]

Fedorov, P. P.

P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluorine Chem. 172, 22–50 (2015).
[Crossref]

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Hao, J.

G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26, 6330–6350 (2016).
[Crossref]

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
[Crossref]

Heidt, A.

Hosny, A.

H. A. Elbatal, Z. S. Mandouh, H. A. Zayed, S. Y. Marzouk, G. M. Elkomy, and A. Hosny, “Thermal, structure and morphological properties of lithium disilicate glasses doped with copper oxide and their glass-ceramic derivatives,” J. Non-Cryst. Solids 358, 1806–1813 (2012).
[Crossref]

Hu, L.

Hu, T.

Huang, F.

Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, and S. Xu, “Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments,” Phys. Chem. Chem. Phys. 19, 29833–29839 (2017).
[Crossref]

Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass,” J. Lumin. 190, 76–80 (2017).
[Crossref]

Janardhnam, K.

L. R. Moorthy, T. S. Rao, K. Janardhnam, and A. Radhapathy, “Absorption and emission characteristics of Er3+ ions in alkali chloroborophosphate glasses,” Spectrochim. Acta A 56, 1759–1771 (2000).
[Crossref]

Jha, A.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33, 1282–1284 (2008).
[Crossref]

Jiang, X.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Jing, X.

Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass,” J. Lumin. 190, 76–80 (2017).
[Crossref]

Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, and S. Xu, “Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments,” Phys. Chem. Chem. Phys. 19, 29833–29839 (2017).
[Crossref]

Y. Tian, T. Wei, X. Jing, J. Zhang, and X. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+, doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
[Crossref]

T. Wei, C. Tian, M. Cai, Y. Tian, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quantum Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Jose, G.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Joshi, P.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

Kim, K. H.

W. J. Chung, K. H. Kim, B. J. Park, H. S. Seo, J. T. Ahn, and Y. G. Choi, “Radiative emission at mid-infrared wavelengths from rare-earth ions via nanocrystal formation in oxyfluoride glasses,” J. Am. Ceram. Soc. 93, 2952–2955 (2010).
[Crossref]

Kimpton, J.

J. Kimpton, T. H. Randle, and J. Drennan, “Investigation of electrical conductivity as a function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc),” Solid State Ionics 149, 89–98 (2002).
[Crossref]

Klimczak, M.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Lau, S. P.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
[Crossref]

Lee, C.

Li, B.

Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass,” J. Lumin. 190, 76–80 (2017).
[Crossref]

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
[Crossref]

Lin, A.

Liow, T.-Y.

Liu, Q.

Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, and S. Xu, “Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments,” Phys. Chem. Chem. Phys. 19, 29833–29839 (2017).
[Crossref]

Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass,” J. Lumin. 190, 76–80 (2017).
[Crossref]

Lo, G.-Q.

Lousteau, J.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33, 1282–1284 (2008).
[Crossref]

Luginina, A. A.

P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluorine Chem. 172, 22–50 (2015).
[Crossref]

Luo, X.

Lupei, V.

V. Lupei, “Laser materials: relationship between materials and laser properties,” in Reference Module in Materials Science and Materials Engineering (2016), pp. 4416–4423.

Mandouh, Z. S.

H. A. Elbatal, Z. S. Mandouh, H. A. Zayed, S. Y. Marzouk, G. M. Elkomy, and A. Hosny, “Thermal, structure and morphological properties of lithium disilicate glasses doped with copper oxide and their glass-ceramic derivatives,” J. Non-Cryst. Solids 358, 1806–1813 (2012).
[Crossref]

Marques, A. C.

D. Di Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids 293-295, 394–401 (2001).
[Crossref]

Marzouk, S. Y.

H. A. Elbatal, Z. S. Mandouh, H. A. Zayed, S. Y. Marzouk, G. M. Elkomy, and A. Hosny, “Thermal, structure and morphological properties of lithium disilicate glasses doped with copper oxide and their glass-ceramic derivatives,” J. Non-Cryst. Solids 358, 1806–1813 (2012).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Theory of phonon terminated optical lasers,” Phys. Rev. 134, A299–A306 (1964).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Moorthy, L. R.

L. R. Moorthy, T. S. Rao, K. Janardhnam, and A. Radhapathy, “Absorption and emission characteristics of Er3+ ions in alkali chloroborophosphate glasses,” Spectrochim. Acta A 56, 1759–1771 (2000).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

Park, B. J.

W. J. Chung, K. H. Kim, B. J. Park, H. S. Seo, J. T. Ahn, and Y. G. Choi, “Radiative emission at mid-infrared wavelengths from rare-earth ions via nanocrystal formation in oxyfluoride glasses,” J. Am. Ceram. Soc. 93, 2952–2955 (2010).
[Crossref]

Pascuta, P.

P. Pascuta, L. Pop, S. Rada, M. Bosca, and E. Culea, “The local structure of bismuth germanate glasses and glass ceramics doped with europium ions evidenced by FT-IR spectroscopy,” Vib. Spectrosc. 48, 281–284 (2008).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Pop, L.

P. Pascuta, L. Pop, S. Rada, M. Bosca, and E. Culea, “The local structure of bismuth germanate glasses and glass ceramics doped with europium ions evidenced by FT-IR spectroscopy,” Vib. Spectrosc. 48, 281–284 (2008).
[Crossref]

Popov, A. I.

P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluorine Chem. 172, 22–50 (2015).
[Crossref]

Qiao, X.

X. Qiao, X. Fan, M. Wang, and X. Zhang, “Spectroscopic properties of Er3+–Yb3+ co-doped glass ceramics containing BaF2 nanocrystals,” J. Non-Cryst. Solids 354, 3273–3277 (2008).
[Crossref]

Qiu, X.

F. Zeng, G. Ren, X. Qiu, Q. Yang, and J. Chen, “The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2–PbF2–PbO glass ceramics,” J. Non-Cryst. Solids 354, 3428–3432 (2008).
[Crossref]

Rada, S.

P. Pascuta, L. Pop, S. Rada, M. Bosca, and E. Culea, “The local structure of bismuth germanate glasses and glass ceramics doped with europium ions evidenced by FT-IR spectroscopy,” Vib. Spectrosc. 48, 281–284 (2008).
[Crossref]

Radhapathy, A.

L. R. Moorthy, T. S. Rao, K. Janardhnam, and A. Radhapathy, “Absorption and emission characteristics of Er3+ ions in alkali chloroborophosphate glasses,” Spectrochim. Acta A 56, 1759–1771 (2000).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Randle, T. H.

J. Kimpton, T. H. Randle, and J. Drennan, “Investigation of electrical conductivity as a function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc),” Solid State Ionics 149, 89–98 (2002).
[Crossref]

Rao, T. S.

L. R. Moorthy, T. S. Rao, K. Janardhnam, and A. Radhapathy, “Absorption and emission characteristics of Er3+ ions in alkali chloroborophosphate glasses,” Spectrochim. Acta A 56, 1759–1771 (2000).
[Crossref]

Ren, G.

F. Zeng, G. Ren, X. Qiu, Q. Yang, and J. Chen, “The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2–PbF2–PbO glass ceramics,” J. Non-Cryst. Solids 354, 3428–3432 (2008).
[Crossref]

Richards, B.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33, 1282–1284 (2008).
[Crossref]

Ryasnyanskiy, A.

Santos, L. F.

D. Di Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids 293-295, 394–401 (2001).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Seo, H. S.

W. J. Chung, K. H. Kim, B. J. Park, H. S. Seo, J. T. Ahn, and Y. G. Choi, “Radiative emission at mid-infrared wavelengths from rare-earth ions via nanocrystal formation in oxyfluoride glasses,” J. Am. Ceram. Soc. 93, 2952–2955 (2010).
[Crossref]

Siwicki, B.

Song, J.

Sontakke, A. D.

A. D. Sontakke and K. Annapurna, “Energy transfer kinetics in oxy-fluoride glass and glass-ceramics doped with rare-earth ions,” J. Appl. Phys. 112, 013510 (2012).
[Crossref]

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Teddy-Fernandez, T.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Tian, C.

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
[Crossref]

T. Wei, C. Tian, M. Cai, Y. Tian, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quantum Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Tian, Y.

Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, and S. Xu, “Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments,” Phys. Chem. Chem. Phys. 19, 29833–29839 (2017).
[Crossref]

Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass,” J. Lumin. 190, 76–80 (2017).
[Crossref]

Y. Tian, T. Wei, X. Jing, J. Zhang, and X. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+, doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
[Crossref]

T. Wei, C. Tian, M. Cai, Y. Tian, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quantum Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Intense 2.7  μm and broadband 2.0  μm emission from diode-pumped Er3+/Tm3+/Ho3+-doped fluorophosphate glass,” Opt. Lett. 36, 3218–3220 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7  μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36, 1173–1175 (2011).
[Crossref]

Toulouse, J.

Tsang, M.-K.

G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26, 6330–6350 (2016).
[Crossref]

Tsang, Y.

Wang, C.

Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, and S. Xu, “Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments,” Phys. Chem. Chem. Phys. 19, 29833–29839 (2017).
[Crossref]

Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass,” J. Lumin. 190, 76–80 (2017).
[Crossref]

Wang, H.

Q. Chen, H. Wang, Q. Wang, and Q. Chen, “Structural study of the origin of the largest 1.5  μm Er3+ luminescence band width in multicomponent silicate glass,” J. Non-Cryst. Solids 404, 145–150 (2014).
[Crossref]

Wang, M.

X. Qiao, X. Fan, M. Wang, and X. Zhang, “Spectroscopic properties of Er3+–Yb3+ co-doped glass ceramics containing BaF2 nanocrystals,” J. Non-Cryst. Solids 354, 3273–3277 (2008).
[Crossref]

Wang, Q.

Q. Chen, H. Wang, Q. Wang, and Q. Chen, “Structural study of the origin of the largest 1.5  μm Er3+ luminescence band width in multicomponent silicate glass,” J. Non-Cryst. Solids 404, 145–150 (2014).
[Crossref]

Wei, T.

Y. Tian, T. Wei, X. Jing, J. Zhang, and X. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+, doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
[Crossref]

T. Wei, C. Tian, M. Cai, Y. Tian, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quantum Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Xu, R.

Xu, S.

Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass,” J. Lumin. 190, 76–80 (2017).
[Crossref]

Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, and S. Xu, “Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments,” Phys. Chem. Chem. Phys. 19, 29833–29839 (2017).
[Crossref]

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
[Crossref]

T. Wei, C. Tian, M. Cai, Y. Tian, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quantum Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Xu, X.

Y. Tian, T. Wei, X. Jing, J. Zhang, and X. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+, doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

Yang, Q.

F. Zeng, G. Ren, X. Qiu, Q. Yang, and J. Chen, “The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2–PbF2–PbO glass ceramics,” J. Non-Cryst. Solids 354, 3428–3432 (2008).
[Crossref]

Yang, Z.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
[Crossref]

Yu, S. F.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
[Crossref]

Yuan, S.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
[Crossref]

Zayed, H. A.

H. A. Elbatal, Z. S. Mandouh, H. A. Zayed, S. Y. Marzouk, G. M. Elkomy, and A. Hosny, “Thermal, structure and morphological properties of lithium disilicate glasses doped with copper oxide and their glass-ceramic derivatives,” J. Non-Cryst. Solids 358, 1806–1813 (2012).
[Crossref]

Zeng, F.

F. Zeng, G. Ren, X. Qiu, Q. Yang, and J. Chen, “The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2–PbF2–PbO glass ceramics,” J. Non-Cryst. Solids 354, 3428–3432 (2008).
[Crossref]

Zhang, J.

Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass,” J. Lumin. 190, 76–80 (2017).
[Crossref]

Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, and S. Xu, “Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments,” Phys. Chem. Chem. Phys. 19, 29833–29839 (2017).
[Crossref]

Y. Tian, T. Wei, X. Jing, J. Zhang, and X. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+, doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
[Crossref]

T. Wei, C. Tian, M. Cai, Y. Tian, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quantum Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Intense 2.7  μm and broadband 2.0  μm emission from diode-pumped Er3+/Tm3+/Ho3+-doped fluorophosphate glass,” Opt. Lett. 36, 3218–3220 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7  μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36, 1173–1175 (2011).
[Crossref]

Zhang, X.

Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, and S. Xu, “Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments,” Phys. Chem. Chem. Phys. 19, 29833–29839 (2017).
[Crossref]

X. Qiao, X. Fan, M. Wang, and X. Zhang, “Spectroscopic properties of Er3+–Yb3+ co-doped glass ceramics containing BaF2 nanocrystals,” J. Non-Cryst. Solids 354, 3273–3277 (2008).
[Crossref]

Zhao, Y.

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Adv. Funct. Mater. (1)

G. Bai, M.-K. Tsang, and J. Hao, “Luminescent ions in advanced composite materials for multifunctional applications,” Adv. Funct. Mater. 26, 6330–6350 (2016).
[Crossref]

Adv. Mater. (1)

G. Bai, S. Yuan, Y. Zhao, Z. Yang, S. Y. Choi, Y. Chai, S. F. Yu, S. P. Lau, and J. Hao, “2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence,” Adv. Mater. 28, 7472–7477 (2016).
[Crossref]

J. Am. Ceram. Soc. (1)

W. J. Chung, K. H. Kim, B. J. Park, H. S. Seo, J. T. Ahn, and Y. G. Choi, “Radiative emission at mid-infrared wavelengths from rare-earth ions via nanocrystal formation in oxyfluoride glasses,” J. Am. Ceram. Soc. 93, 2952–2955 (2010).
[Crossref]

J. Appl. Phys. (1)

A. D. Sontakke and K. Annapurna, “Energy transfer kinetics in oxy-fluoride glass and glass-ceramics doped with rare-earth ions,” J. Appl. Phys. 112, 013510 (2012).
[Crossref]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[Crossref]

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[Crossref]

J. Fluorine Chem. (1)

P. P. Fedorov, A. A. Luginina, and A. I. Popov, “Transparent oxyfluoride glass ceramics,” J. Fluorine Chem. 172, 22–50 (2015).
[Crossref]

J. Lumin. (1)

Q. Liu, Y. Tian, B. Li, C. Wang, F. Huang, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer process in Tm3+ doped germanosilicate glass,” J. Lumin. 190, 76–80 (2017).
[Crossref]

J. Non-Cryst. Solids (5)

Q. Chen, H. Wang, Q. Wang, and Q. Chen, “Structural study of the origin of the largest 1.5  μm Er3+ luminescence band width in multicomponent silicate glass,” J. Non-Cryst. Solids 404, 145–150 (2014).
[Crossref]

H. A. Elbatal, Z. S. Mandouh, H. A. Zayed, S. Y. Marzouk, G. M. Elkomy, and A. Hosny, “Thermal, structure and morphological properties of lithium disilicate glasses doped with copper oxide and their glass-ceramic derivatives,” J. Non-Cryst. Solids 358, 1806–1813 (2012).
[Crossref]

D. Di Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids 293-295, 394–401 (2001).
[Crossref]

X. Qiao, X. Fan, M. Wang, and X. Zhang, “Spectroscopic properties of Er3+–Yb3+ co-doped glass ceramics containing BaF2 nanocrystals,” J. Non-Cryst. Solids 354, 3273–3277 (2008).
[Crossref]

F. Zeng, G. Ren, X. Qiu, Q. Yang, and J. Chen, “The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2–PbF2–PbO glass ceramics,” J. Non-Cryst. Solids 354, 3428–3432 (2008).
[Crossref]

J. Phys. Chem. A (1)

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative analysis of energy transfer and origin of quenching in Er3+/Ho3+ codoped germanosilicate glasses,” J. Phys. Chem. A 119, 6823–6830 (2015).
[Crossref]

J. Quantum Spectrosc. Radiat. Transfer (1)

T. Wei, C. Tian, M. Cai, Y. Tian, X. Jing, J. Zhang, and S. Xu, “Broadband 2  μm fluorescence and energy transfer evaluation in Ho3+/Er3+ codoped germanosilicate glass,” J. Quantum Spectrosc. Radiat. Transfer 161, 95–104 (2015).
[Crossref]

Mater. Res. Bull. (1)

Y. Tian, T. Wei, X. Jing, J. Zhang, and X. Xu, “Enhanced 2.7- and 2.9-μm emissions in Er3+/Ho3+, doped fluoride glasses sensitized by Pr3+ ions,” Mater. Res. Bull. 76, 67–71 (2016).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Opt. Lett. (4)

Photon. Res. (2)

Phys. Chem. Chem. Phys. (1)

Q. Liu, Y. Tian, C. Wang, F. Huang, X. Jing, J. Zhang, X. Zhang, and S. Xu, “Different dominant transitions in holmium and ytterbium codoped oxyfluoride glass and glass ceramics originating from varying phonon energy environments,” Phys. Chem. Chem. Phys. 19, 29833–29839 (2017).
[Crossref]

Phys. Rev. (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962).
[Crossref]

D. E. McCumber, “Theory of phonon terminated optical lasers,” Phys. Rev. 134, A299–A306 (1964).
[Crossref]

Prog. Mater. Sci. (1)

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57, 1426–1491 (2012).
[Crossref]

Solid State Ionics (1)

J. Kimpton, T. H. Randle, and J. Drennan, “Investigation of electrical conductivity as a function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92 (M = Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc),” Solid State Ionics 149, 89–98 (2002).
[Crossref]

Spectrochim. Acta A (1)

L. R. Moorthy, T. S. Rao, K. Janardhnam, and A. Radhapathy, “Absorption and emission characteristics of Er3+ ions in alkali chloroborophosphate glasses,” Spectrochim. Acta A 56, 1759–1771 (2000).
[Crossref]

Vib. Spectrosc. (1)

P. Pascuta, L. Pop, S. Rada, M. Bosca, and E. Culea, “The local structure of bismuth germanate glasses and glass ceramics doped with europium ions evidenced by FT-IR spectroscopy,” Vib. Spectrosc. 48, 281–284 (2008).
[Crossref]

Other (1)

V. Lupei, “Laser materials: relationship between materials and laser properties,” in Reference Module in Materials Science and Materials Engineering (2016), pp. 4416–4423.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. DSC curve of oxyfluoride germanosilicate glass.
Fig. 2.
Fig. 2. (a) XRD patterns of glass and glass ceramics. (b) TEM picture of SGGC2 sample and (c) size distribution histogram of the NaYF4 NCs in the SGGC2 sample.
Fig. 3.
Fig. 3. FTIR absorption spectra of oxyfluoride germanosilicate glass (SGG) and glass ceramics (SGGCs).
Fig. 4.
Fig. 4. Absorption spectra of glass and glass ceramic samples in the range of (a) 400–1700 nm and (b) 1400–1700 nm.
Fig. 5.
Fig. 5. (a) Visible upconversion emission spectra, (b) 2 μm emission spectra, (c) 2.7 μm emission spectra, and (d) 2.7 μm emission cross section and decay curve of I11/24 level (inset) in the SGGC2 sample.
Fig. 6.
Fig. 6. Energy level diagrams and energy transfer mechanism from Er3+ to Ho3+.
Fig. 7.
Fig. 7. Absorption and emission cross sections of Er3+ and Ho3+ in (a) SGG glass and (b) SGGC2 sample.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σem(λ)=λ5Arad8πcn2I(λ)λI(λ)d(λ),
CDA=6cglowD(2π)4n2gupDm=0e(2n¯+1)S0S0mm!(n¯+1)mσemsD(λm+)σabsA(λ)d(λ),

Metrics