Abstract

Transparent conductive oxides have emerged as a new type of plasmonic material and demonstrated unique electro-optic (E-O) modulation capabilities for next-generation photonic devices. In this paper, we report an ultra-compact, broadband electro-absorption (EA) modulator using an epsilon-near-zero (ENZ) indium-tin oxide (ITO). The device is fabricated on a standard silicon-on-insulator platform through the integration with a 3 μm long, 300 nm wide gold plasmonic slot waveguide. The active E-O modulation region consists of a metal–HfO2–ITO capacitor that can electrically switch the ITO into ENZ with ultra-high modulation strengths of 2.62 and 1.5 dB/μm in simulation and experiment, respectively. The EA modulator also demonstrated a uniform E-O modulation with 70 nm optical bandwidth from 1530 to 1600 nm wavelength.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Comparative analysis of transparent conductive oxide electro-absorption modulators [Invited]

Qian Gao, Erwen Li, and Alan X. Wang
Opt. Mater. Express 8(9) 2850-2862 (2018)

Compact epsilon-near-zero silicon photonic phase modulators

Isak C. Reines, Michael G. Wood, Ting S. Luk, Darwin K. Serkland, and Salvatore Campione
Opt. Express 26(17) 21594-21605 (2018)

Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material

Alok P. Vasudev, Ju-Hyung Kang, Junghyun Park, Xiaoge Liu, and Mark L. Brongersma
Opt. Express 21(22) 26387-26397 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  3. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using pin diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14, 6851–6857 (2006).
    [Crossref]
  4. X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
    [Crossref]
  5. G. Shambat, B. Ellis, M. A. Mayer, A. Majumdar, E. E. Haller, and J. Vučković, “Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator,” Opt. Express 19, 7530–7536 (2011).
    [Crossref]
  6. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
    [Crossref]
  7. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).
    [Crossref]
  8. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).
    [Crossref]
  9. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
    [Crossref]
  10. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
    [Crossref]
  11. A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an ‘epsilon-near-zero’ material,” Opt. Express 21, 26387–26397 (2013).
    [Crossref]
  12. Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
    [Crossref]
  13. C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
    [Crossref]
  14. G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th3I.1.
  15. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
    [Crossref]
  16. H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
    [Crossref]
  17. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal-oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
    [Crossref]
  18. C. T. Chen, X. Xu, A. Hosseini, Z. Pan, H. Subbaraman, X. Zhang, and R. T. Chen, “Design of highly efficient hybrid Si-Au taper for dielectric strip waveguide to plasmonic slot waveguide mode converter,” J. Lightwave Technol. 33, 535–540 (2015).
    [Crossref]
  19. Ş. E. Kocabaş, G. Veronis, D. A. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
    [Crossref]
  20. Q. Gao, F. Ren, and A. X. Wang, “Plasmonic integrated circuits with high efficiency nano-antenna couplers,” in IEEE Optical Interconnects Conference (IEEE, 2016), pp. 122–123.
  21. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, and W. Freude, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
    [Crossref]
  22. U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photon. J. 8, 1–13 (2016).
    [Crossref]

2017 (1)

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

2016 (1)

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photon. J. 8, 1–13 (2016).
[Crossref]

2015 (1)

2014 (1)

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

2013 (4)

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an ‘epsilon-near-zero’ material,” Opt. Express 21, 26387–26397 (2013).
[Crossref]

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).
[Crossref]

2012 (3)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal-oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

2011 (3)

2009 (2)

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).

Ş. E. Kocabaş, G. Veronis, D. A. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]

2008 (1)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).
[Crossref]

2006 (1)

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Atwater, H. A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Beals, M.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).
[Crossref]

Bernardis, S.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).
[Crossref]

Boltasseva, A.

Brongersma, M. L.

Burgos, S. P.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Campione, S.

G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th3I.1.

Chander, K.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Chen, C. T.

Chen, R. T.

C. T. Chen, X. Xu, A. Hosseini, Z. Pan, H. Subbaraman, X. Zhang, and R. T. Chen, “Design of highly efficient hybrid Si-Au taper for dielectric strip waveguide to plasmonic slot waveguide mode converter,” J. Lightwave Technol. 33, 535–540 (2015).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal-oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Cheng, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).
[Crossref]

Chu, T.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Covey, J.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal-oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Ellis, B.

Engheta, N.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

Englund, D.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Fan, S.

Ş. E. Kocabaş, G. Veronis, D. A. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]

Freude, W.

Gan, X.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Gao, Q.

Q. Gao, F. Ren, and A. X. Wang, “Plasmonic integrated circuits with high efficiency nano-antenna couplers,” in IEEE Optical Interconnects Conference (IEEE, 2016), pp. 122–123.

Gao, Y.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Geib, K. M.

G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th3I.1.

Griñe, A. J.

G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th3I.1.

Hafner, C.

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photon. J. 8, 1–13 (2016).
[Crossref]

Haller, E. E.

Heinz, T. F.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Hoessbacher, C.

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photon. J. 8, 1–13 (2016).
[Crossref]

Hone, J.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Hosseini, A.

C. T. Chen, X. Xu, A. Hosseini, Z. Pan, H. Subbaraman, X. Zhang, and R. T. Chen, “Design of highly efficient hybrid Si-Au taper for dielectric strip waveguide to plasmonic slot waveguide mode converter,” J. Lightwave Technol. 33, 535–540 (2015).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal-oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Huang, C.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Ihlefeld, J.

G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th3I.1.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Kang, J. H.

Keeler, G. A.

G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th3I.1.

Kim, J.

Kimerling, L. C.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).
[Crossref]

Kocabas, S. E.

Ş. E. Kocabaş, G. Veronis, D. A. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]

Koch, U.

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photon. J. 8, 1–13 (2016).
[Crossref]

Kriesch, A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Kwong, D.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal-oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Lamond, R. J.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Lee, H. W.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Leufke, P. M.

Leuthold, J.

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photon. J. 8, 1–13 (2016).
[Crossref]

Li, L.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Li, X.

Li, Z.

Li, Z. R.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

Lindenmann, N.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Liu, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).
[Crossref]

Liu, X.

Lu, Z.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
[Crossref]

Luk, T. S.

G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th3I.1.

Ma, R. M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Majumdar, A.

Mak, K. F.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Mayer, M. A.

Melikyan, A.

Michel, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).
[Crossref]

Miller, D. A.

Ş. E. Kocabaş, G. Veronis, D. A. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).

Naik, G. V.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Niegemann, J.

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photon. J. 8, 1–13 (2016).
[Crossref]

Pala, R.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Pan, Z.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Papadakis, G.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Parameswaran, S.

G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th3I.1.

Park, J.

Peschel, U.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

Pickus, S. K.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Pomerene, A.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).
[Crossref]

Poon, A. W.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Ren, F.

Q. Gao, F. Ren, and A. X. Wang, “Plasmonic integrated circuits with high efficiency nano-antenna couplers,” in IEEE Optical Interconnects Conference (IEEE, 2016), pp. 122–123.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Serkland, D. K.

G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th3I.1.

Shambat, G.

Shi, K.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
[Crossref]

Shiue, R. J.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Sorger, V. J.

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Subbaraman, H.

C. T. Chen, X. Xu, A. Hosseini, Z. Pan, H. Subbaraman, X. Zhang, and R. T. Chen, “Design of highly efficient hybrid Si-Au taper for dielectric strip waveguide to plasmonic slot waveguide mode converter,” J. Lightwave Technol. 33, 535–540 (2015).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal-oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Sun, R.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).
[Crossref]

Szep, A.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Ulrich, S.

Vasudev, A. P.

Veronis, G.

Ş. E. Kocabaş, G. Veronis, D. A. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]

Vuckovic, J.

Walheim, S.

Walker, D.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Wang, A. X.

Q. Gao, F. Ren, and A. X. Wang, “Plasmonic integrated circuits with high efficiency nano-antenna couplers,” in IEEE Optical Interconnects Conference (IEEE, 2016), pp. 122–123.

Wendt, J. R.

G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th3I.1.

Xiao, X.

Xu, H.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Xu, X.

C. T. Chen, X. Xu, A. Hosseini, Z. Pan, H. Subbaraman, X. Zhang, and R. T. Chen, “Design of highly efficient hybrid Si-Au taper for dielectric strip waveguide to plasmonic slot waveguide mode converter,” J. Lightwave Technol. 33, 535–540 (2015).
[Crossref]

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal-oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

Yao, X.

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Ye, J.

Yu, J.

Yu, Y.

Zhang, X.

Zhao, W.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
[Crossref]

Zhou, L.

Appl. Phys. Lett. (1)

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Complementary metal-oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics,” Appl. Phys. Lett. 101, 031109 (2012).
[Crossref]

IEEE Photon. J. (3)

U. Koch, C. Hoessbacher, J. Niegemann, C. Hafner, and J. Leuthold, “Digital plasmonic absorption modulator exploiting epsilon-near-zero in transparent conducting oxides,” IEEE Photon. J. 8, 1–13 (2016).
[Crossref]

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4, 735–740 (2012).
[Crossref]

C. Huang, R. J. Lamond, S. K. Pickus, Z. R. Li, and V. J. Sorger, “A sub-λ-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

J. Lightwave Technol. (1)

Nano Lett. (2)

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref]

X. Gan, R. J. Shiue, Y. Gao, K. F. Mak, X. Yao, L. Li, A. Szep, and D. Walker, J. Hone, T. F. Heinz, and D. Englund, “High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene,” Nano Lett. 13, 691–696 (2013).
[Crossref]

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Nat. Photonics (2)

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149–158 (2017).
[Crossref]

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2, 433–437 (2008).
[Crossref]

Nature (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide–semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (1)

Phys. Rev. B (1)

Ş. E. Kocabaş, G. Veronis, D. A. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79, 035120 (2009).
[Crossref]

Proc. IEEE (1)

D. A. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).

Other (2)

Q. Gao, F. Ren, and A. X. Wang, “Plasmonic integrated circuits with high efficiency nano-antenna couplers,” in IEEE Optical Interconnects Conference (IEEE, 2016), pp. 122–123.

G. A. Keeler, K. M. Geib, D. K. Serkland, S. Parameswaran, T. S. Luk, A. J. Griñe, J. Ihlefeld, S. Campione, and J. R. Wendt, “Multi-gigabit operation of a compact, broadband modulator based on ENZ confinement in indium oxide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2017), paper Th3I.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) 3D Schematic of the plasmonic EA modulator. (b) Enlarged view of the cross-sectional area of the active E-O modulation region and (c) enlarged view of the Au slot waveguide with tapers to silicon waveguides.
Fig. 2.
Fig. 2. Simulated optical mode profiles for (a) the plasmonic slot waveguide with Np=Nb=1×1020  cm3 and (b) the plasmonic slot waveguide with ITO at ENZ when Np=7.5×1020  cm3. The inset shows the enlarged region with the ENZ ITO layer. Top view of optical field distributions at (c) the ON state (accumulation layer Nb=Np=1×1020  cm3) and (d) the OFF state (accumulation layer Np=7.5×1020  cm3). The optical field profile is plotted in log scale. (e) The propagation loss of the plasmonic slot waveguide at different peak carrier concentrations. (f) Transmission at the ON state and OFF state and the extinction ratio as a function of the optical wavelength.
Fig. 3.
Fig. 3. (a) Optical image of the plasmonic slot waveguide integrated with Si waveguides. (b) SEM image of the plasmonic slot waveguide. (c) Enlarged SEM image of the tapered region. (d) SEM image of the cross-sectional view of the slot waveguide.
Fig. 4.
Fig. 4. (a) Change of the measured (blue) and simulated (red) transmission with the applied gate voltage. (b) Left: measured static transmission spectra with no applied bias and 3.5 V bias. Right: measured ER with 3.5 V applied bias.
Fig. 5.
Fig. 5. Dynamic optical modulation testing results with 2 to 2 V sweep input bias voltage at 40 MHz.

Metrics