Abstract

We propose a simple integrated narrowband filter consisting of two grooves on the surface of a slab waveguide. Spectral filtering is performed in transmission at oblique incidence due to excitation of an eigenmode of the structure localized at a ridge cavity between the grooves. For the considered parameters, zero reflectance and unity transmittance are achieved at resonant conditions. The width and location of the transmittance peak can be controlled by changing the widths of the grooves and of the ridge, respectively. The proposed filter may find application in waveguide-integrated spectrometers.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Planar two-groove optical differentiator in a slab waveguide

Leonid L. Doskolovich, Evgeni A. Bezus, Nikita V. Golovastikov, Dmitry A. Bykov, and Victor A. Soifer
Opt. Express 25(19) 22328-22340 (2017)

Spatial integration and differentiation of optical beams in a slab waveguide by a dielectric ridge supporting high-Q resonances

Evgeni A. Bezus, Leonid L. Doskolovich, Dmitry A. Bykov, and Victor A. Soifer
Opt. Express 26(19) 25156-25165 (2018)

Phase-shifted Bragg gratings for Bloch surface waves

Leonid L. Doskolovich, Evgeni A. Bezus, and Dmitry A. Bykov
Opt. Express 23(21) 27034-27045 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  2. T. Mossberg, “Planar holographic optical processing devices,” Opt. Lett. 26, 414–416 (2001).
    [Crossref]
  3. G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
    [Crossref]
  4. S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
    [Crossref]
  5. C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
    [Crossref]
  6. C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
    [Crossref]
  7. X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photon. J. 5, 7101307 (2013).
  8. R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651–652 (1974).
    [Crossref]
  9. C. S. Hong, J. B. Shellan, A. C. Livanos, A. Yariv, and A. Katzir, “Broadband grating filters for thin film optical waveguides,” Appl. Phys. Lett. 31, 276–278 (1977).
    [Crossref]
  10. L. A. Weller-Brophy and D. G. Hall, “Analysis of waveguide gratings: application of Rouard’s method,” J. Opt. Soc. Am. A 2, 863–871 (1985).
    [Crossref]
  11. R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filter with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
    [Crossref]
  12. J. N. Damask and H. A. Haus, “Wavelength-division multiplexing using channel-dropping filters,” J. Lightwave Technol. 11, 424–428 (1993).
    [Crossref]
  13. R. Sainidou, J. Renger, T. V. Teperik, M. U. González, R. Quidant, and F. J. G. de Abajo, “Extraordinary all-dielectric light enhancement over large volumes,” Nano Lett. 10, 4450–4455 (2010).
    [Crossref]
  14. R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
    [Crossref]
  15. D. A. Bykov, L. L. Doskolovich, N. V. Golovastikov, and V. A. Soifer, “Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating,” J. Opt. 15, 105703 (2013).
    [Crossref]
  16. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
    [Crossref]
  17. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon. 1, 58–106 (2009).
    [Crossref]
  18. G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003).
  19. E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
    [Crossref]
  20. D. A. Bykov and L. L. Doskolovich, “On the use of the Fourier modal method for calculation of localized eigenmodes of integrated optical resonators,” Comput. Opt. 39, 663–673 (2015).
    [Crossref]
  21. A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter,” Opt. Express 20, 489–507 (2012).
    [Crossref]
  22. N. P. Ayerden, G. de Graaf, and R. F. Wolffenbuttel, “Compact gas cell integrated with a linear variable optical filter,” Opt. Express 24, 2981–3002 (2016).
    [Crossref]
  23. A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J. H. Correia, and R. Wolffenbuttel, “Linear variable optical filter-based ultraviolet microspectrometer,” Appl. Opt. 51, 4308–4315 (2012).
    [Crossref]
  24. K. Hendrix, “Linear variable filters for NASA’s OVIRS instrument: pushing the envelope of blocking,” Appl. Opt. 56, C201–C205 (2017).
    [Crossref]
  25. N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings,” Comput. Opt. 41, 13–21 (2017).
    [Crossref]
  26. W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84, 4905–4907 (2004).
    [Crossref]

2017 (2)

K. Hendrix, “Linear variable filters for NASA’s OVIRS instrument: pushing the envelope of blocking,” Appl. Opt. 56, C201–C205 (2017).
[Crossref]

N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings,” Comput. Opt. 41, 13–21 (2017).
[Crossref]

2016 (1)

2015 (1)

D. A. Bykov and L. L. Doskolovich, “On the use of the Fourier modal method for calculation of localized eigenmodes of integrated optical resonators,” Comput. Opt. 39, 663–673 (2015).
[Crossref]

2014 (1)

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

2013 (2)

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photon. J. 5, 7101307 (2013).

D. A. Bykov, L. L. Doskolovich, N. V. Golovastikov, and V. A. Soifer, “Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating,” J. Opt. 15, 105703 (2013).
[Crossref]

2012 (3)

2011 (1)

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

2010 (1)

R. Sainidou, J. Renger, T. V. Teperik, M. U. González, R. Quidant, and F. J. G. de Abajo, “Extraordinary all-dielectric light enhancement over large volumes,” Nano Lett. 10, 4450–4455 (2010).
[Crossref]

2009 (2)

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon. 1, 58–106 (2009).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

2004 (1)

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84, 4905–4907 (2004).
[Crossref]

2001 (2)

1995 (1)

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filter with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
[Crossref]

1993 (1)

J. N. Damask and H. A. Haus, “Wavelength-division multiplexing using channel-dropping filters,” J. Lightwave Technol. 11, 424–428 (1993).
[Crossref]

1986 (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[Crossref]

1985 (2)

L. A. Weller-Brophy and D. G. Hall, “Analysis of waveguide gratings: application of Rouard’s method,” J. Opt. Soc. Am. A 2, 863–871 (1985).
[Crossref]

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
[Crossref]

1977 (1)

C. S. Hong, J. B. Shellan, A. C. Livanos, A. Yariv, and A. Katzir, “Broadband grating filters for thin film optical waveguides,” Appl. Phys. Lett. 31, 276–278 (1977).
[Crossref]

1974 (1)

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651–652 (1974).
[Crossref]

Ayerden, N. P.

Babin, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

Bugrov, A.

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

Bykov, D. A.

N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings,” Comput. Opt. 41, 13–21 (2017).
[Crossref]

D. A. Bykov and L. L. Doskolovich, “On the use of the Fourier modal method for calculation of localized eigenmodes of integrated optical resonators,” Comput. Opt. 39, 663–673 (2015).
[Crossref]

D. A. Bykov, L. L. Doskolovich, N. V. Golovastikov, and V. A. Soifer, “Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating,” J. Opt. 15, 105703 (2013).
[Crossref]

Cabrini, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

Calafiore, G.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

Calo, C.

Cao, Q.

Correia, J. H.

Damask, J. N.

J. N. Damask and H. A. Haus, “Wavelength-division multiplexing using channel-dropping filters,” J. Lightwave Technol. 11, 424–428 (1993).
[Crossref]

de Abajo, F. J. G.

R. Sainidou, J. Renger, T. V. Teperik, M. U. González, R. Quidant, and F. J. G. de Abajo, “Extraordinary all-dielectric light enhancement over large volumes,” Nano Lett. 10, 4450–4455 (2010).
[Crossref]

de Graaf, G.

Dhuey, S.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

Doskolovich, L. L.

N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings,” Comput. Opt. 41, 13–21 (2017).
[Crossref]

D. A. Bykov and L. L. Doskolovich, “On the use of the Fourier modal method for calculation of localized eigenmodes of integrated optical resonators,” Comput. Opt. 39, 663–673 (2015).
[Crossref]

D. A. Bykov, L. L. Doskolovich, N. V. Golovastikov, and V. A. Soifer, “Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating,” J. Opt. 15, 105703 (2013).
[Crossref]

Dragila, R.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
[Crossref]

Emadi, A.

Enoksson, P.

Fan, S.

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84, 4905–4907 (2004).
[Crossref]

Flanders, D. C.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651–652 (1974).
[Crossref]

Golovastikov, N. V.

N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings,” Comput. Opt. 41, 13–21 (2017).
[Crossref]

D. A. Bykov, L. L. Doskolovich, N. V. Golovastikov, and V. A. Soifer, “Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating,” J. Opt. 15, 105703 (2013).
[Crossref]

Goltsov, A.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

González, M. U.

R. Sainidou, J. Renger, T. V. Teperik, M. U. González, R. Quidant, and F. J. G. de Abajo, “Extraordinary all-dielectric light enhancement over large volumes,” Nano Lett. 10, 4450–4455 (2010).
[Crossref]

Hall, D. G.

Harteneck, B.

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

Haus, H. A.

J. N. Damask and H. A. Haus, “Wavelength-division multiplexing using channel-dropping filters,” J. Lightwave Technol. 11, 424–428 (1993).
[Crossref]

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

He, J. J.

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photon. J. 5, 7101307 (2013).

Hendrix, K.

Hong, C. S.

C. S. Hong, J. B. Shellan, A. C. Livanos, A. Yariv, and A. Katzir, “Broadband grating filters for thin film optical waveguides,” Appl. Phys. Lett. 31, 276–278 (1977).
[Crossref]

Hu, J.

Hugonin, J.-P.

Ivonin, I.

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

Katzir, A.

C. S. Hong, J. B. Shellan, A. C. Livanos, A. Yariv, and A. Katzir, “Broadband grating filters for thin film optical waveguides,” Appl. Phys. Lett. 31, 276–278 (1977).
[Crossref]

Kley, E.-B.

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

Kopyatev, S.

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

Koshelev, A.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

Lalanne, P.

Leminger, O.

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filter with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
[Crossref]

Li, M.

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photon. J. 5, 7101307 (2013).

Lifante, G.

G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003).

Livanos, A. C.

C. S. Hong, J. B. Shellan, A. C. Livanos, A. Yariv, and A. Katzir, “Broadband grating filters for thin film optical waveguides,” Appl. Phys. Lett. 31, 276–278 (1977).
[Crossref]

Luther-Davies, B.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
[Crossref]

Ma, X.

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photon. J. 5, 7101307 (2013).

Mashev, L.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[Crossref]

Maystre, D.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[Crossref]

Menyuk, C. R.

Mossberg, T.

Peroz, C.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

Popov, E.

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[Crossref]

Quidant, R.

R. Sainidou, J. Renger, T. V. Teperik, M. U. González, R. Quidant, and F. J. G. de Abajo, “Extraordinary all-dielectric light enhancement over large volumes,” Nano Lett. 10, 4450–4455 (2010).
[Crossref]

Renger, J.

R. Sainidou, J. Renger, T. V. Teperik, M. U. González, R. Quidant, and F. J. G. de Abajo, “Extraordinary all-dielectric light enhancement over large volumes,” Nano Lett. 10, 4450–4455 (2010).
[Crossref]

Sainidou, R.

R. Sainidou, J. Renger, T. V. Teperik, M. U. González, R. Quidant, and F. J. G. de Abajo, “Extraordinary all-dielectric light enhancement over large volumes,” Nano Lett. 10, 4450–4455 (2010).
[Crossref]

Sasorov, P.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

Schmidt, H.

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

Schmidt, R. V.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651–652 (1974).
[Crossref]

Shank, C. V.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651–652 (1974).
[Crossref]

Shellan, J. B.

C. S. Hong, J. B. Shellan, A. C. Livanos, A. Yariv, and A. Katzir, “Broadband grating filters for thin film optical waveguides,” Appl. Phys. Lett. 31, 276–278 (1977).
[Crossref]

Silberstein, E.

Soifer, V. A.

D. A. Bykov, L. L. Doskolovich, N. V. Golovastikov, and V. A. Soifer, “Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating,” J. Opt. 15, 105703 (2013).
[Crossref]

Standley, R. D.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651–652 (1974).
[Crossref]

Suh, W.

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84, 4905–4907 (2004).
[Crossref]

Teperik, T. V.

R. Sainidou, J. Renger, T. V. Teperik, M. U. González, R. Quidant, and F. J. G. de Abajo, “Extraordinary all-dielectric light enhancement over large volumes,” Nano Lett. 10, 4450–4455 (2010).
[Crossref]

Vukovic, S.

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
[Crossref]

Weller-Brophy, L. A.

Wolffenbuttel, R.

Wolffenbuttel, R. F.

Wu, H.

Yankov, V.

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, and V. Yankov, “Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications,” Opt. Lett. 37, 695–697 (2012).
[Crossref]

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

Yariv, A.

C. S. Hong, J. B. Shellan, A. C. Livanos, A. Yariv, and A. Katzir, “Broadband grating filters for thin film optical waveguides,” Appl. Phys. Lett. 31, 276–278 (1977).
[Crossref]

Zengerle, R.

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filter with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (4)

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84, 4905–4907 (2004).
[Crossref]

S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, and V. Yankov, “Digital optical spectrometer-on-chip,” Appl. Phys. Lett. 95, 041105 (2009).
[Crossref]

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651–652 (1974).
[Crossref]

C. S. Hong, J. B. Shellan, A. C. Livanos, A. Yariv, and A. Katzir, “Broadband grating filters for thin film optical waveguides,” Appl. Phys. Lett. 31, 276–278 (1977).
[Crossref]

Comput. Opt. (2)

N. V. Golovastikov, D. A. Bykov, and L. L. Doskolovich, “Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings,” Comput. Opt. 41, 13–21 (2017).
[Crossref]

D. A. Bykov and L. L. Doskolovich, “On the use of the Fourier modal method for calculation of localized eigenmodes of integrated optical resonators,” Comput. Opt. 39, 663–673 (2015).
[Crossref]

IEEE Photon. J. (2)

C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, and V. Yankov, “High-resolution spectrometer-on-chip based on digital planar holography,” IEEE Photon. J. 3, 888–896 (2011).
[Crossref]

X. Ma, M. Li, and J. J. He, “CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array,” IEEE Photon. J. 5, 7101307 (2013).

J. Lightwave Technol. (2)

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filter with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
[Crossref]

J. N. Damask and H. A. Haus, “Wavelength-division multiplexing using channel-dropping filters,” J. Lightwave Technol. 11, 424–428 (1993).
[Crossref]

J. Opt. (1)

D. A. Bykov, L. L. Doskolovich, N. V. Golovastikov, and V. A. Soifer, “Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating,” J. Opt. 15, 105703 (2013).
[Crossref]

J. Opt. Soc. Am. A (2)

Light Sci. Appl. (1)

G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, and C. Peroz, “Holographic planar lightwave circuit for on-chip spectroscopy,” Light Sci. Appl. 3, e203 (2014).
[Crossref]

Nano Lett. (1)

R. Sainidou, J. Renger, T. V. Teperik, M. U. González, R. Quidant, and F. J. G. de Abajo, “Extraordinary all-dielectric light enhancement over large volumes,” Nano Lett. 10, 4450–4455 (2010).
[Crossref]

Opt. Acta (1)

E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985).
[Crossref]

Other (2)

G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Geometry of (a) a conventional three-layer resonant structure and (c) the proposed two-groove planar filter, and (b) the refractive (effective refractive) index profile of the structure. The values in (b) and dimensions in (c) correspond to one of the examples described in the text. I, R, and T denote incident, reflected, and transmitted waves, respectively.
Fig. 2.
Fig. 2. (a) Angular and (b) wavelength TGPF transmission spectra at hcl=400  nm (dashed blue curves) and hcl=600  nm (solid red curves). The insets show the FWHM of the resonant peaks versus hcl.
Fig. 3.
Fig. 3. Distributions of the |Hy|2 component of the electromagnetic field in the TGPF normalized by the maximum |Hy|2 value of the incident guided mode at hcl=400  nm and θ=θ1 for the free-space wavelengths (a) 600, (b) 620, and (c) 630 nm.
Fig. 4.
Fig. 4. Calculated transmittance spectra at varying ridge widths hwg ranging from 87.5 nm (leftmost peak) to 112.5 nm (rightmost peak) in steps of 2.5 nm. Colors of the curves correspond to the resonant wavelengths at each ridge width value.
Fig. 5.
Fig. 5. Transmittance spectra of the TGPF with hwg=100  nm, hcl=600  nm (dashed blue curve), and of the planar structure consisting of two TGPFs separated by an additional groove with a width of 198 nm (shown in the inset) (solid red curve).

Metrics