Abstract

We suggest a low cross-talk plasmonic cross-connector based on a metal/insulator/metal cavity and waveguides. We separately investigate the isolated cavity mode, the waveguide mode, and the combination of cavity and waveguide modes using a finite-different time-domain method. Due to resonant tunneling and the cutoff frequency of the odd waveguide mode, our proposed structure achieves a high throughput transmission ratio and eliminates cross-talk. Furthermore, the proposed structure has a broadband tunability of 587 nm, which can be achieved by modulating the cavity air gap thickness. This structure enables the miniaturization of photonic integrated circuits and sensing applications.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Broadband waveguide intersections with low cross talk in photonic crystal circuits

Sheng Lan and Hiroshi Ishikawa
Opt. Lett. 27(17) 1567-1569 (2002)

Elimination of cross-talk in waveguide intersections of triangular lattice photonic crystals

Soon-Hong Kwon, Martin Kamp, Alfred Forchel, Min-Kyo Seo, and Yong-Hee Lee
Opt. Express 16(15) 11399-11404 (2008)

Elimination of cross talk in waveguide intersections

Steven G. Johnson, Christina Manolatou, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, and H. A. Haus
Opt. Lett. 23(23) 1855-1857 (1998)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  2. G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 4440009 (2012).
  3. N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(Polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26, 3282–3289 (2014).
    [Crossref]
  4. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
    [Crossref]
  5. D. E. Lee, T.-W. Lee, and S.-H. Kwon, “Spatial mapping of refractive index based on a plasmonic tapered channel waveguide,” Opt. Express 23, 5907–5914 (2015).
    [Crossref]
  6. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
    [Crossref]
  7. L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
    [Crossref]
  8. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B 28, 1596–1602 (2011).
    [Crossref]
  9. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [Crossref]
  10. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [Crossref]
  11. Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. Mao, “High-extinction-ratio and low insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics 8, 1035–1041 (2013).
    [Crossref]
  12. T.-W. Lee, D. E. Lee, and S.-H. Kwon, “Dual-function metal-insulator-metal plasmonic optical filter,” IEEE Photon. J. 7, 4800108 (2015).
    [Crossref]
  13. S. Xiao and N. A. Mortensen, “Resonant-tunneling-assisted crossing for subwavelength plasmonic slot waveguides,” Opt. Express 16, 14997–15005 (2008).
    [Crossref]
  14. S.-H. Kwon, “Plasmonic ruler with angstrom distance resolution based on double metal blocks,” IEEE Photon. Technol. Lett. 25, 1619–1622 (2013).
    [Crossref]
  15. J.-H. Kang, H.-G. Park, and S.-H. Kwon, “Room-temperature high-Q channel-waveguide surface plasmon nanocavity,” Opt. Express 19, 11892–13898 (2011).
  16. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23, 1855–1857 (1998).
    [Crossref]
  17. S.-H. Kwon, M. Kamp, A. Forchel, M.-K. Seo, and Y.-H. Lee, “Elimination of cross-talk in waveguide intersections of triangular lattice photonic crystals,” Opt. Express 16, 11399–11404 (2008).
    [Crossref]
  18. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 32, 2801–2803 (2007).
    [Crossref]
  19. A. Mahigir, P. Dastmalchi, W. Shin, S. Fan, and G. Veronis, “Plasmonic coaxial waveguide-cavity devices,” Opt. Express 23, 20549–20562 (2015).
    [Crossref]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  21. Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16, 8421–8426 (2008).
    [Crossref]

2015 (3)

2014 (1)

N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(Polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26, 3282–3289 (2014).
[Crossref]

2013 (2)

S.-H. Kwon, “Plasmonic ruler with angstrom distance resolution based on double metal blocks,” IEEE Photon. Technol. Lett. 25, 1619–1622 (2013).
[Crossref]

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. Mao, “High-extinction-ratio and low insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics 8, 1035–1041 (2013).
[Crossref]

2012 (2)

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 4440009 (2012).

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

2011 (3)

J.-H. Kang, H.-G. Park, and S.-H. Kwon, “Room-temperature high-Q channel-waveguide surface plasmon nanocavity,” Opt. Express 19, 11892–13898 (2011).

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref]

V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B 28, 1596–1602 (2011).
[Crossref]

2010 (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

2008 (4)

2007 (1)

2006 (1)

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

1998 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Baek, J.-H.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

Baets, R.

Bogaerts, W.

Bozhevolnyi, S. I.

Cao, J.

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. Mao, “High-extinction-ratio and low insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics 8, 1035–1041 (2013).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Dastmalchi, P.

Devaux, E.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Dumon, P.

Ebbesen, T. W.

Fan, S.

Forchel, A.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref]

Gong, Y.

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 4440009 (2012).

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Han, Z.

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref]

Jang, L.-W.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

Jeon, D.-W.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

Jeon, J.-W.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

Jiang, N.

N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(Polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26, 3282–3289 (2014).
[Crossref]

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Johnson, S. G.

Ju, J.-W.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

Kamp, M.

Kang, J.-H.

J.-H. Kang, H.-G. Park, and S.-H. Kwon, “Room-temperature high-Q channel-waveguide surface plasmon nanocavity,” Opt. Express 19, 11892–13898 (2011).

Kim, M.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

Kwon, S.-H.

T.-W. Lee, D. E. Lee, and S.-H. Kwon, “Dual-function metal-insulator-metal plasmonic optical filter,” IEEE Photon. J. 7, 4800108 (2015).
[Crossref]

D. E. Lee, T.-W. Lee, and S.-H. Kwon, “Spatial mapping of refractive index based on a plasmonic tapered channel waveguide,” Opt. Express 23, 5907–5914 (2015).
[Crossref]

S.-H. Kwon, “Plasmonic ruler with angstrom distance resolution based on double metal blocks,” IEEE Photon. Technol. Lett. 25, 1619–1622 (2013).
[Crossref]

J.-H. Kang, H.-G. Park, and S.-H. Kwon, “Room-temperature high-Q channel-waveguide surface plasmon nanocavity,” Opt. Express 19, 11892–13898 (2011).

S.-H. Kwon, M. Kamp, A. Forchel, M.-K. Seo, and Y.-H. Lee, “Elimination of cross-talk in waveguide intersections of triangular lattice photonic crystals,” Opt. Express 16, 11399–11404 (2008).
[Crossref]

Lee, D. E.

T.-W. Lee, D. E. Lee, and S.-H. Kwon, “Dual-function metal-insulator-metal plasmonic optical filter,” IEEE Photon. J. 7, 4800108 (2015).
[Crossref]

D. E. Lee, T.-W. Lee, and S.-H. Kwon, “Spatial mapping of refractive index based on a plasmonic tapered channel waveguide,” Opt. Express 23, 5907–5914 (2015).
[Crossref]

Lee, I.-H.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

Lee, S.-J.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

Lee, T.-W.

T.-W. Lee, D. E. Lee, and S.-H. Kwon, “Dual-function metal-insulator-metal plasmonic optical filter,” IEEE Photon. J. 7, 4800108 (2015).
[Crossref]

D. E. Lee, T.-W. Lee, and S.-H. Kwon, “Spatial mapping of refractive index based on a plasmonic tapered channel waveguide,” Opt. Express 23, 5907–5914 (2015).
[Crossref]

Lee, Y.-H.

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref]

Liu, X.

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 4440009 (2012).

Liu, Y.

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. Mao, “High-extinction-ratio and low insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics 8, 1035–1041 (2013).
[Crossref]

Lu, H.

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 4440009 (2012).

Mahigir, A.

Manolatou, C.

Mao, Q.

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. Mao, “High-extinction-ratio and low insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics 8, 1035–1041 (2013).
[Crossref]

Mortensen, N. A.

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Park, H.-G.

J.-H. Kang, H.-G. Park, and S.-H. Kwon, “Room-temperature high-Q channel-waveguide surface plasmon nanocavity,” Opt. Express 19, 11892–13898 (2011).

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Polyakov, A. Y.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Seo, M.-K.

Shao, L.

N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(Polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26, 3282–3289 (2014).
[Crossref]

Shen, Y.

Shin, W.

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref]

Thourhout, D. V.

Veronis, G.

Villeneuve, P. R.

Volkov, V. S.

Wang, G.

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 4440009 (2012).

Wang, G. P.

Wang, J.

N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(Polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26, 3282–3289 (2014).
[Crossref]

Xiao, S.

Yang, J.-K.

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

Yao, B.

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. Mao, “High-extinction-ratio and low insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics 8, 1035–1041 (2013).
[Crossref]

Zenin, V. A.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

Zhou, F.

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. Mao, “High-extinction-ratio and low insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics 8, 1035–1041 (2013).
[Crossref]

Adv. Funct. Mater. (1)

L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, and I.-H. Lee, “Investigation of optical and structural stability of localized surface plasmon meditated light-emitting diodes by Ag and Ag/SiO2 nanoparticles,” Adv. Funct. Mater. 22, 2728–2734 (2012).
[Crossref]

Adv. Mater. (1)

N. Jiang, L. Shao, and J. Wang, “(Gold nanorod core)/(Polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths,” Adv. Mater. 26, 3282–3289 (2014).
[Crossref]

IEEE Photon. J. (1)

T.-W. Lee, D. E. Lee, and S.-H. Kwon, “Dual-function metal-insulator-metal plasmonic optical filter,” IEEE Photon. J. 7, 4800108 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S.-H. Kwon, “Plasmonic ruler with angstrom distance resolution based on double metal blocks,” IEEE Photon. Technol. Lett. 25, 1619–1622 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanotechnology (1)

G. Wang, H. Lu, X. Liu, and Y. Gong, “Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating,” Nanotechnology 23, 4440009 (2012).

Nat. Mater. (2)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[Crossref]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[Crossref]

Plasmonics (1)

Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. Mao, “High-extinction-ratio and low insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics 8, 1035–1041 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic diagram of two conventional plasmonic MIM crossed waveguides. (b) Side-view and top-view of the mode profile (Ez) in the xy plane at the center of an air gap with a gap thickness of 10 nm.
Fig. 2.
Fig. 2. (a) Schematic diagram of a double silver block cavity. Each block has dimensions of 250  nm×250  nm×100  nm. The mode profiles of the vertical electric field component (Ez) of the plasmonic cavity mode: (b) top-view of the xy plane at the center of the air gap, (c) side-view of the yz plane, and (d) xz plane at the center of the blocks. (e) Resonances of the cavity mode for different gap thicknesses from 6 nm (black) to 14 nm (green). (f) Resonant wavelength of the cavity mode as a function of the gap thickness.
Fig. 3.
Fig. 3. (a) MIM waveguide consisting of two silver strips with an air gap thickness of t. The gray plane represents the xy plane at the center of the air gap. The mode profiles of the (b) even and (c) odd waveguide modes at the gray plane. Dispersion relations of (d) even and (e) odd modes of waveguides where w=200  nm (black) and w=330  nm (red). Horizontal black dashed line represents a target wavelength of 1550 nm (2πf=1215  THz).
Fig. 4.
Fig. 4. (a) Schematic of the proposed tunable low cross-talk cross-connector consisting of a square cavity and four-port waveguides. The Ez mode profiles of the cavity mode in the cross-connector for different geometrical factors: (b) one side (Wc) of the square cavity is 300 nm and the waveguide width (Wwg) is 330 nm and (c) Wc and Wwg are 250 and 200 nm, respectively. The air gap (t) of the cavity and the air gap of the waveguide are 10 nm. The cavity is separated from the waveguides by 15 nm. Dotted lines 500 nm away from the air spaces between cavity and waveguides indicate the position where power flows are calculated.
Fig. 5.
Fig. 5. (a) SPP waveguide modes pass through the cross-connector without cross-talk. The side of the cavity and the waveguide width are 250 and 200 nm, respectively, similar to Fig. 4(c). (b) Resonant wavelengths of the isolated cavity (black) and the cavity with four-port waveguides (red) as a function of the air gap thickness (t). (c) Transmission spectra and cross-talk spectra in the cross-connector for different air gap thicknesses from 4 nm (violet) to 14 nm (green). The cross-talk curves are plotted inside the black circle. (d) Resonant wavelength shifts (black) and transmission ratios (blue) in the cross-connector as a function of the air gap thickness. The wavelength shift (Δλ) is defined as the change in the resonance from the resonant wavelength of the cavity with an air gap thickness of 10 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϵ(ω)=ϵωp2ω2+iγω.

Metrics