Abstract

An ultrasensitive biosensor based on hybrid structure and composed of long-range surface plasmon polariton (LRSPP) and dielectric planar waveguide (PWG) modes is proposed. Both PWG and LRSPP modes have strong resonances to form strong coupling between the two modes, and the two modes can couple to enhance sensitivity of sensors. In the hybrid structure, PWG is composed of cytop–Si–cytop multilayers and the LRSPP configuration is composed of cytop–metal–sensing medium multilayer slabs. The highest imaging sensitivities of 2264 and 3619RIU1 were realized in the proposed sensors based on Au and Al-monolayer graphene, respectively, which are nearly 1.2 and 1.9 times larger than the 1910RIU1 sensitivity of the conventional LRSPR sensor (LRSPP sensor). Moreover, it is demonstrated that the PWG-coupled LRSPP biosensor is applicable to the sensing medium, with refractive index in the vicinity of 1.34.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Fano resonance in double waveguides with graphene for ultrasensitive biosensor

Banxian Ruan, Qi You, Jiaqi Zhu, Leiming Wu, Jun Guo, Xiaoyu Dai, and Yuanjiang Xiang
Opt. Express 26(13) 16884-16892 (2018)

Sensitivity enhancement of a graphene–barium titanate-based surface plasmon resonance biosensor with an Ag–Au bimetallic structure in the visible region

Lili Liu, Mei Wang, Lipeng Jiao, Ting Wu, Feng Xia, Meijie Liu, Weijin Kong, Lifeng Dong, and Maojin Yun
J. Opt. Soc. Am. B 36(4) 1108-1116 (2019)

Sensing self-referenced fiber optic long-range surface plasmon resonance sensor based on electronic coupling between surface plasmon polaritons

Jian-Ying Jing, Qi Zhu, Zhe-Xin Dai, Si-Yuan Li, Qi Wang, and Wan-Ming Zhao
Appl. Opt. 58(23) 6329-6334 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75, 61–69 (2002).
    [Crossref]
  2. A. Rasooly, “Surface plasmon resonance analysis of staphylococcal enterotoxin B in food,” J. Food Protect. 64, 37–43 (2001).
  3. E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bionanal. Chem. 387, 1449–1458 (2007).
    [Crossref]
  4. C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80, 407–410 (2009).
    [Crossref]
  5. J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sens. Actuators B 111, 416–422 (2005).
    [Crossref]
  6. J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393, 1157–1163 (2009).
    [Crossref]
  7. D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).
    [Crossref]
  8. C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37, 51–107 (2013).
    [Crossref]
  9. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [Crossref]
  10. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
    [Crossref]
  11. K. Matsubara, S. Kawata, and S. Minami, “Multilayer system for a high-precision surface plasmon resonance sensor,” Opt. Lett. 15, 75–77 (1990).
    [Crossref]
  12. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
    [Crossref]
  13. S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8, 022201 (2015).
    [Crossref]
  14. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
    [Crossref]
  15. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
    [Crossref]
  16. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
    [Crossref]
  17. V. G. Ta’Eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14, 11242–11247 (2006).
    [Crossref]
  18. P. K. Maharana and R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sens. Actuators B 169, 161–166 (2012).
    [Crossref]
  19. P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B 190, 494–501 (2014).
    [Crossref]
  20. P. K. Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304 (2013).
    [Crossref]
  21. A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904–3907 (2005).
    [Crossref]
  22. Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632 (2009).
    [Crossref]
  23. R. Jha and A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A 11, 045502 (2009).
    [Crossref]
  24. P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
    [Crossref]
  25. R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011).
    [Crossref]
  26. S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, and Y. Ken-Tye, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
    [Crossref]
  27. A. K. Sharma and B. D. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors,” J. Appl. Phys. 101, 093111 (2007).
    [Crossref]
  28. L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
    [Crossref]
  29. B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40–46 (2005).
    [Crossref]
  30. V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express 16, 19674–19685 (2008).
    [Crossref]
  31. O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21, 698–709 (2013).
    [Crossref]
  32. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105, 1103–1170 (2005).
    [Crossref]
  33. N. G. Sahoo, Y. Pan, L. Li, and S. H. Chan, “Graphene-based materials for energy conversion,” Adv. Mater. 24, 4203–4210 (2012).
    [Crossref]
  34. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
    [Crossref]
  35. Y. Xiang, X. Dai, J. Guo, and S. Wen, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
    [Crossref]
  36. X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Sci. Rep. 5, 12271 (2015).
    [Crossref]
  37. L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 4801409 (2016).
  38. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
    [Crossref]
  39. H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin, “Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites,” Biomacromolecules 11, 2345–2351 (2010).
    [Crossref]
  40. S. H. Choi, Y. L. Kim, and K. M. Byun, “Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors,” Opt. Express 19, 458–466 (2011).
    [Crossref]
  41. F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
    [Crossref]
  42. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
    [Crossref]

2016 (2)

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).
[Crossref]

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 4801409 (2016).

2015 (3)

X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Sci. Rep. 5, 12271 (2015).
[Crossref]

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8, 022201 (2015).
[Crossref]

S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, and Y. Ken-Tye, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

2014 (4)

P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
[Crossref]

P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B 190, 494–501 (2014).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Y. Xiang, X. Dai, J. Guo, and S. Wen, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

2013 (3)

O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21, 698–709 (2013).
[Crossref]

P. K. Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304 (2013).
[Crossref]

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37, 51–107 (2013).
[Crossref]

2012 (2)

P. K. Maharana and R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sens. Actuators B 169, 161–166 (2012).
[Crossref]

N. G. Sahoo, Y. Pan, L. Li, and S. H. Chan, “Graphene-based materials for energy conversion,” Adv. Mater. 24, 4203–4210 (2012).
[Crossref]

2011 (3)

S. H. Choi, Y. L. Kim, and K. M. Byun, “Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors,” Opt. Express 19, 458–466 (2011).
[Crossref]

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011).
[Crossref]

2010 (3)

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
[Crossref]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[Crossref]

H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin, “Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites,” Biomacromolecules 11, 2345–2351 (2010).
[Crossref]

2009 (5)

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632 (2009).
[Crossref]

R. Jha and A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A 11, 045502 (2009).
[Crossref]

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393, 1157–1163 (2009).
[Crossref]

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80, 407–410 (2009).
[Crossref]

2008 (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express 16, 19674–19685 (2008).
[Crossref]

2007 (3)

A. K. Sharma and B. D. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors,” J. Appl. Phys. 101, 093111 (2007).
[Crossref]

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[Crossref]

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bionanal. Chem. 387, 1449–1458 (2007).
[Crossref]

2006 (1)

2005 (4)

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sens. Actuators B 111, 416–422 (2005).
[Crossref]

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904–3907 (2005).
[Crossref]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40–46 (2005).
[Crossref]

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105, 1103–1170 (2005).
[Crossref]

2002 (1)

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75, 61–69 (2002).
[Crossref]

2001 (1)

A. Rasooly, “Surface plasmon resonance analysis of staphylococcal enterotoxin B in food,” J. Food Protect. 64, 37–43 (2001).

1999 (1)

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

1997 (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
[Crossref]

1991 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[Crossref]

1990 (1)

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[Crossref]

Armenise, M. N.

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).
[Crossref]

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37, 51–107 (2013).
[Crossref]

Asiri, H.

Berini, P.

Bernhardt, R.

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sens. Actuators B 111, 416–422 (2005).
[Crossref]

Bharadwaj, S.

P. K. Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304 (2013).
[Crossref]

Bi, L.

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80, 407–410 (2009).
[Crossref]

Borini, S.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[Crossref]

Bruna, M.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Brunsen, A.

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632 (2009).
[Crossref]

Byun, K. M.

Cai, W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[Crossref]

Calle, A.

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bionanal. Chem. 387, 1449–1458 (2007).
[Crossref]

Campanella, C. E.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37, 51–107 (2013).
[Crossref]

Campanella, C. M.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37, 51–107 (2013).
[Crossref]

Chan, S. H.

N. G. Sahoo, Y. Pan, L. Li, and S. H. Chan, “Graphene-based materials for energy conversion,” Adv. Mater. 24, 4203–4210 (2012).
[Crossref]

Chang, D. E.

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Chen, S.

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75, 61–69 (2002).
[Crossref]

Chen, Y.

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80, 407–410 (2009).
[Crossref]

Choi, D. Y.

Choi, S. H.

Chu, H. S.

Chung, J. W.

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sens. Actuators B 111, 416–422 (2005).
[Crossref]

Ciminelli, C.

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).
[Crossref]

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37, 51–107 (2013).
[Crossref]

Conteduca, D.

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).
[Crossref]

Corn, R. M.

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904–3907 (2005).
[Crossref]

Dai, X.

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 4801409 (2016).

X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Sci. Rep. 5, 12271 (2015).
[Crossref]

Y. Xiang, X. Dai, J. Guo, and S. Wen, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Dell’Olio, F.

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).
[Crossref]

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37, 51–107 (2013).
[Crossref]

Dostalek, J.

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632 (2009).
[Crossref]

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75, 61–69 (2002).
[Crossref]

Dostálek, J.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[Crossref]

Eggleton, B. J.

Estroff, L. A.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105, 1103–1170 (2005).
[Crossref]

Fan, D.

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 4801409 (2016).

Fan, H.

H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin, “Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites,” Biomacromolecules 11, 2345–2351 (2010).
[Crossref]

Forcales, M.

Gan, N.

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80, 407–410 (2009).
[Crossref]

Garcia de Abajo, F. J.

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Ge, Z.

H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin, “Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites,” Biomacromolecules 11, 2345–2351 (2010).
[Crossref]

Giannini, V.

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

Gómez Rivas, J.

Guo, J.

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 4801409 (2016).

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Y. Xiang, X. Dai, J. Guo, and S. Wen, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

Gupta, B. D.

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011).
[Crossref]

A. K. Sharma and B. D. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors,” J. Appl. Phys. 101, 093111 (2007).
[Crossref]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40–46 (2005).
[Crossref]

Hayashi, S.

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8, 022201 (2015).
[Crossref]

Homola, J.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393, 1157–1163 (2009).
[Crossref]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75, 61–69 (2002).
[Crossref]

Hu, C.

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80, 407–410 (2009).
[Crossref]

Hu, S.

S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, and Y. Ken-Tye, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Innone, F.

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).
[Crossref]

Jahnke, F.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

Jha, R.

P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
[Crossref]

P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B 190, 494–501 (2014).
[Crossref]

P. K. Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304 (2013).
[Crossref]

P. K. Maharana and R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sens. Actuators B 169, 161–166 (2012).
[Crossref]

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011).
[Crossref]

R. Jha and A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A 11, 045502 (2009).
[Crossref]

Jiang, L.

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 4801409 (2016).

X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Sci. Rep. 5, 12271 (2015).
[Crossref]

Jiang, S.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393, 1157–1163 (2009).
[Crossref]

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75, 61–69 (2002).
[Crossref]

Jin, Z.

H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin, “Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites,” Biomacromolecules 11, 2345–2351 (2010).
[Crossref]

Jonas, U.

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632 (2009).
[Crossref]

Kasry, A.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[Crossref]

Kawata, S.

Ken-Tye, Y.

S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, and Y. Ken-Tye, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Khitrova, G.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

Kim, S. D.

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sens. Actuators B 111, 416–422 (2005).
[Crossref]

Kim, Y. L.

Kira, M.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

Knoll, W.

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632 (2009).
[Crossref]

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[Crossref]

Koch, S. W.

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

Koh, W. S.

Koppens, F. H.

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Kriebel, J. K.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105, 1103–1170 (2005).
[Crossref]

Krupin, O.

Ladd, J.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393, 1157–1163 (2009).
[Crossref]

Lamont, M. R. E.

Lechuga, L. M.

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bionanal. Chem. 387, 1449–1458 (2007).
[Crossref]

Lee, H. J.

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904–3907 (2005).
[Crossref]

Li, E. P.

Li, L.

N. G. Sahoo, Y. Pan, L. Li, and S. H. Chan, “Graphene-based materials for energy conversion,” Adv. Mater. 24, 4203–4210 (2012).
[Crossref]

Li, N.

H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin, “Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites,” Biomacromolecules 11, 2345–2351 (2010).
[Crossref]

Li, X.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[Crossref]

Ling, Z.

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 4801409 (2016).

Love, J. C.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105, 1103–1170 (2005).
[Crossref]

Luther-Davies, B.

Macleod, H. A.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
[Crossref]

Madden, S.

Maharana, P. K.

P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
[Crossref]

P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B 190, 494–501 (2014).
[Crossref]

P. K. Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304 (2013).
[Crossref]

P. K. Maharana and R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sens. Actuators B 169, 161–166 (2012).
[Crossref]

Manclús, J. J.

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bionanal. Chem. 387, 1449–1458 (2007).
[Crossref]

Matsubara, K.

Mauriz, E.

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bionanal. Chem. 387, 1449–1458 (2007).
[Crossref]

Minami, S.

Montoya, A.

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bionanal. Chem. 387, 1449–1458 (2007).
[Crossref]

Moss, D. J.

Murali, S.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[Crossref]

Nesterenko, D. V.

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8, 022201 (2015).
[Crossref]

Nuzzo, R. G.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105, 1103–1170 (2005).
[Crossref]

Palei, S.

P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B 190, 494–501 (2014).
[Crossref]

Pan, Y.

N. G. Sahoo, Y. Pan, L. Li, and S. H. Chan, “Graphene-based materials for energy conversion,” Adv. Mater. 24, 4203–4210 (2012).
[Crossref]

Philippe, C.

S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, and Y. Ken-Tye, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Piliarik, M.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393, 1157–1163 (2009).
[Crossref]

Potts, J. R.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[Crossref]

Pyun, J. C.

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sens. Actuators B 111, 416–422 (2005).
[Crossref]

Rasooly, A.

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75, 61–69 (2002).
[Crossref]

A. Rasooly, “Surface plasmon resonance analysis of staphylococcal enterotoxin B in food,” J. Food Protect. 64, 37–43 (2001).

Ruoff, R. S.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[Crossref]

Sahoo, N. G.

N. G. Sahoo, Y. Pan, L. Li, and S. H. Chan, “Graphene-based materials for energy conversion,” Adv. Mater. 24, 4203–4210 (2012).
[Crossref]

Salamon, Z.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
[Crossref]

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[Crossref]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[Crossref]

Sekkat, Z.

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8, 022201 (2015).
[Crossref]

Sharma, A. K.

R. Jha and A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A 11, 045502 (2009).
[Crossref]

A. K. Sharma and B. D. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors,” J. Appl. Phys. 101, 093111 (2007).
[Crossref]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40–46 (2005).
[Crossref]

Shi, Z.

H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin, “Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites,” Biomacromolecules 11, 2345–2351 (2010).
[Crossref]

Song, L.

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80, 407–410 (2009).
[Crossref]

Srivastava, T.

P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
[Crossref]

Suk, J. W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[Crossref]

Ta’Eed, V. G.

Tait, R. N.

Tang, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Taylor, A. D.

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393, 1157–1163 (2009).
[Crossref]

Tollin, G.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
[Crossref]

Tommy, A.

S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, and Y. Ken-Tye, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Verma, R.

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011).
[Crossref]

Wang, C.

Wang, L.

H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin, “Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites,” Biomacromolecules 11, 2345–2351 (2010).
[Crossref]

Wang, Y.

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632 (2009).
[Crossref]

Wark, A. W.

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904–3907 (2005).
[Crossref]

Wen, S.

Y. Xiang, X. Dai, J. Guo, and S. Wen, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Whitesides, G. M.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105, 1103–1170 (2005).
[Crossref]

Wu, L.

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 4801409 (2016).

L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 14395–14400 (2010).
[Crossref]

Xia, J.

S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, and Y. Ken-Tye, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Xiang, M. M.

S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, and Y. Ken-Tye, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Xiang, Y.

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 4801409 (2016).

X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Sci. Rep. 5, 12271 (2015).
[Crossref]

Y. Xiang, X. Dai, J. Guo, and S. Wen, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Xuan, Q. D.

S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, and Y. Ken-Tye, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[Crossref]

Yee, S. S.

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75, 61–69 (2002).
[Crossref]

Zeng, S.

S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, and Y. Ken-Tye, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

Zhang, H.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

Zhang, X.

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80, 407–410 (2009).
[Crossref]

Zhang, Y.

Zhao, K.

H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin, “Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites,” Biomacromolecules 11, 2345–2351 (2010).
[Crossref]

Zhu, Y.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[Crossref]

Adv. Mater. (2)

N. G. Sahoo, Y. Pan, L. Li, and S. H. Chan, “Graphene-based materials for energy conversion,” Adv. Mater. 24, 4203–4210 (2012).
[Crossref]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22, 3906–3924 (2010).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, “Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging,” Anal. Bioanal. Chem. 393, 1157–1163 (2009).
[Crossref]

Anal. Bionanal. Chem. (1)

E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga, “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Anal. Bionanal. Chem. 387, 1449–1458 (2007).
[Crossref]

Anal. Chem. (2)

A. W. Wark, H. J. Lee, and R. M. Corn, “Long-range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904–3907 (2005).
[Crossref]

Y. Wang, A. Brunsen, U. Jonas, J. Dostalek, and W. Knoll, “Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix,” Anal. Chem. 81, 9625–9632 (2009).
[Crossref]

Appl. Phys. Express (1)

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8, 022201 (2015).
[Crossref]

Appl. Phys. Lett. (2)

Y. Xiang, X. Dai, J. Guo, and S. Wen, “Tunable optical bistability at the graphene-covered nonlinear interface,” Appl. Phys. Lett. 104, 051108 (2014).
[Crossref]

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Biomacromolecules (1)

H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, and Z. Jin, “Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites,” Biomacromolecules 11, 2345–2351 (2010).
[Crossref]

Biophys. J. (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
[Crossref]

Chem. Rev. (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[Crossref]

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105, 1103–1170 (2005).
[Crossref]

IEEE Photon. J. (1)

L. Wu, Z. Ling, L. Jiang, J. Guo, X. Dai, Y. Xiang, and D. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photon. J. 8, 4801409 (2016).

Int. J. Food Microbiol. (1)

J. Homola, J. Dostalek, S. Chen, A. Rasooly, S. Jiang, and S. S. Yee, “Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk,” Int. J. Food Microbiol. 75, 61–69 (2002).
[Crossref]

J. Appl. Phys. (2)

P. K. Maharana, S. Bharadwaj, and R. Jha, “Electric field enhancement in surface plasmon resonance bimetallic configuration based on chalcogenide prism,” J. Appl. Phys. 114, 014304 (2013).
[Crossref]

A. K. Sharma and B. D. Gupta, “On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors,” J. Appl. Phys. 101, 093111 (2007).
[Crossref]

J. Food Protect. (1)

A. Rasooly, “Surface plasmon resonance analysis of staphylococcal enterotoxin B in food,” J. Food Protect. 64, 37–43 (2001).

J. Opt. A (1)

R. Jha and A. K. Sharma, “Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region,” J. Opt. A 11, 045502 (2009).
[Crossref]

Nano Lett. (1)

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

D. Conteduca, F. Dell’Olio, F. Innone, C. Ciminelli, and M. N. Armenise, “Rigorous design of an ultra-high Q/V photonic/plasmonic cavity to be used in biosensing applications,” Opt. Laser Technol. 77, 151–161 (2016).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[Crossref]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[Crossref]

Plasmonics (2)

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[Crossref]

P. K. Maharana, T. Srivastava, and R. Jha, “On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared,” Plasmonics 9, 1113–1120 (2014).
[Crossref]

Prog. Quantum Electron. (1)

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37, 51–107 (2013).
[Crossref]

Rev. Mod. Phys. (1)

G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
[Crossref]

Sci. Rep. (2)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci. Rep. 4, 5483 (2014).
[Crossref]

X. Dai, L. Jiang, and Y. Xiang, “Low threshold optical bistability at terahertz frequencies with graphene surface plasmons,” Sci. Rep. 5, 12271 (2015).
[Crossref]

Sens. Actuators B (6)

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B 160, 623–631 (2011).
[Crossref]

S. Zeng, S. Hu, J. Xia, A. Tommy, Q. D. Xuan, M. M. Xiang, C. Philippe, and Y. Ken-Tye, “Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors,” Sens. Actuators B 207, 801–810 (2015).
[Crossref]

B. D. Gupta and A. K. Sharma, “Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study,” Sens. Actuators B 107, 40–46 (2005).
[Crossref]

P. K. Maharana and R. Jha, “Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance,” Sens. Actuators B 169, 161–166 (2012).
[Crossref]

P. K. Maharana, R. Jha, and S. Palei, “Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared,” Sens. Actuators B 190, 494–501 (2014).
[Crossref]

J. W. Chung, S. D. Kim, R. Bernhardt, and J. C. Pyun, “Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV),” Sens. Actuators B 111, 416–422 (2005).
[Crossref]

Talanta (1)

C. Hu, N. Gan, Y. Chen, L. Bi, X. Zhang, and L. Song, “Detection of microcystins in environmental samples using surface plasmon resonance biosensor,” Talanta 80, 407–410 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of the proposed PWG-coupled LRSPR biosensor based on Au film.
Fig. 2.
Fig. 2. (a) Effective refractive indices of LRSPP and PWG modes; (b) variation of reflectance with respect to the incident angle for the LRSPR and PWG-coupled LRSPR configurations.
Fig. 3.
Fig. 3. Schematic diagram of the electric field distributions for the configuration of single (a) PWG and (b) LRSPR; electric field distributions at (c)  θ = 34.7337 ° and (d)  θ = 34.7928 ° when the PWG is coupled with LRSPR.
Fig. 4.
Fig. 4. Variation of peak sensitivity with respect to the thickness of cytop layer for the proposed sensor.
Fig. 5.
Fig. 5. Variation of reflectance and sensitivity with the incident angle for the sensors based on (a) PWG-coupled LRSPR, (b) LRSPR, and (c) conventional SPR when n s = 1.34 .
Fig. 6.
Fig. 6. Schematic diagram of the electric field distributions for the proposed PWG-coupled LRSPR sensor at θ = 34.7337 ° and θ = 34.7928 ° .
Fig. 7.
Fig. 7. Variation of peak sensitivity with respect to refractive index of sensing medium in the vicinity of 1.34.
Fig. 8.
Fig. 8. Variation of reflectance and sensitivity with respect to the incident angle when the thicknesses of cytop and Al are 2350 and 12.4 nm.

Metrics