Abstract

In this paper, we present a mode-selective coupler based on a dual-core all-solid photonic bandgap fiber (AS-PBGF). Because they are all-solid, AS-PBGF-based mode converters are easier to splice to other fibers than those based on air-hole photonic crystal fibers. Mode conversions between the LP01 and LP11 modes, LP01 and LP21 modes, and LP01 and LP02 modes are obtained at the wavelength λ=1550nm. The 3 dB wavelength bandwidth of these mode converters are 47.8, 20.3, and 20.3 nm, respectively.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Coupling characteristics of twin-core few-mode all-solid photonic bandgap fiber and their application in mode separation

Hongye Li, Zhi Wang, Yange Liu, Hu Liang, and Simeng Han
J. Opt. Soc. Am. B 34(9) 1811-1816 (2017)

Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid

Jiangbing Du, Yange Liu, Zhi Wang, Zhanyuan Liu, Bing Zou, Long Jin, Bo Liu, Guiyun Kai, and Xiaoyi Dong
Opt. Express 16(6) 4263-4269 (2008)

Analysis of optical fiber-based LP01 ↔ LP02 mode converters for the O-, S-, and C-Band

Hakim Mellah, Xiupu Zhang, and Dongya Shen
Appl. Opt. 54(17) 5568-5575 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
    [Crossref]
  2. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Binary-phase spatial light filters for mode-selective excitation of multimode fibers,” J. Lightwave Technol. 29, 1980–1987 (2011).
    [Crossref]
  3. J. Carpenter and T. D. Wilkinson, “Characterization of multimode fiber by selective mode excitation,” J. Lightwave Technol. 30, 1386–1392 (2012).
    [Crossref]
  4. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18, 8430–8439 (2010).
    [Crossref]
  5. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2, 429–440 (2013).
    [Crossref]
  6. W. V. Sorin, B. Y. Kim, and H. J. Shaw, “Highly selective evanescent modal filter for two-mode optical fibers,” Opt. Lett. 11, 581–583 (1986).
    [Crossref]
  7. A. Li, X. Chen, A. A. Amin, and W. Shieh, “Fused fiber mode couplers for few-mode transmission,” IEEE Photon. Technol. Lett. 21, 1953–1956 (2012).
  8. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22, 11610–11619 (2014).
    [Crossref]
  9. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett. 32, 328–330 (2007).
    [Crossref]
  10. M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” J. Opt. A 10, 115304 (2008).
  11. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
    [Crossref]
  12. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (¡ 20  dB/km) around 1550  nm,” Opt. Express 13, 8452–8459 (2005).
    [Crossref]
  13. G. Ren, P. Shum, L. Zhang, and X. Yu, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32, 1023–1025 (2007).
    [Crossref]
  14. C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
    [Crossref]
  15. B. E. Little and W. P. Huang, “Coupled-mode theory for optical waveguides,” Prog. Electromagn. Res. 10, 217–270 (1995).
  16. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Band, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19, 7790–7798 (2011).
    [Crossref]

2014 (2)

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22, 11610–11619 (2014).
[Crossref]

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
[Crossref]

2013 (2)

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2, 429–440 (2013).
[Crossref]

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

2012 (2)

J. Carpenter and T. D. Wilkinson, “Characterization of multimode fiber by selective mode excitation,” J. Lightwave Technol. 30, 1386–1392 (2012).
[Crossref]

A. Li, X. Chen, A. A. Amin, and W. Shieh, “Fused fiber mode couplers for few-mode transmission,” IEEE Photon. Technol. Lett. 21, 1953–1956 (2012).

2011 (2)

2010 (1)

2008 (1)

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” J. Opt. A 10, 115304 (2008).

2007 (2)

2005 (1)

2004 (1)

1995 (1)

B. E. Little and W. P. Huang, “Coupled-mode theory for optical waveguides,” Prog. Electromagn. Res. 10, 217–270 (1995).

1986 (1)

Amin, A. A.

A. Li, X. Chen, A. A. Amin, and W. Shieh, “Fused fiber mode couplers for few-mode transmission,” IEEE Photon. Technol. Lett. 21, 1953–1956 (2012).

Argyros, A.

Band, O.

Bang, O.

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
[Crossref]

Bigot, L.

Bird, D. M.

Birks, T. A.

Bland-Hawthorn, J.

Bouwmans, G.

Brambilla, G.

Carpenter, J.

Chen, M.-Y.

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” J. Opt. A 10, 115304 (2008).

Chen, X.

A. Li, X. Chen, A. A. Amin, and W. Shieh, “Fused fiber mode couplers for few-mode transmission,” IEEE Photon. Technol. Lett. 21, 1953–1956 (2012).

Douay, M.

Fini, J.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

George, A. K.

Hedley, T. D.

Huang, W. P.

B. E. Little and W. P. Huang, “Coupled-mode theory for optical waveguides,” Prog. Electromagn. Res. 10, 217–270 (1995).

Ismaeel, R.

Jung, Y.

Kim, B. Y.

Knight, J. C.

Kubat, I.

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
[Crossref]

Lai, K.

Lee, T.

Leon-Saval, S. G.

Li, A.

A. Li, X. Chen, A. A. Amin, and W. Shieh, “Fused fiber mode couplers for few-mode transmission,” IEEE Photon. Technol. Lett. 21, 1953–1956 (2012).

Little, B. E.

B. E. Little and W. P. Huang, “Coupled-mode theory for optical waveguides,” Prog. Electromagn. Res. 10, 217–270 (1995).

Lopez, F.

Luan, F.

Maksymiuk, L.

Markos, C.

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
[Crossref]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Band, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19, 7790–7798 (2011).
[Crossref]

Nelson, L.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Oduro, B.

Pearce, G. J.

Provino, L.

Quiquempois, Y.

Ren, G.

Richardson, D.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Russell, P. S. J.

Shaw, H. J.

Shieh, W.

A. Li, X. Chen, A. A. Amin, and W. Shieh, “Fused fiber mode couplers for few-mode transmission,” IEEE Photon. Technol. Lett. 21, 1953–1956 (2012).

Shum, P.

Siuzdak, J.

Sorin, W. V.

Stepniak, G.

Town, G. E.

Vlachos, K.

Wadsworth, W. J.

Wilkinson, T. D.

Witkowska, A.

Yu, X.

Yuan, W.

Zhang, L.

Zhou, J.

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” J. Opt. A 10, 115304 (2008).

IEEE Photon. Technol. Lett. (1)

A. Li, X. Chen, A. A. Amin, and W. Shieh, “Fused fiber mode couplers for few-mode transmission,” IEEE Photon. Technol. Lett. 21, 1953–1956 (2012).

J. Lightwave Technol. (2)

J. Opt. A (1)

M.-Y. Chen and J. Zhou, “Mode converter based on mode coupling in an asymmetric dual-core photonic crystal fibre,” J. Opt. A 10, 115304 (2008).

Nanophotonics (1)

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns,” Nanophotonics 2, 429–440 (2013).
[Crossref]

Nat. Photonics (1)

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Prog. Electromagn. Res. (1)

B. E. Little and W. P. Huang, “Coupled-mode theory for optical waveguides,” Prog. Electromagn. Res. 10, 217–270 (1995).

Sci. Rep. (1)

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Structure of mode coupler.
Fig. 2.
Fig. 2. Finding appropriate phase-matching points. The three parallel lines indicate the n eff of LP 11 , LP 21 , and LP 02 modes in the left core. The oblique line indicates the relationship between the n eff of the LP 01 mode and the core index n r in the right core.
Fig. 3.
Fig. 3. Modal dispersion curves for the fiber modes in each fiber core are displayed. Gray zones represent the fourth gap of the periodic structure in Fig. 1. Solid line corresponds to the dispersion curves of the LP 01 mode in the right core. Dashed line corresponds to the dispersion curves of higher-order modes in the left core.
Fig. 4.
Fig. 4. Schematic drawing of mode-selective couplers. Coupler 1 achieves the conversion of LP 01 to LP 11 , Coupler 2 achieves the conversion of LP 01 to LP 21 , and Coupler 3 achieves the conversion of LP 01 to LP 02 .
Fig. 5.
Fig. 5. Coupling efficiency of Coupler 1 and Coupler 2 sinusoidal vibrations along the propagation direction where L 1 = 6.437 mm , L 2 = 5.9 mm , and L 3 = 4.787 mm .
Fig. 6.
Fig. 6. Evolution of mode field in Couplers 1–3 at different positions along the propagation direction.
Fig. 7.
Fig. 7. Spectral coupling characteristics of each AS-PBGF coupler. B 1 and B 2 are the 3 dB wavelength bandwidths of each mode coupler.
Fig. 8.
Fig. 8. Schematic drawing of parallel mode multiplexer.
Fig. 9.
Fig. 9. Spectral coupling characteristics of Coupler 3. B 3 is the 3 dB bandwidth of Coupler 3 when it converts LP 11 independently; B 4 is the 3 dB bandwidth of Coupler 3 when it converts LP 02 independently.

Metrics