Abstract

All-optical canonical logic units at 40 Gb/s using bidirectional four-wave mixing (FWM) in highly nonlinear fiber are proposed and experimentally demonstrated. Clear temporal waveforms and correct pattern streams are successfully observed in the experiment. This scheme can reduce the amount of nonlinear devices and enlarge the computing capacity compared with general ones. The numerical simulations are made to analyze the relationship between the FWM efficiency and the position of two interactional signals.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Integrated all-optical programmable logic array based on semiconductor optical amplifiers

Wenchan Dong, Zhuyang Huang, Jie Hou, Rui Santos, and Xinliang Zhang
Opt. Lett. 43(9) 2150-2153 (2018)

Expanded all-optical programmable logic array based on multi-input/output canonical logic units

Lei Lei, Jianji Dong, Bingrong Zou, Zhao Wu, Wenchan Dong, and Xinliang Zhang
Opt. Express 22(8) 9959-9970 (2014)

40 Gb/s reconfigurable optical logic gates based on FWM in silicon waveguide

Jie Hou, Liao Chen, Wenchan Dong, and Xinliang Zhang
Opt. Express 24(3) 2701-2711 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Lei, J. Dong, Y. Yu, S. Tan, and X. Zhang, “All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers,” J. Lightwave Technol. 30, 3532–3539 (2012).
    [Crossref]
  2. E. Dimitriadou and K. E. Zoiros, “All-optical XOR gate using single quantum-dot SOA and optical filter,” J. Lightwave Technol. 31, 3813–3821 (2013).
    [Crossref]
  3. R. Kakarla and D. Venkitesh, “Experimental demonstration of optical XOR and XNOR gates for differential phase modulated data,” Proc. SPIE 9136, 91361N (2014).
  4. L. Li, J. Wu, J. Qiu, B. Wu, K. Xu, X. Hong, Y. Li, and J. Lin, “Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” Opt. Commun. 283, 3608–3612 (2010).
    [Crossref]
  5. L. Li, T. Lv, and J. Wu, “Investigation of a simultaneous multifunctional photonic logic gate based on bidirectional FWM,” Opt. Commun. 308, 115–120 (2013).
    [Crossref]
  6. C. Qiu, X. Ye, R. Soref, L. Yang, and Q. Xu, “Demonstration of reconfigurable electro-optical logic with silicon photonic integrated circuits,” Opt. Lett. 37, 3942–3944 (2012).
    [Crossref]
  7. L. Lei, J. Dong, B. Zou, Z. Wu, W. Dong, and X. Zhang, “Expanded all-optical programmable logic array based on multi-input/output canonical logic units,” Opt. Express 22, 9959–9970 (2014).
    [Crossref]
  8. H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640  Gbit/s and 1.28  Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express 18, 9961–9966 (2010).
    [Crossref]

2014 (2)

R. Kakarla and D. Venkitesh, “Experimental demonstration of optical XOR and XNOR gates for differential phase modulated data,” Proc. SPIE 9136, 91361N (2014).

L. Lei, J. Dong, B. Zou, Z. Wu, W. Dong, and X. Zhang, “Expanded all-optical programmable logic array based on multi-input/output canonical logic units,” Opt. Express 22, 9959–9970 (2014).
[Crossref]

2013 (2)

L. Li, T. Lv, and J. Wu, “Investigation of a simultaneous multifunctional photonic logic gate based on bidirectional FWM,” Opt. Commun. 308, 115–120 (2013).
[Crossref]

E. Dimitriadou and K. E. Zoiros, “All-optical XOR gate using single quantum-dot SOA and optical filter,” J. Lightwave Technol. 31, 3813–3821 (2013).
[Crossref]

2012 (2)

2010 (2)

H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640  Gbit/s and 1.28  Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express 18, 9961–9966 (2010).
[Crossref]

L. Li, J. Wu, J. Qiu, B. Wu, K. Xu, X. Hong, Y. Li, and J. Lin, “Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” Opt. Commun. 283, 3608–3612 (2010).
[Crossref]

Clausen, A.

Dimitriadou, E.

Dong, J.

Dong, W.

Galili, M.

Hong, X.

L. Li, J. Wu, J. Qiu, B. Wu, K. Xu, X. Hong, Y. Li, and J. Lin, “Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” Opt. Commun. 283, 3608–3612 (2010).
[Crossref]

Hu, H.

Jeppesen, P.

Kakarla, R.

R. Kakarla and D. Venkitesh, “Experimental demonstration of optical XOR and XNOR gates for differential phase modulated data,” Proc. SPIE 9136, 91361N (2014).

Lei, L.

Li, L.

L. Li, T. Lv, and J. Wu, “Investigation of a simultaneous multifunctional photonic logic gate based on bidirectional FWM,” Opt. Commun. 308, 115–120 (2013).
[Crossref]

L. Li, J. Wu, J. Qiu, B. Wu, K. Xu, X. Hong, Y. Li, and J. Lin, “Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” Opt. Commun. 283, 3608–3612 (2010).
[Crossref]

Li, Y.

L. Li, J. Wu, J. Qiu, B. Wu, K. Xu, X. Hong, Y. Li, and J. Lin, “Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” Opt. Commun. 283, 3608–3612 (2010).
[Crossref]

Lin, J.

L. Li, J. Wu, J. Qiu, B. Wu, K. Xu, X. Hong, Y. Li, and J. Lin, “Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” Opt. Commun. 283, 3608–3612 (2010).
[Crossref]

Lv, T.

L. Li, T. Lv, and J. Wu, “Investigation of a simultaneous multifunctional photonic logic gate based on bidirectional FWM,” Opt. Commun. 308, 115–120 (2013).
[Crossref]

Mulvad, H. C. H.

Oxenløwe, L. K.

Palushani, E.

Qiu, C.

Qiu, J.

L. Li, J. Wu, J. Qiu, B. Wu, K. Xu, X. Hong, Y. Li, and J. Lin, “Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” Opt. Commun. 283, 3608–3612 (2010).
[Crossref]

Soref, R.

Tan, S.

Venkitesh, D.

R. Kakarla and D. Venkitesh, “Experimental demonstration of optical XOR and XNOR gates for differential phase modulated data,” Proc. SPIE 9136, 91361N (2014).

Wu, B.

L. Li, J. Wu, J. Qiu, B. Wu, K. Xu, X. Hong, Y. Li, and J. Lin, “Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” Opt. Commun. 283, 3608–3612 (2010).
[Crossref]

Wu, J.

L. Li, T. Lv, and J. Wu, “Investigation of a simultaneous multifunctional photonic logic gate based on bidirectional FWM,” Opt. Commun. 308, 115–120 (2013).
[Crossref]

L. Li, J. Wu, J. Qiu, B. Wu, K. Xu, X. Hong, Y. Li, and J. Lin, “Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” Opt. Commun. 283, 3608–3612 (2010).
[Crossref]

Wu, Z.

Xu, K.

L. Li, J. Wu, J. Qiu, B. Wu, K. Xu, X. Hong, Y. Li, and J. Lin, “Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” Opt. Commun. 283, 3608–3612 (2010).
[Crossref]

Xu, Q.

Yang, L.

Ye, X.

Yu, Y.

Zhang, X.

Zoiros, K. E.

Zou, B.

J. Lightwave Technol. (2)

Opt. Commun. (2)

L. Li, J. Wu, J. Qiu, B. Wu, K. Xu, X. Hong, Y. Li, and J. Lin, “Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal,” Opt. Commun. 283, 3608–3612 (2010).
[Crossref]

L. Li, T. Lv, and J. Wu, “Investigation of a simultaneous multifunctional photonic logic gate based on bidirectional FWM,” Opt. Commun. 308, 115–120 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

R. Kakarla and D. Venkitesh, “Experimental demonstration of optical XOR and XNOR gates for differential phase modulated data,” Proc. SPIE 9136, 91361N (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Operational principle of DI modulation.
Fig. 2.
Fig. 2. Operational principle of the proposed scheme.
Fig. 3.
Fig. 3. Experimental setup for configurable multiple logic gate generation.
Fig. 4.
Fig. 4. Measured spectra of FWM in the HNLF.
Fig. 5.
Fig. 5. Measured OSNRs of minterms.
Fig. 6.
Fig. 6. Measured temporal waveforms. (a) Original signals, (b) CLUs in HNLF, and (c) all combinational logic functions.
Fig. 7.
Fig. 7. FWM efficiency comparison (a) when signal B is fixed at 1549.7 nm and (b) when the wavelength separation between signal A and signal B is fixed at 0.8, 1.6, and 2.4 nm, respectively.
Fig. 8.
Fig. 8. Configuration diagrams of (a) standard and (b) proposed two-input CLU-PLA.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CapM·Q·n=12N1C2Nn=M·Q·(22N2).

Metrics