Abstract

We investigate the probe-field transmission in a hybrid cavity quantum electrodynamic (CQED) system, where one optical cavity containing a quantum dot (QD) with high cavity dissipation is coupled to another auxiliary cavity with a high quality factor. We also investigate the hybrid system operating in the weak coupling regime of the light-matter interaction via comparing the QD photon interaction with the dipole decay rate and the cavity field decay rate. It is shown that the dipole induced transparency (DIT) regime similar to electromagnetically induced transparency (EIT) can be achieved due to the destructive interference of the cavity field in the weak coupling regime, which is extremely significant for the field of semiconductor CQED. The auxiliary cavity plays a key role in the hybrid system, which affords a quantum channel to affect the probe transmission leading to enhanced DIT. Further, DIT induced coherent optical propagation properties such as fast and slow light effects are also investigated based on the hybrid system for suitable parametric regimes. By controlling the coupling strength J and the decay rate ratio δ of the two cavities, tunable and controllable fast-to-slow light propagation can be achieved. This study provides a promising platform for understanding the dynamics of QD-CQED systems and may open up promising on chip applications in quantum information processing.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transparency and tunable slow-fast light in a hybrid cavity optomechanical system

Qinghong Liao, Xing Xiao, Wenjie Nie, and Nanrun Zhou
Opt. Express 28(4) 5288-5305 (2020)

Manipulation of optomechanically induced transparency and absorption by indirectly coupling to an auxiliary cavity mode

Guo-qing Qin, Hong Yang, Xuan Mao, Jing-wei Wen, Min Wang, Dong Ruan, and Gui-lu Long
Opt. Express 28(1) 580-592 (2020)

References

  • View by:
  • |
  • |
  • |

  1. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science 298(5597), 1372–1377 (2002).
    [Crossref]
  2. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref]
  3. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416(6877), 238–246 (2002).
    [Crossref]
  4. C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
    [Crossref]
  5. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
    [Crossref]
  6. Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a Single DiamondNanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefittingfrom Rayleigh Scattering,” Phys. Rev. A 84(1), 011805 (2011).
    [Crossref]
  7. A. Majumdar, M. Bajcsy, and J. Vuckovic, “Design and analysis of photonic crystal coupledcavity arrays for quantum simulation,” Phys. Rev. A 85(4), 041801 (2012).
    [Crossref]
  8. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [Crossref]
  9. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
    [Crossref]
  10. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [Crossref]
  11. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic doubleheterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [Crossref]
  12. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
    [Crossref]
  13. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [Crossref]
  14. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [Crossref]
  15. R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100(24), 240404 (2008).
    [Crossref]
  16. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum-dot-nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
    [Crossref]
  17. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
    [Crossref]
  18. B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
    [Crossref]
  19. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
    [Crossref]
  20. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Supplementary for Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
    [Crossref]
  21. R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108(22), 227402 (2012).
    [Crossref]
  22. A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6(2), 93–96 (2012).
    [Crossref]
  23. H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7(5), 373–377 (2013).
    [Crossref]
  24. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
    [Crossref]
  25. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
    [Crossref]
  26. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
    [Crossref]
  27. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
    [Crossref]
  28. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled micro-disk-quantum dot system,” Nature 450(7171), 862–865 (2007).
    [Crossref]
  29. S. Schietinger, T. Schroder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8(11), 3911–3915 (2008).
    [Crossref]
  30. Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced lightmatter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
    [Crossref]
  31. Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, and Y. F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
    [Crossref]
  32. A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
    [Crossref]
  33. K. A. Atlasov, A. Rudra, B. Dwir, and E. Kapon, “Large mode splitting and lasing in optimally coupled photonic-crystal microcavities,” Opt. Express 19(3), 2619–2625 (2011).
    [Crossref]
  34. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1-2), 37–38 (1946).
    [Crossref]
  35. S. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref]
  36. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
    [Crossref]
  37. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
    [Crossref]
  38. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104(16), 160503 (2010).
    [Crossref]
  39. Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109(16), 160504 (2012).
    [Crossref]
  40. R. Puthumpally-Joseph, M. Sukharev, O. Atabek, and E. Charron, “Dipole-Induced Electromagnetic Transparency,” Phys. Rev. Lett. 113(16), 163603 (2014).
    [Crossref]
  41. B.-C. Ren, G.-Y. Wang, and F.-G. Deng, “Universalhyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
    [Crossref]
  42. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
    [Crossref]
  43. M. Wang, R. Wu, J. Lin, J. Zhang, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Engineering 1(1), e9 (2019).
    [Crossref]
  44. B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
    [Crossref]
  45. A. Auffèves-Garnier, C. Simon, J.-M. Gerard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75(5), 053823 (2007).
    [Crossref]
  46. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317(5840), 929–932 (2007).
    [Crossref]
  47. Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 83(1), 019902 (2011).
    [Crossref]
  48. H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi Splitting in a Semiconductor Circuit QED System,” Phys. Rev. Lett. 110(6), 066802 (2013).
    [Crossref]
  49. H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, “PT-symmetric phonon laser,” Phys. Rev. Lett. 113(5), 053604 (2014).
    [Crossref]
  50. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418(6898), 612–614 (2002).
    [Crossref]
  51. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
    [Crossref]
  52. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994) p. 245
  53. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  54. C. W. Gardiner and P. Zoller, Quantum noise (Springer, 2000).
  55. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity assisted interactions,” Phys. Rev. Lett. 92(12), 127902 (2004).
    [Crossref]
  56. L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
    [Crossref]
  57. M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
    [Crossref]
  58. S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).
  59. T. Wang, Y. Q. Hu, C. G. Du and G, and L. Long, “Multiple eit and eia in optical microresonators,” Opt. Express 27(5), 7344–7353 (2019).
    [Crossref]
  60. G. Q. Qin, H. Yang, X. Mao, J. W. Wen, M. Wang, D. Ruan, and G. L. Long, “Manipulation of optomechanically induced transparency and absorption by indirectly coupling to an auxiliary cavity mode,” Opt. Express 28(1), 580–592 (2020).
    [Crossref]
  61. M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, ““Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” SCIENCE CHINA Physics,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
    [Crossref]
  62. Y. H. Chen, Y. C. Chen, and I. Yu, “High-Efficiency Coherent Light Storage for the Application of Quantum Memory,” AAPPS Bulletin26(5) (2016).
  63. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85(6), 062311 (2012).
    [Crossref]
  64. J. J. Li and K. D. Zhu, “A quantum optical transistor with a single quantum dot in aphotonic crystal nanocavity,” Nanotechnology 22(5), 055202 (2011).
    [Crossref]
  65. Y. C. Yu, J. F. Liu, X. L. Zhuo, G. Chen, C. J. Jin, and X. H. Wang, “Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green’s functions,” Opt. Express 21(20), 23486–23497 (2013).
    [Crossref]
  66. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]

2020 (1)

2019 (3)

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, ““Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” SCIENCE CHINA Physics,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

T. Wang, Y. Q. Hu, C. G. Du and G, and L. Long, “Multiple eit and eia in optical microresonators,” Opt. Express 27(5), 7344–7353 (2019).
[Crossref]

M. Wang, R. Wu, J. Lin, J. Zhang, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Engineering 1(1), e9 (2019).
[Crossref]

2018 (1)

M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
[Crossref]

2015 (1)

B.-C. Ren, G.-Y. Wang, and F.-G. Deng, “Universalhyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
[Crossref]

2014 (5)

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

R. Puthumpally-Joseph, M. Sukharev, O. Atabek, and E. Charron, “Dipole-Induced Electromagnetic Transparency,” Phys. Rev. Lett. 113(16), 163603 (2014).
[Crossref]

H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, “PT-symmetric phonon laser,” Phys. Rev. Lett. 113(5), 053604 (2014).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, and Y. F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

2013 (3)

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7(5), 373–377 (2013).
[Crossref]

H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi Splitting in a Semiconductor Circuit QED System,” Phys. Rev. Lett. 110(6), 066802 (2013).
[Crossref]

Y. C. Yu, J. F. Liu, X. L. Zhuo, G. Chen, C. J. Jin, and X. H. Wang, “Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green’s functions,” Opt. Express 21(20), 23486–23497 (2013).
[Crossref]

2012 (8)

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85(6), 062311 (2012).
[Crossref]

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109(16), 160504 (2012).
[Crossref]

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced lightmatter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Supplementary for Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108(22), 227402 (2012).
[Crossref]

A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6(2), 93–96 (2012).
[Crossref]

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

A. Majumdar, M. Bajcsy, and J. Vuckovic, “Design and analysis of photonic crystal coupledcavity arrays for quantum simulation,” Phys. Rev. A 85(4), 041801 (2012).
[Crossref]

2011 (4)

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a Single DiamondNanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefittingfrom Rayleigh Scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

K. A. Atlasov, A. Rudra, B. Dwir, and E. Kapon, “Large mode splitting and lasing in optimally coupled photonic-crystal microcavities,” Opt. Express 19(3), 2619–2625 (2011).
[Crossref]

Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 83(1), 019902 (2011).
[Crossref]

J. J. Li and K. D. Zhu, “A quantum optical transistor with a single quantum dot in aphotonic crystal nanocavity,” Nanotechnology 22(5), 055202 (2011).
[Crossref]

2010 (4)

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104(16), 160503 (2010).
[Crossref]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum-dot-nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

2009 (3)

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

2008 (4)

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[Crossref]

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100(24), 240404 (2008).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

S. Schietinger, T. Schroder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8(11), 3911–3915 (2008).
[Crossref]

2007 (8)

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled micro-disk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref]

C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
[Crossref]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

A. Auffèves-Garnier, C. Simon, J.-M. Gerard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75(5), 053823 (2007).
[Crossref]

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317(5840), 929–932 (2007).
[Crossref]

2006 (2)

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref]

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[Crossref]

2005 (5)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic doubleheterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2004 (3)

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity assisted interactions,” Phys. Rev. Lett. 92(12), 127902 (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

2002 (3)

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416(6877), 238–246 (2002).
[Crossref]

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science 298(5597), 1372–1377 (2002).
[Crossref]

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418(6898), 612–614 (2002).
[Crossref]

1990 (1)

S. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1-2), 37–38 (1946).
[Crossref]

Abstreiter, G.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418(6898), 612–614 (2002).
[Crossref]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic doubleheterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

An, C. S.

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, ““Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” SCIENCE CHINA Physics,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

Andrade, I. C.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Aolita, L.

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109(16), 160504 (2012).
[Crossref]

Arakawa, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum-dot-nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Arcizet, O.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Ardelt, P. L.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic doubleheterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Atabek, O.

R. Puthumpally-Joseph, M. Sukharev, O. Atabek, and E. Charron, “Dipole-Induced Electromagnetic Transparency,” Phys. Rev. Lett. 113(16), 163603 (2014).
[Crossref]

Atature, M.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Atlasov, K. A.

Auffèves-Garnier, A.

A. Auffèves-Garnier, C. Simon, J.-M. Gerard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75(5), 053823 (2007).
[Crossref]

Badolato, A.

A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6(2), 93–96 (2012).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Supplementary for Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref]

Bai, C. H.

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, ““Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” SCIENCE CHINA Physics,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

Bajcsy, M.

A. Majumdar, M. Bajcsy, and J. Vuckovic, “Design and analysis of photonic crystal coupledcavity arrays for quantum simulation,” Phys. Rev. A 85(4), 041801 (2012).
[Crossref]

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Becker, M.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Beham, E.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418(6898), 612–614 (2002).
[Crossref]

Bender, C. M.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Benson, O.

S. Schietinger, T. Schroder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8(11), 3911–3915 (2008).
[Crossref]

Berman, P. R.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317(5840), 929–932 (2007).
[Crossref]

Bernu, J.

C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
[Crossref]

Bichler, M.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418(6898), 612–614 (2002).
[Crossref]

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Birnbaum, K. M.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

Blauth, M.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Bloch, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref]

Boca, A.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

Bochmann, J.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[Crossref]

Bonato, C.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104(16), 160503 (2010).
[Crossref]

Boozer, A. D.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

Borrielli, A.

M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
[Crossref]

Bose, R.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7(5), 373–377 (2013).
[Crossref]

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108(22), 227402 (2012).
[Crossref]

Bouwmeester, D.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104(16), 160503 (2010).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

Bracker, A. S.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317(5840), 929–932 (2007).
[Crossref]

Brune, M.

C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
[Crossref]

Chang, D. E.

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109(16), 160504 (2012).
[Crossref]

Chang, H.-S.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[Crossref]

Chang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Chang, W.-H.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[Crossref]

Charron, E.

R. Puthumpally-Joseph, M. Sukharev, O. Atabek, and E. Charron, “Dipole-Induced Electromagnetic Transparency,” Phys. Rev. Lett. 113(16), 163603 (2014).
[Crossref]

Chen, G.

Chen, W.-Y.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[Crossref]

Chen, Y. C.

Y. H. Chen, Y. C. Chen, and I. Yu, “High-Efficiency Coherent Light Storage for the Application of Quantum Memory,” AAPPS Bulletin26(5) (2016).

Chen, Y. H.

Y. H. Chen, Y. C. Chen, and I. Yu, “High-Efficiency Coherent Light Storage for the Application of Quantum Memory,” AAPPS Bulletin26(5) (2016).

Chen, Y.-L.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced lightmatter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Cheng, Y.

M. Wang, R. Wu, J. Lin, J. Zhang, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Engineering 1(1), e9 (2019).
[Crossref]

Chyi, J.-I.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[Crossref]

del Valle, E.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Deleglise, S.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
[Crossref]

Deng, F.-G.

B.-C. Ren, G.-Y. Wang, and F.-G. Deng, “Universalhyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
[Crossref]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref]

Ding, D.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104(16), 160503 (2010).
[Crossref]

Doherty, A. C.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science 298(5597), 1372–1377 (2002).
[Crossref]

Dreiser, J.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref]

Du and G, C. G.

Duan, L. M.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity assisted interactions,” Phys. Rev. Lett. 92(12), 127902 (2004).
[Crossref]

Dwir, B.

Echeverri-Arteaga, S.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref]

Englund, D.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref]

Falt, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Fan, S.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Faraon, A.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref]

Field, J. E.

S. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Findeis, F.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418(6898), 612–614 (2002).
[Crossref]

Finley, J. J.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Forchel, A.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Fushman, I.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref]

Gammon, D.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317(5840), 929–932 (2007).
[Crossref]

Gardiner, C. W.

C. W. Gardiner and P. Zoller, Quantum noise (Springer, 2000).

Gavartin, E.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Gerard, J. M.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref]

Gerard, J.-M.

A. Auffèves-Garnier, C. Simon, J.-M. Gerard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75(5), 053823 (2007).
[Crossref]

Gianfreda, M.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref]

Gippius, N. A.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100(24), 240404 (2008).
[Crossref]

Giuseppe, G. D.

M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
[Crossref]

Gleyzes, S.

C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
[Crossref]

Gomez, E. A.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Gong, Q.

Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, and Y. F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced lightmatter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 83(1), 019902 (2011).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a Single DiamondNanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefittingfrom Rayleigh Scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

Gudat, J.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104(16), 160503 (2010).
[Crossref]

Guerlin, C.

C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
[Crossref]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Hammerer, K.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Haroche, S.

C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
[Crossref]

Harris, S.

S. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Haupt, F.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104(16), 160503 (2010).
[Crossref]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref]

Hennessy, K. J.

A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6(2), 93–96 (2012).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Supplementary for Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref]

Hsieh, T.-P.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[Crossref]

Hsu, T.-M.

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[Crossref]

Hu, C. Y.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

Hu, E.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref]

Hu, E. L.

A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6(2), 93–96 (2012).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Supplementary for Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Hu, Y. Q.

Hua, S.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Imamoglu, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Supplementary for Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6(2), 93–96 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

S. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Iwamoto, S.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum-dot-nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Jiang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Jiang, X.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Jiang, X.-F.

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a Single DiamondNanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefittingfrom Rayleigh Scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

Jin, C. J.

Jing, H.

H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, “PT-symmetric phonon laser,” Phys. Rev. Lett. 113(5), 053604 (2014).
[Crossref]

Johne, R.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100(24), 240404 (2008).
[Crossref]

Kaniber, M.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Kapon, E.

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref]

Kim, H.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7(5), 373–377 (2013).
[Crossref]

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108(22), 227402 (2012).
[Crossref]

Kimble, H. J.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity assisted interactions,” Phys. Rev. Lett. 92(12), 127902 (2004).
[Crossref]

Kippenberg, T. J.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Komiyama, S.

H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi Splitting in a Semiconductor Circuit QED System,” Phys. Rev. Lett. 110(6), 066802 (2013).
[Crossref]

Kralj, N.

M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
[Crossref]

Kuhn, A.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

Kuhr, S.

C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
[Crossref]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum-dot-nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Kwek, L. C.

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109(16), 160504 (2012).
[Crossref]

Lei, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Lemaitre, A.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref]

Li, B.-B.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced lightmatter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a Single DiamondNanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefittingfrom Rayleigh Scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

Li, G.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Li, H. K.

Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, and Y. F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Li, J. J.

J. J. Li and K. D. Zhu, “A quantum optical transistor with a single quantum dot in aphotonic crystal nanocavity,” Nanotechnology 22(5), 055202 (2011).
[Crossref]

Li, M.

Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 83(1), 019902 (2011).
[Crossref]

Li, Y.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced lightmatter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109(16), 160504 (2012).
[Crossref]

Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 83(1), 019902 (2011).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a Single DiamondNanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefittingfrom Rayleigh Scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

Lichtmannecker, S.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Lin, J.

M. Wang, R. Wu, J. Lin, J. Zhang, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Engineering 1(1), e9 (2019).
[Crossref]

Liu, J. F.

Liu, Y. C.

Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, and Y. F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Liu, Y.-C.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced lightmatter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 83(1), 019902 (2011).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a Single DiamondNanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefittingfrom Rayleigh Scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

Loffler, A.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

Long, G. L.

G. Q. Qin, H. Yang, X. Mao, J. W. Wen, M. Wang, D. Ruan, and G. L. Long, “Manipulation of optomechanically induced transparency and absorption by indirectly coupling to an auxiliary cavity mode,” Opt. Express 28(1), 580–592 (2020).
[Crossref]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85(6), 062311 (2012).
[Crossref]

Long, L.

Lu, X. Y.

H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, “PT-symmetric phonon laser,” Phys. Rev. Lett. 113(5), 053604 (2014).
[Crossref]

Luan, X.

Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, and Y. F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Mabuchi, H.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science 298(5597), 1372–1377 (2002).
[Crossref]

Majumdar, A.

A. Majumdar, M. Bajcsy, and J. Vuckovic, “Design and analysis of photonic crystal coupledcavity arrays for quantum simulation,” Phys. Rev. A 85(4), 041801 (2012).
[Crossref]

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Malpuech, G.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100(24), 240404 (2008).
[Crossref]

Mao, X.

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994) p. 245

Miller, R.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

Moehring, D. L.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[Crossref]

Monifi, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Monroe, C.

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416(6877), 238–246 (2002).
[Crossref]

Mucke, M.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[Crossref]

Muller, T.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[Crossref]

Munro, W. J.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

Nakajima, T.

H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi Splitting in a Semiconductor Circuit QED System,” Phys. Rev. Lett. 110(6), 066802 (2013).
[Crossref]

Natali, R.

M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
[Crossref]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic doubleheterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum-dot-nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Nori, F.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, “PT-symmetric phonon laser,” Phys. Rev. Lett. 113(5), 053604 (2014).
[Crossref]

Northup, T. E.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

O’Brien, J. L.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Oemrawsingh, S. S. R.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104(16), 160503 (2010).
[Crossref]

Ota, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum-dot-nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Ozdemir, S. K.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, “PT-symmetric phonon laser,” Phys. Rev. Lett. 113(5), 053604 (2014).
[Crossref]

Painter, O.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled micro-disk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[Crossref]

Pandraud, G.

M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
[Crossref]

Pavlovic, G.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100(24), 240404 (2008).
[Crossref]

Peng, B.

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref]

Petroff, P.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref]

Petroff, P. M.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref]

Poizat, J.-P.

A. Auffèves-Garnier, C. Simon, J.-M. Gerard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75(5), 053823 (2007).
[Crossref]

Polzik, E. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1-2), 37–38 (1946).
[Crossref]

Puthumpally-Joseph, R.

R. Puthumpally-Joseph, M. Sukharev, O. Atabek, and E. Charron, “Dipole-Induced Electromagnetic Transparency,” Phys. Rev. Lett. 113(16), 163603 (2014).
[Crossref]

Qin, G. Q.

Raimond, J.-M.

C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
[Crossref]

Rarity, J. G.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

Reichert, T.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

Reinhard, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Supplementary for Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6(2), 93–96 (2012).
[Crossref]

Reithmaier, G.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

Reitzenstein, S.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

Rempe, G.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[Crossref]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref]

Ren, B.-C.

B.-C. Ren, G.-Y. Wang, and F.-G. Deng, “Universalhyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
[Crossref]

Riviere, R.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Rossi, M.

M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
[Crossref]

Ruan, D.

Rudra, A.

Ruiz-Rivas, J.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Rundquist, A.

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref]

Sayrin, C.

C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
[Crossref]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref]

Schietinger, S.

S. Schietinger, T. Schroder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8(11), 3911–3915 (2008).
[Crossref]

Schliesser, A.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Schroder, T.

S. Schietinger, T. Schroder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8(11), 3911–3915 (2008).
[Crossref]

Sek, G.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

Senellart, P.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref]

Serra, E.

M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
[Crossref]

Sham, L. J.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317(5840), 929–932 (2007).
[Crossref]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref]

Shelykh, I. A.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100(24), 240404 (2008).
[Crossref]

Shen, T. C.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7(5), 373–377 (2013).
[Crossref]

Simon, C.

A. Auffèves-Garnier, C. Simon, J.-M. Gerard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75(5), 053823 (2007).
[Crossref]

Solnyshkov, D. D.

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100(24), 240404 (2008).
[Crossref]

Solomon, G. S.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7(5), 373–377 (2013).
[Crossref]

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108(22), 227402 (2012).
[Crossref]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic doubleheterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Song, S. Y.

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85(6), 062311 (2012).
[Crossref]

Sørensen, A. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Specht, H. P.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[Crossref]

Sridharan, D.

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108(22), 227402 (2012).
[Crossref]

Srinivasan, K.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled micro-disk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[Crossref]

Steel, D. G.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317(5840), 929–932 (2007).
[Crossref]

Stoltz, N.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref]

Stufler, S.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418(6898), 612–614 (2002).
[Crossref]

Sukharev, M.

R. Puthumpally-Joseph, M. Sukharev, O. Atabek, and E. Charron, “Dipole-Induced Electromagnetic Transparency,” Phys. Rev. Lett. 113(16), 163603 (2014).
[Crossref]

Sun, B.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317(5840), 929–932 (2007).
[Crossref]

Sun, X.

Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 83(1), 019902 (2011).
[Crossref]

Toida, H.

H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi Splitting in a Semiconductor Circuit QED System,” Phys. Rev. Lett. 110(6), 066802 (2013).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

van Exter, M. P.

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104(16), 160503 (2010).
[Crossref]

Vinck-Posada, H.

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Vitali, D.

M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
[Crossref]

Volz, T.

A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6(2), 93–96 (2012).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Supplementary for Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Vuckovic, J.

A. Majumdar, M. Bajcsy, and J. Vuckovic, “Design and analysis of photonic crystal coupledcavity arrays for quantum simulation,” Phys. Rev. A 85(4), 041801 (2012).
[Crossref]

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Dipole induced transparency in waveguide coupled photonic crystal cavities,” Opt. Express 16(16), 12154–12162 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref]

Waks, E.

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7(5), 373–377 (2013).
[Crossref]

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108(22), 227402 (2012).
[Crossref]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994) p. 245

Wang, D. Y.

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, ““Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” SCIENCE CHINA Physics,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

Wang, G.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Wang, G.-Y.

B.-C. Ren, G.-Y. Wang, and F.-G. Deng, “Universalhyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
[Crossref]

Wang, H. F.

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, ““Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” SCIENCE CHINA Physics,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

Wang, M.

G. Q. Qin, H. Yang, X. Mao, J. W. Wen, M. Wang, D. Ruan, and G. L. Long, “Manipulation of optomechanically induced transparency and absorption by indirectly coupling to an auxiliary cavity mode,” Opt. Express 28(1), 580–592 (2020).
[Crossref]

M. Wang, R. Wu, J. Lin, J. Zhang, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Engineering 1(1), e9 (2019).
[Crossref]

Wang, T.

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, ““Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” SCIENCE CHINA Physics,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

T. Wang, Y. Q. Hu, C. G. Du and G, and L. Long, “Multiple eit and eia in optical microresonators,” Opt. Express 27(5), 7344–7353 (2019).
[Crossref]

Wang, T. J.

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85(6), 062311 (2012).
[Crossref]

Wang, X. H.

Weber, B.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[Crossref]

Webster, S. C.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref]

Weis, S.

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Wen, J.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Wen, J. W.

Wilk, T.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref]

Winger, M.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Supplementary for Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6(2), 93–96 (2012).
[Crossref]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

Wong, C. W.

Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, and Y. F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Wu, R.

M. Wang, R. Wu, J. Lin, J. Zhang, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Engineering 1(1), e9 (2019).
[Crossref]

Xiao, M.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Xiao, Y. F.

Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, and Y. F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

Xiao, Y.-F.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced lightmatter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 83(1), 019902 (2011).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a Single DiamondNanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefittingfrom Rayleigh Scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

Xu, X.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317(5840), 929–932 (2007).
[Crossref]

Yang, C.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Yang, H.

Yang, L.

H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, “PT-symmetric phonon laser,” Phys. Rev. Lett. 113(5), 053604 (2014).
[Crossref]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref]

Yu, I.

Y. H. Chen, Y. C. Chen, and I. Yu, “High-Efficiency Coherent Light Storage for the Application of Quantum Memory,” AAPPS Bulletin26(5) (2016).

Yu, Y. C.

Zhang, J.

M. Wang, R. Wu, J. Lin, J. Zhang, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Engineering 1(1), e9 (2019).
[Crossref]

H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, “PT-symmetric phonon laser,” Phys. Rev. Lett. 113(5), 053604 (2014).
[Crossref]

Zhang, S.

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, ““Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” SCIENCE CHINA Physics,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

Zheng, M. H.

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, ““Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” SCIENCE CHINA Physics,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

Zhu, K. D.

J. J. Li and K. D. Zhu, “A quantum optical transistor with a single quantum dot in aphotonic crystal nanocavity,” Nanotechnology 22(5), 055202 (2011).
[Crossref]

Zhuo, X. L.

Zippilli, S.

M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
[Crossref]

Zoller, P.

C. W. Gardiner and P. Zoller, Quantum noise (Springer, 2000).

Zrenner, A.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418(6898), 612–614 (2002).
[Crossref]

Nano Lett. (1)

S. Schietinger, T. Schroder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8(11), 3911–3915 (2008).
[Crossref]

Nanotechnology (1)

J. J. Li and K. D. Zhu, “A quantum optical transistor with a single quantum dot in aphotonic crystal nanocavity,” Nanotechnology 22(5), 055202 (2011).
[Crossref]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic doubleheterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Nat. Photonics (6)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Supplementary for Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Strongly correlated photons on a chip,” Nat. Photonics 6(2), 93–96 (2012).
[Crossref]

H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, “A quantum logic gate between a solid-state quantum bit and a photon,” Nat. Photonics 7(5), 373–377 (2013).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nat. Photonics 8(7), 524–529 (2014).
[Crossref]

Nat. Phys. (3)

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” Nat. Phys. 10(5), 394–398 (2014).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single quantum-dot-nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Nature (10)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref]

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416(6877), 238–246 (2002).
[Crossref]

C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448(7156), 889–893 (2007).
[Crossref]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantumdot–semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref]

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418(6898), 612–614 (2002).
[Crossref]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled micro-disk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref]

Opt. Express (5)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1-2), 37–38 (1946).
[Crossref]

Phys. Rev. A (7)

Y.-F. Xiao, M. Li, Y.-C. Liu, Y. Li, X. Sun, and Q. Gong, “Asymmetric Fano resonance analysis in indirectly coupled microresonators,” Phys. Rev. A 83(1), 019902 (2011).
[Crossref]

B.-C. Ren, G.-Y. Wang, and F.-G. Deng, “Universalhyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
[Crossref]

T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85(6), 062311 (2012).
[Crossref]

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced lightmatter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

A. Auffèves-Garnier, C. Simon, J.-M. Gerard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75(5), 053823 (2007).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Li, and Q. Gong, “Coupling of a Single DiamondNanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefittingfrom Rayleigh Scattering,” Phys. Rev. A 84(1), 011805 (2011).
[Crossref]

A. Majumdar, M. Bajcsy, and J. Vuckovic, “Design and analysis of photonic crystal coupledcavity arrays for quantum simulation,” Phys. Rev. A 85(4), 041801 (2012).
[Crossref]

Phys. Rev. B (2)

A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vučković, “Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule,” Phys. Rev. B 86(4), 045315 (2012).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

Phys. Rev. Lett. (15)

C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104(16), 160503 (2010).
[Crossref]

Y. Li, L. Aolita, D. E. Chang, and L. C. Kwek, “Robust-fidelity atom-photon entangling gates in the weak-coupling regime,” Phys. Rev. Lett. 109(16), 160504 (2012).
[Crossref]

R. Puthumpally-Joseph, M. Sukharev, O. Atabek, and E. Charron, “Dipole-Induced Electromagnetic Transparency,” Phys. Rev. Lett. 113(16), 163603 (2014).
[Crossref]

H. Toida, T. Nakajima, and S. Komiyama, “Vacuum Rabi Splitting in a Semiconductor Circuit QED System,” Phys. Rev. Lett. 110(6), 066802 (2013).
[Crossref]

H. Jing, S. K. Ozdemir, X. Y. Lu, J. Zhang, L. Yang, and F. Nori, “PT-symmetric phonon laser,” Phys. Rev. Lett. 113(5), 053604 (2014).
[Crossref]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity assisted interactions,” Phys. Rev. Lett. 92(12), 127902 (2004).
[Crossref]

S. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref]

M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. D. Giuseppe, and D. Vitali, “Normal-mode splitting in a weakly coupled optomechanical system,” Phys. Rev. Lett. 120(7), 073601 (2018).
[Crossref]

Y. C. Liu, X. Luan, H. K. Li, Q. Gong, C. W. Wong, and Y. F. Xiao, “Coherent polariton dynamics in coupled highly dissipative cavities,” Phys. Rev. Lett. 112(21), 213602 (2014).
[Crossref]

R. Bose, D. Sridharan, H. Kim, G. S. Solomon, and E. Waks, “Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity,” Phys. Rev. Lett. 108(22), 227402 (2012).
[Crossref]

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95(6), 067401 (2005).
[Crossref]

R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100(24), 240404 (2008).
[Crossref]

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006).
[Crossref]

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102(3), 030501 (2009).
[Crossref]

Quantum Engineering (1)

M. Wang, R. Wu, J. Lin, J. Zhang, and Y. Cheng, “Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (lnoi),” Quantum Engineering 1(1), e9 (2019).
[Crossref]

Rev. Mod. Phys. (2)

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Sci. China: Phys., Mech. Astron. (1)

M. H. Zheng, T. Wang, D. Y. Wang, C. H. Bai, S. Zhang, C. S. An, and H. F. Wang, ““Manipulation of multi-transparency windows and fast-slow light transitions in a hybrid cavity optomechanical system,” SCIENCE CHINA Physics,” Sci. China: Phys., Mech. Astron. 62(5), 950311 (2019).
[Crossref]

Science (5)

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref]

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: Coherence in context,” Science 298(5597), 1372–1377 (2002).
[Crossref]

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317(5840), 929–932 (2007).
[Crossref]

S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes,” Science 308(5725), 1158–1161 (2005).
[Crossref]

Other (5)

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994) p. 245

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

C. W. Gardiner and P. Zoller, Quantum noise (Springer, 2000).

Y. H. Chen, Y. C. Chen, and I. Yu, “High-Efficiency Coherent Light Storage for the Application of Quantum Memory,” AAPPS Bulletin26(5) (2016).

S. Lichtmannecker, M. Kaniber, S. Echeverri-Arteaga, I. C. Andrade, J. Ruiz-Rivas, T. Reichert, M. Becker, M. Blauth, G. Reithmaier, P. L. Ardelt, M. Bichler, E. A. Gomez, H. Vinck-Posada, E. del Valle, and J. J. Finley, “Coexistence of weak and strong coupling with a quantum dot in a photonic molecule,” arXiv:1806.10160v1 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the cavity QED system coupled to an auxiliary cavity, where a QED cavity a with high cavity dissipation driven by two-tone fields coupled to an auxiliary cavity c with high quality factor. The cavity a is coupled to cavity c via evanescent field, and the coupling strength $J$ between the two cavities can be controlled by varying the separation between them [44]. (b) The two energy levels of QD coupled to a single cavity mode and two optical fields. (c) and (d) are the energy level transitions with an entangled state $|{{n_{tot}}} \rangle $ (${n_{tot}} = {n_a} + {n_c}$ is the total photon number of the two cavities, where ${n_a}$ and ${n_c}$ represent the number state of the photon mode of cavity a and cavity c).
Fig. 2.
Fig. 2. (a) The probe transmission ${|{t({\omega_s})} |^2}$ as a function of probe-cavity detuning ${\Delta _s}$ for several coupling strengths J at the condition of ${\Delta _p} = 0$. (b) The probe transmission ${|{t({\omega_s})} |^2}$ at $J = 0$. (c)The probe transmission ${|{t({\omega_s})} |^2}$ at $J = 1.0{\kappa _a}$. (d) The peak splitting distance as function of J.
Fig. 3.
Fig. 3. (a) The phase ${\phi _t}$ of the probe transmission as a function of ${\Delta _s}$ for several coupling strengths $J$ at ${\Delta _p} = 0$. (b) The group delay ${\tau _g}$ as a function of the coupling strength $J$ at $g = 2\textrm{ MHz}$.
Fig. 4.
Fig. 4. (a) The probe transmission ${|{t({\omega_s})} |^2}$ as a function of ${\Delta _s}$ for several decay rate ratio $\delta = {{{\kappa _a}} \mathord{\left/ {\vphantom {{{\kappa_a}} {{\kappa_c}}}} \right.} {{\kappa _c}}}$ at the condition of ${\Delta _p} = 0$. (b) The peak-splitting and the peak height as a function of $\delta$ under the conditions $J = 1.0{\kappa _a}$ and $g = 1.0\textrm{ MHz}$. (c) The phase ${\phi _t}$ of the probe transmission as a function $\delta $. (d) The group delay ${\tau _g}$ as a function of $\delta $ for two coupling strength J.
Fig. 5.
Fig. 5. (a) The probe transmission ${|{t({\omega_s})} |^2}$ as a function of ${\Delta _s}$ for five coupling strengths J at the condition of ${\Delta _p} = 100\textrm{ MHz}$. (b) The peak splitting distance as function of J. (c) The phase ${\phi _t}$ of the probe transmission for several different J. (d) The group delay ${\tau _g}$ as a function of J at g = 2.0 MHz.
Fig. 6.
Fig. 6. (a) The probe transmission ${|{t({\omega_s})} |^2}$ for several decay rate ratio $\delta$ at the condition of ${\Delta _p} = 100\textrm{ MHz}$. (b) The peak-splitting and the peak height as a function of $\delta$ at the conditions $J = 1.0{\kappa _a}$ and $g = 1.0MHz$. (c) The phase ${\phi _t}$ of the probe transmission as a function $\delta$. (d) The group delay ${\tau _g}$ as a function of $\delta$ for two coupling strength J.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

H = Δ p σ z + Δ a a a + Δ c c c + J ( a c + a c ) + g ( σ + a + σ a ) + i κ a e ε p ( a a ) + i κ a e ε s ( a e i Ω t a e i Ω t )
a ˙ = ( i Δ a + κ a ) a i g σ i J c + κ a e ( ε p + ε s e i Ω t )
c ˙ = ( i Δ c + κ c ) c i J a
σ ˙ z = Γ 1 ( σ z + 1 ) i g ( σ + a σ a )
σ ˙ = ( i Δ p + Γ 2 ) σ + 2 i g a σ z
( i Δ a + κ a ) a s i g σ s i J c s = κ a e ε p
( i Δ c + κ c ) c s + i J a s = 0
Γ 1 ( σ s z + 1 ) + i g ( σ s a s σ s a s ) = 0
( i Δ p + Γ 2 ) σ s 2 i g a s σ s z = 0
a + = κ a e ε s i ( Δ a Ω + g Λ 4 + J η 1 ) + κ a
η 1 = i J i ( Δ c Ω ) + κ c , η 2 = i J i ( Δ c + Ω ) + κ c , λ 1 = i g σ s Γ 1 i Ω , λ 2 = i g a s Γ 1 i Ω ,
λ 3 = i g σ s Γ 1 i Ω , λ 4 = i g a s Γ 1 i Ω , Λ 1 = i g i ( Δ a + Ω + J η 2 ) + κ c
Λ 2 = 2 i g a s λ 1 i ( Δ p + Ω ) + Γ 2 + 2 i g a s λ 2 + 2 i g ( a s λ 3 + σ s z ) Λ 1 ,
Λ 3 = 2 i g a s λ 4 i ( Δ p + Ω ) + Γ 2 + 2 i g a s λ 2 + 2 i g ( a s λ 3 + σ s z ) Λ 1 ,
Λ 4 = 2 i g [ ( a s λ 1 + σ s z ) + a s ( λ 2 + λ 3 Λ 1 ) Λ 2 ] i ( Δ p Ω ) + Γ 2 2 i g a s λ 4 2 i g a s ( λ 2 + λ 3 Λ 1 ) Λ 3
t ( ω s ) = ε s κ a e a + ε s
τ g = d ϕ t d ω s | ω s = ω p = d { arg [ t ( ω s ) ] } d ω s | ω s = ω p

Metrics