Abstract

In this paper, we report phase-pure vanadium dioxide (VO2) deposition on silicon-on-insulator and demonstrate switching/modulation exploiting the phase-change property. We present electrical and optical properties of VO2 during phase transition. Exploiting the phase change property, optical modulation is achieved by thermally tuning the VO2 phase using a lateral micro-heater beside the waveguide. We achieve an optical modulation extinction of 25 dB and a low insertion loss of 1.4 dB using a ring resonator with a VO2 patch. We also demonstrate the switching performance of a symmetric Mach-Zehnder interferometer and present a detailed discussion on the optimal operating point to achieve maximum modulation, higher speed, and lower insertion loss.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition

Ryan M. Briggs, Imogen M. Pryce, and Harry A. Atwater
Opt. Express 18(11) 11192-11201 (2010)

Silicon waveguide optical modulator driven by metal–insulator transition of vanadium dioxide cladding layer

Keisuke Shibuya, Yuki Atsumi, Tomoya Yoshida, Youichi Sakakibara, Masahiko Mori, and Akihito Sawa
Opt. Express 27(4) 4147-4156 (2019)

Design of electrically driven hybrid vanadium dioxide (VO2) plasmonic switches

Brett A. Kruger, Arash Joushaghani, and Joyce K. S. Poon
Opt. Express 20(21) 23598-23609 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optical phase change materials in integrated silicon photonic devices,” Opt. Mater. Express 8(8), 2415–2429 (2018).
    [Crossref]
  2. K. T. P. Lim, H. Liu, Y. Liu, and J. K. W. Yang, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 25 (2019).
    [Crossref]
  3. C. Ko and S. Ramanathan, “Dispersive capacitance and conductance across the phase transition boundary in metal-vanadium oxide-silicon devices,” J. Appl. Phys. 106(3), 034101 (2009).
    [Crossref]
  4. J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20(12), 13215–13225 (2012).
    [Crossref]
  5. A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
    [Crossref]
  6. A. Cavalleri, T. Dekorsy, H. H. Chong, J.-C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
    [Crossref]
  7. M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
    [Crossref]
  8. J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21(9), 10753–10763 (2013).
    [Crossref]
  9. P. Boriskov, A. Velichko, A. Pergament, G. Stefanovich, and D. Stefanovich, “The effect of electric field on metal-insulator phase transition in vanadium dioxide,” Tech. Phys. Lett. 28(5), 406–408 (2002).
    [Crossref]
  10. B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
    [Crossref]
  11. Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
    [Crossref]
  12. J. K. Kana, J. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
    [Crossref]
  13. J. Sun and G. K. Pribil, “Analyzing optical properties of thin vanadium oxide films through semiconductor-to-metal phase transition using spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 819–823 (2017).
    [Crossref]
  14. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
    [Crossref]
  15. K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon waveguide optical switch with embedded phase change material,” Opt. Express 25(22), 26527–26536 (2017).
    [Crossref]
  16. I. Olivares, L. Sanchez, J. Parra, R. Larrea, A. Griol, M. Menghini, P. Homm, L.-W. Jang, B. Van Bilzen, J. W. Seo, J.-P. Locquet, and P. Sanchis, “Optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters,” Opt. Express 26(10), 12387–12395 (2018).
    [Crossref]
  17. P. Markov, K. Appavoo, R. F. Haglund, and S. M. Weiss, “Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling,” Opt. Express 23(5), 6878–6887 (2015).
    [Crossref]
  18. A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
    [Crossref]
  19. W. H. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
    [Crossref]
  20. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
    [Crossref]
  21. M. Currie, M. A. Mastro, and V. D. Wheeler, “Characterizing the tunable refractive index of vanadium dioxide,” Opt. Mater. Express 7(5), 1697–1707 (2017).
    [Crossref]
  22. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
    [Crossref]
  23. S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
    [Crossref]
  24. J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
    [Crossref]
  25. S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, “Growth control of the oxidation state in vanadium oxide thin films,” Appl. Phys. Lett. 105(22), 223515 (2014).
    [Crossref]
  26. T. Maruyama and Y. Ikuta, “Vanadium dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
    [Crossref]
  27. S. N. Gupta, A. Pal, D. Muthu, P. A. Kumar, and A. Sood, “Metallic monoclinic phase in VO2 induced by electrochemical gating: In situ raman study,” Eur. Phys. Lett. 115(1), 17001 (2016).
    [Crossref]
  28. R. Bharathi, R. Naorem, and A. Umarji, “Metal–insulator transition characteristics of vanadium dioxide thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture,” J. Phys. D: Appl. Phys. 48(30), 305103 (2015).
    [Crossref]
  29. B. Rajeswaran and A. Umarji, “Phase evolution and infrared transmittance in monophasic VO2 synthesized by a rapid non-equilibrium process,” Mater. Chem. Phys. 190, 219–229 (2017).
    [Crossref]
  30. B. Rajeswaran, J. K. Pradhan, S. Anantha Ramakrishna, and A. M. Umarji, “Thermochromic VO2 thin films on ito-coated glass substrates for broadband high absorption at infra-red frequencies,” J. Appl. Phys. 122(16), 163107 (2017).
    [Crossref]
  31. Europractice: MPW, “iSiPP25G,” https://europractice-ic.com/mpw-prototyping/siphotonics/imec/ .
  32. S. Feng, K. Shang, J. T. Bovington, R. Wu, B. Guan, K.-T. Cheng, J. E. Bowers, and S. B. Yoo, “Athermal silicon ring resonators clad with titanium dioxide for 1.3 μm wavelength operation,” Opt. Express 23(20), 25653–25660 (2015).
    [Crossref]
  33. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]

2019 (1)

K. T. P. Lim, H. Liu, Y. Liu, and J. K. W. Yang, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

2018 (2)

2017 (6)

J. Sun and G. K. Pribil, “Analyzing optical properties of thin vanadium oxide films through semiconductor-to-metal phase transition using spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 819–823 (2017).
[Crossref]

K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon waveguide optical switch with embedded phase change material,” Opt. Express 25(22), 26527–26536 (2017).
[Crossref]

M. Currie, M. A. Mastro, and V. D. Wheeler, “Characterizing the tunable refractive index of vanadium dioxide,” Opt. Mater. Express 7(5), 1697–1707 (2017).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

B. Rajeswaran and A. Umarji, “Phase evolution and infrared transmittance in monophasic VO2 synthesized by a rapid non-equilibrium process,” Mater. Chem. Phys. 190, 219–229 (2017).
[Crossref]

B. Rajeswaran, J. K. Pradhan, S. Anantha Ramakrishna, and A. M. Umarji, “Thermochromic VO2 thin films on ito-coated glass substrates for broadband high absorption at infra-red frequencies,” J. Appl. Phys. 122(16), 163107 (2017).
[Crossref]

2016 (1)

S. N. Gupta, A. Pal, D. Muthu, P. A. Kumar, and A. Sood, “Metallic monoclinic phase in VO2 induced by electrochemical gating: In situ raman study,” Eur. Phys. Lett. 115(1), 17001 (2016).
[Crossref]

2015 (5)

R. Bharathi, R. Naorem, and A. Umarji, “Metal–insulator transition characteristics of vanadium dioxide thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture,” J. Phys. D: Appl. Phys. 48(30), 305103 (2015).
[Crossref]

S. Feng, K. Shang, J. T. Bovington, R. Wu, B. Guan, K.-T. Cheng, J. E. Bowers, and S. B. Yoo, “Athermal silicon ring resonators clad with titanium dioxide for 1.3 μm wavelength operation,” Opt. Express 23(20), 25653–25660 (2015).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

P. Markov, K. Appavoo, R. F. Haglund, and S. M. Weiss, “Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling,” Opt. Express 23(5), 6878–6887 (2015).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
[Crossref]

2014 (1)

S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, “Growth control of the oxidation state in vanadium oxide thin films,” Appl. Phys. Lett. 105(22), 223515 (2014).
[Crossref]

2013 (4)

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21(9), 10753–10763 (2013).
[Crossref]

2012 (3)

J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20(12), 13215–13225 (2012).
[Crossref]

W. H. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (2)

J. K. Kana, J. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

2010 (1)

2009 (1)

C. Ko and S. Ramanathan, “Dispersive capacitance and conductance across the phase transition boundary in metal-vanadium oxide-silicon devices,” J. Appl. Phys. 106(3), 034101 (2009).
[Crossref]

2004 (1)

A. Cavalleri, T. Dekorsy, H. H. Chong, J.-C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

2002 (1)

P. Boriskov, A. Velichko, A. Pergament, G. Stefanovich, and D. Stefanovich, “The effect of electric field on metal-insulator phase transition in vanadium dioxide,” Tech. Phys. Lett. 28(5), 406–408 (2002).
[Crossref]

2001 (1)

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref]

1994 (1)

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

1993 (1)

T. Maruyama and Y. Ikuta, “Vanadium dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

Aetukuri, N.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Aitchison, J. S.

Alain, D.

Anantha Ramakrishna, S.

B. Rajeswaran, J. K. Pradhan, S. Anantha Ramakrishna, and A. M. Umarji, “Thermochromic VO2 thin films on ito-coated glass substrates for broadband high absorption at infra-red frequencies,” J. Appl. Phys. 122(16), 163107 (2017).
[Crossref]

Appavoo, K.

Atwater, H. A.

Aubin, H.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Becker, M. F.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Bharathi, R.

R. Bharathi, R. Naorem, and A. Umarji, “Metal–insulator transition characteristics of vanadium dioxide thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture,” J. Phys. D: Appl. Phys. 48(30), 305103 (2015).
[Crossref]

Bhaskaran, H.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

W. H. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Boriskov, P.

P. Boriskov, A. Velichko, A. Pergament, G. Stefanovich, and D. Stefanovich, “The effect of electric field on metal-insulator phase transition in vanadium dioxide,” Tech. Phys. Lett. 28(5), 406–408 (2002).
[Crossref]

Bovington, J. T.

Bowers, J. E.

Briggs, R. M.

Brun, A.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Buckman, A. B.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Cavalleri, A.

A. Cavalleri, T. Dekorsy, H. H. Chong, J.-C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref]

Chen, X.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

Cheng, K.-T.

Choi, B.

Chong, H. H.

A. Cavalleri, T. Dekorsy, H. H. Chong, J.-C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Currie, M.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dekorsy, T.

A. Cavalleri, T. Dekorsy, H. H. Chong, J.-C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Diez-Blanco, V.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Egami, T.

S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, “Growth control of the oxidation state in vanadium oxide thin films,” Appl. Phys. Lett. 105(22), 223515 (2014).
[Crossref]

Feng, S.

Forget, P.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref]

Georges, P.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Ghosh, R.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Gibaud, A.

J. K. Kana, J. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Graf, T.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Griol, A.

Guan, B.

Gupta, S. N.

S. N. Gupta, A. Pal, D. Muthu, P. A. Kumar, and A. Sood, “Metallic monoclinic phase in VO2 induced by electrochemical gating: In situ raman study,” Eur. Phys. Lett. 115(1), 17001 (2016).
[Crossref]

Haglund, R. F.

Hallman, K. A.

Homm, P.

Hosseini, P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Ikuta, Y.

T. Maruyama and Y. Ikuta, “Vanadium dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

Jang, L.-W.

Jeong, J.

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
[Crossref]

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Joushaghani, A.

Kahng, B.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Kana, J. K.

J. K. Kana, J. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Kieffer, J.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref]

Kieffer, J.-C.

A. Cavalleri, T. Dekorsy, H. H. Chong, J.-C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Kim, K.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Ko, C.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

C. Ko and S. Ramanathan, “Dispersive capacitance and conductance across the phase transition boundary in metal-vanadium oxide-silicon devices,” J. Appl. Phys. 106(3), 034101 (2009).
[Crossref]

Kumar, P. A.

S. N. Gupta, A. Pal, D. Muthu, P. A. Kumar, and A. Sood, “Metallic monoclinic phase in VO2 induced by electrochemical gating: In situ raman study,” Eur. Phys. Lett. 115(1), 17001 (2016).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Larrea, R.

Lee, H. N.

S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, “Growth control of the oxidation state in vanadium oxide thin films,” Appl. Phys. Lett. 105(22), 223515 (2014).
[Crossref]

Lee, J. S.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Lee, S.

S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, “Growth control of the oxidation state in vanadium oxide thin films,” Appl. Phys. Lett. 105(22), 223515 (2014).
[Crossref]

Lee, S. B.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Lépine, T.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Lim, K. T. P.

K. T. P. Lim, H. Liu, Y. Liu, and J. K. W. Yang, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

Liu, H.

K. T. P. Lim, H. Liu, Y. Liu, and J. K. W. Yang, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

Liu, Y.

K. T. P. Lim, H. Liu, Y. Liu, and J. K. W. Yang, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Locquet, J.-P.

Lopez, R.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Maaza, M.

J. K. Kana, J. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Markov, P.

Maruyama, T.

T. Maruyama and Y. Ikuta, “Vanadium dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

Marvel, R. E.

Mastro, M. A.

Menghini, M.

Meyer, T. L.

S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, “Growth control of the oxidation state in vanadium oxide thin films,” Appl. Phys. Lett. 105(22), 223515 (2014).
[Crossref]

Miller, K. J.

Mouli, C.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

Muthu, D.

S. N. Gupta, A. Pal, D. Muthu, P. A. Kumar, and A. Sood, “Metallic monoclinic phase in VO2 induced by electrochemical gating: In situ raman study,” Eur. Phys. Lett. 115(1), 17001 (2016).
[Crossref]

Nag, J.

Naorem, R.

R. Bharathi, R. Naorem, and A. Umarji, “Metal–insulator transition characteristics of vanadium dioxide thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture,” J. Phys. D: Appl. Phys. 48(30), 305103 (2015).
[Crossref]

Ndjaka, J.

J. K. Kana, J. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Oh, J. S.

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

Olivares, I.

Pal, A.

S. N. Gupta, A. Pal, D. Muthu, P. A. Kumar, and A. Sood, “Metallic monoclinic phase in VO2 induced by electrochemical gating: In situ raman study,” Eur. Phys. Lett. 115(1), 17001 (2016).
[Crossref]

Paradis, S.

Park, S.

S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, “Growth control of the oxidation state in vanadium oxide thin films,” Appl. Phys. Lett. 105(22), 223515 (2014).
[Crossref]

Parkin, S. S.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Parra, J.

Pergament, A.

P. Boriskov, A. Velichko, A. Pergament, G. Stefanovich, and D. Stefanovich, “The effect of electric field on metal-insulator phase transition in vanadium dioxide,” Tech. Phys. Lett. 28(5), 406–408 (2002).
[Crossref]

Pernice, W. H.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

W. H. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Poon, J. K.

Pradhan, J. K.

B. Rajeswaran, J. K. Pradhan, S. Anantha Ramakrishna, and A. M. Umarji, “Thermochromic VO2 thin films on ito-coated glass substrates for broadband high absorption at infra-red frequencies,” J. Appl. Phys. 122(16), 163107 (2017).
[Crossref]

Pribil, G. K.

J. Sun and G. K. Pribil, “Analyzing optical properties of thin vanadium oxide films through semiconductor-to-metal phase transition using spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 819–823 (2017).
[Crossref]

Pryce, I. M.

Rajeswaran, B.

B. Rajeswaran, J. K. Pradhan, S. Anantha Ramakrishna, and A. M. Umarji, “Thermochromic VO2 thin films on ito-coated glass substrates for broadband high absorption at infra-red frequencies,” J. Appl. Phys. 122(16), 163107 (2017).
[Crossref]

B. Rajeswaran and A. Umarji, “Phase evolution and infrared transmittance in monophasic VO2 synthesized by a rapid non-equilibrium process,” Mater. Chem. Phys. 190, 219–229 (2017).
[Crossref]

Ráksi, F.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref]

Ramanathan, S.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

C. Ko and S. Ramanathan, “Dispersive capacitance and conductance across the phase transition boundary in metal-vanadium oxide-silicon devices,” J. Appl. Phys. 106(3), 034101 (2009).
[Crossref]

Ríos, C.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Ryckman, J. D.

Samant, M. G.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Sanchez, L.

Sanchis, P.

Scherer, T.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Schladt, T. D.

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Schoenlein, R. W.

A. Cavalleri, T. Dekorsy, H. H. Chong, J.-C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Seo, J. W.

Shang, K.

Siders, C. W.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref]

Sood, A.

S. N. Gupta, A. Pal, D. Muthu, P. A. Kumar, and A. Sood, “Metallic monoclinic phase in VO2 induced by electrochemical gating: In situ raman study,” Eur. Phys. Lett. 115(1), 17001 (2016).
[Crossref]

Squier, J.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref]

Stefanovich, D.

P. Boriskov, A. Velichko, A. Pergament, G. Stefanovich, and D. Stefanovich, “The effect of electric field on metal-insulator phase transition in vanadium dioxide,” Tech. Phys. Lett. 28(5), 406–408 (2002).
[Crossref]

Stefanovich, G.

P. Boriskov, A. Velichko, A. Pergament, G. Stefanovich, and D. Stefanovich, “The effect of electric field on metal-insulator phase transition in vanadium dioxide,” Tech. Phys. Lett. 28(5), 406–408 (2002).
[Crossref]

Stegmaier, M.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Sun, J.

J. Sun and G. K. Pribil, “Analyzing optical properties of thin vanadium oxide films through semiconductor-to-metal phase transition using spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 819–823 (2017).
[Crossref]

Taubner, T.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Tóth, C.

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref]

Umarji, A.

B. Rajeswaran and A. Umarji, “Phase evolution and infrared transmittance in monophasic VO2 synthesized by a rapid non-equilibrium process,” Mater. Chem. Phys. 190, 219–229 (2017).
[Crossref]

R. Bharathi, R. Naorem, and A. Umarji, “Metal–insulator transition characteristics of vanadium dioxide thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture,” J. Phys. D: Appl. Phys. 48(30), 305103 (2015).
[Crossref]

Umarji, A. M.

B. Rajeswaran, J. K. Pradhan, S. Anantha Ramakrishna, and A. M. Umarji, “Thermochromic VO2 thin films on ito-coated glass substrates for broadband high absorption at infra-red frequencies,” J. Appl. Phys. 122(16), 163107 (2017).
[Crossref]

Van Bilzen, B.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Velichko, A.

P. Boriskov, A. Velichko, A. Pergament, G. Stefanovich, and D. Stefanovich, “The effect of electric field on metal-insulator phase transition in vanadium dioxide,” Tech. Phys. Lett. 28(5), 406–408 (2002).
[Crossref]

Vignaud, G.

J. K. Kana, J. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Walser, R. M.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Wang, D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Weiss, S. M.

Wheeler, V. D.

Wright, C. D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Wu, B.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Wu, R.

Wuttig, M.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Yang, J. K. W.

K. T. P. Lim, H. Liu, Y. Liu, and J. K. W. Yang, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

Yang, Z.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

Yoo, S. B.

Zhou, Y.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

Zimmers, A.

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Appl. Phys. Lett. (4)

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor-metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

S. B. Lee, K. Kim, J. S. Oh, B. Kahng, and J. S. Lee, “Origin of variation in switching voltages in threshold-switching phenomena of VO2 thin films,” Appl. Phys. Lett. 102(6), 063501 (2013).
[Crossref]

S. Lee, T. L. Meyer, S. Park, T. Egami, and H. N. Lee, “Growth control of the oxidation state in vanadium oxide thin films,” Appl. Phys. Lett. 105(22), 223515 (2014).
[Crossref]

W. H. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Appl. Surf. Sci. (1)

J. Sun and G. K. Pribil, “Analyzing optical properties of thin vanadium oxide films through semiconductor-to-metal phase transition using spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 819–823 (2017).
[Crossref]

Eur. Phys. Lett. (1)

S. N. Gupta, A. Pal, D. Muthu, P. A. Kumar, and A. Sood, “Metallic monoclinic phase in VO2 induced by electrochemical gating: In situ raman study,” Eur. Phys. Lett. 115(1), 17001 (2016).
[Crossref]

IEEE Electron Device Lett. (1)

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

J. Appl. Phys. (2)

C. Ko and S. Ramanathan, “Dispersive capacitance and conductance across the phase transition boundary in metal-vanadium oxide-silicon devices,” J. Appl. Phys. 106(3), 034101 (2009).
[Crossref]

B. Rajeswaran, J. K. Pradhan, S. Anantha Ramakrishna, and A. M. Umarji, “Thermochromic VO2 thin films on ito-coated glass substrates for broadband high absorption at infra-red frequencies,” J. Appl. Phys. 122(16), 163107 (2017).
[Crossref]

J. Mater. Sci. (1)

T. Maruyama and Y. Ikuta, “Vanadium dioxide thin films prepared by chemical vapour deposition from vanadium (III) acetylacetonate,” J. Mater. Sci. 28(18), 5073–5078 (1993).
[Crossref]

J. Phys. D: Appl. Phys. (1)

R. Bharathi, R. Naorem, and A. Umarji, “Metal–insulator transition characteristics of vanadium dioxide thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture,” J. Phys. D: Appl. Phys. 48(30), 305103 (2015).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Mater. Chem. Phys. (1)

B. Rajeswaran and A. Umarji, “Phase evolution and infrared transmittance in monophasic VO2 synthesized by a rapid non-equilibrium process,” Mater. Chem. Phys. 190, 219–229 (2017).
[Crossref]

Nat. Commun. (1)

K. T. P. Lim, H. Liu, Y. Liu, and J. K. W. Yang, “Broadband transparent optical phase change materials for high-performance nonvolatile photonics,” Nat. Commun. 10(1), 25 (2019).
[Crossref]

Nat. Photonics (2)

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Opt. Commun. (1)

J. K. Kana, J. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Opt. Express (8)

K. J. Miller, K. A. Hallman, R. F. Haglund, and S. M. Weiss, “Silicon waveguide optical switch with embedded phase change material,” Opt. Express 25(22), 26527–26536 (2017).
[Crossref]

I. Olivares, L. Sanchez, J. Parra, R. Larrea, A. Griol, M. Menghini, P. Homm, L.-W. Jang, B. Van Bilzen, J. W. Seo, J.-P. Locquet, and P. Sanchis, “Optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters,” Opt. Express 26(10), 12387–12395 (2018).
[Crossref]

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express 18(11), 11192–11201 (2010).
[Crossref]

J. D. Ryckman, V. Diez-Blanco, J. Nag, R. E. Marvel, B. Choi, R. F. Haglund, and S. M. Weiss, “Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators,” Opt. Express 20(12), 13215–13225 (2012).
[Crossref]

J. D. Ryckman, K. A. Hallman, R. E. Marvel, R. F. Haglund, and S. M. Weiss, “Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition,” Opt. Express 21(9), 10753–10763 (2013).
[Crossref]

A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
[Crossref]

P. Markov, K. Appavoo, R. F. Haglund, and S. M. Weiss, “Hybrid Si-VO2-Au optical modulator based on near-field plasmonic coupling,” Opt. Express 23(5), 6878–6887 (2015).
[Crossref]

S. Feng, K. Shang, J. T. Bovington, R. Wu, B. Guan, K.-T. Cheng, J. E. Bowers, and S. B. Yoo, “Athermal silicon ring resonators clad with titanium dioxide for 1.3 μm wavelength operation,” Opt. Express 23(20), 25653–25660 (2015).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (2)

A. Cavalleri, T. Dekorsy, H. H. Chong, J.-C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric-field-driven phase transition in vanadium dioxide,” Phys. Rev. B 84(24), 241410 (2011).
[Crossref]

Phys. Rev. Lett. (1)

A. Cavalleri, C. Tóth, C. W. Siders, J. Squier, F. Ráksi, P. Forget, and J. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref]

Science (1)

J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation,” Science 339(6126), 1402–1405 (2013).
[Crossref]

Tech. Phys. Lett. (1)

P. Boriskov, A. Velichko, A. Pergament, G. Stefanovich, and D. Stefanovich, “The effect of electric field on metal-insulator phase transition in vanadium dioxide,” Tech. Phys. Lett. 28(5), 406–408 (2002).
[Crossref]

Other (1)

Europractice: MPW, “iSiPP25G,” https://europractice-ic.com/mpw-prototyping/siphotonics/imec/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Material characterization summary of VO2. (a) XRD pattern of VO2 thin film on SOI substrate, (b) Raman spectrum of VO2 at room temperature, and (c) Raman spectrum at various temperature.
Fig. 2.
Fig. 2. Summary of electrical characterization of VO2, (a) Temperature dependent electrical resistance measurement during heating and cooling cycle across the transition of the studied device, (b) First derivative of electrical resistance with respect to temperature during the heating and cooling cycle.
Fig. 3.
Fig. 3. Temperature dependent refractive index measurement of VO2 at wavelength of 1000 nm using spectroscopic ellipsometry (a) n and (b) k.
Fig. 4.
Fig. 4. (a-d) Fabrication process flow of VO2 modulator, and (e) Microscope image of the ring resonator with VO2 tab.
Fig. 5.
Fig. 5. Summary of spectral characteristics of a substrate heated ring resonator with VO2 patch. (a) Transmission spectrum of the ring resonator at various temperature, (b) Extinction ratio, (c) Cavity loss, and (d) $d(Extinction)/dT$ during heating and cooling cycle of the substrate. The solid line through the points are provided to guide the eyes.
Fig. 6.
Fig. 6. Summary of spectral characteristics of a ring resonator with a lateral heater. a) Schematic of a device with lateral heaters, b) Microscope image of a ring resonator with VO2 patch, c) Transmission spectrum of a resonator with increasing heater power, and d) Wavelength shift and extinction ratio evolution with increasing heater power. The solid line through the points are provided to guide the eyes.
Fig. 7.
Fig. 7. (a) Microscope image of the Mach-Zehnder interferometer with VO2 tabs in both the arms, (b) Transmission spectrum of the symmetric Mach-Zehnder interferometer with varying heater power, (c) Insertion loss of the device with varying heater power, and Time domain measurement of the VO2 based optical modulator with (d) fixed heater power and variable voltage swing and (e) fixed voltage swing and variable heater power. The solid line through the points are provided to guide the eyes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L o s s   ( d B ) = 2 π n g L λ r e s Q ring
d n eff d T = i d ( Γ i n i ) d T = Γ Si d n Si d T + Γ SiO 2 d n SiO 2 d T + Γ VO 2 d n VO 2 d T
d n eff d T = 2 π R Δ λ λ 0 L

Metrics