Abstract

Slow light of stimulated Brillouin scattering in double-clad As2Se3 chalcogenide photonic crystal fibers was investigated theoretically. The influence of air hole size of the inner and outer cladding of the PCFs on Brillouin gain spectrum, Brillouin threshold time delay, and Brillouin gain by taking into account the contribution of the high-order acoustic mode was numerical simulated by full vectorial finite element method. The simulated results indicate that the properties of slow light are affected more obviously by varying the air filling fraction in the inner cladding and less affected by the air hole size of the outer cladding. We found that with the time delay up to 705ns, Brillouin gain up to 40dB can be achieved with pump power of only 10mW in a 1m long chalcogenide PCF when the air filling fraction in the inner cladding is 0.9. The pertinent results can be of great importance for studying and designing the optical devices or optical sensors based on this kind of PCF.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber

Kwang Yong Song, Kazi S. Abedin, Kazuo Hotate, Miguel González Herráez, and Luc Thévenaz
Opt. Express 14(13) 5860-5865 (2006)

Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers

Catalin Florea, Mark Bashkansky, Zachary Dutton, Jasbinder Sanghera, Paul Pureza, and Ishwar Aggarwal
Opt. Express 14(25) 12063-12070 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Mok and B. J. Eggleton, “Photonics:Expect more delays,” Nature 433(7028), 811–812 (2005).
    [Crossref]
  2. S. Rawal, R. K. Sinha, and R. M. D. L. Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17(16), 13315–13325 (2009).
    [Crossref]
  3. S. Rawal, R. K. Sinha, and R. M. D. L. Rue, “Silicon-on-insulator photonic crystal miniature devices with slow light enhanced third-order nonlinearities,” J. Nanophotonics 6(1), 063504 (2012).
    [Crossref]
  4. M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).
  5. J. P. Zhang, G. Hernandez, and Y. F. Zhu, “Slow light with cavity Electromagnetically Induced Transparency,” Opt. Lett. 33(1), 46–48 (2008).
    [Crossref]
  6. S. W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on Coherent Population Oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
    [Crossref]
  7. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
    [Crossref]
  8. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical delays via Brillouin slow light in an Optical Fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [Crossref]
  9. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
    [Crossref]
  10. K. Y. Song, K. S. Abedin, K. Hotate, and M. G. L. Herráez, “Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006).
    [Crossref]
  11. T. S. Saini, A. Kumar, and R. K. Sinha, “Slow light generation in single-mode tellurite fibers,” J. Mod. Opt. 62(7), 508–513 (2015).
    [Crossref]
  12. R. K. Sinha, A. Kumar, and T. S. Saini, “Analysis and design of Single-Mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features,” IEEE J. Sel. Top. Quantum Electron. 22(2), 287–292 (2016).
    [Crossref]
  13. B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
    [Crossref]
  14. R. E. Slusher, R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
    [Crossref]
  15. T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 3914–3920 µm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
    [Crossref]
  16. K. Ogusu, H. Li, and M. Kitao, “Brillouin-gain coefficients of chalcogenide glasses,” J. Opt. Soc. Am. B 21(7), 1302–1304 (2004).
    [Crossref]
  17. M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
    [Crossref]
  18. C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14(25), 12063–12070 (2006).
    [Crossref]
  19. S. Yadav, A. Kumar, T. S. Saini, and R. K. Sinha, “SBS based slow-light generation in rectangular lattice graded-index photonic crystal fiber: Design and analysis,” Optik 132, 164–170 (2017).
    [Crossref]
  20. X. Cheng, L. Xia, W. Li, and C. Li, “Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber,” Chin. Opt. Lett. 15(4), 65–67 (2017).
    [Crossref]
  21. D. Y. Wang, S. L. Hou, J. L. Lei, X. X. Li, L. J. Li, H. Q. Wang, and M. H. Cao, “Dependence of structure on Stimulated Brillouin Scattering Slow Light in Double-clad As2Se3 chalcogenide Photonic Crystal Fibers,” in “Third International Conference on Photonics and Optical Engineering, Proc. of SPIE” A. L. Tian, ed. (2019), vol. 11052, 110520E.
  22. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  23. G. S. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin cattering in a singlemode tellurite fiber for amplification, lasing and slow light generation,” J. Lightwave Technol. 26(5), 492–498 (2008).
    [Crossref]
  24. T. L. Cheng, R. Cherif, M. S. Liao, W. Gao, Z. C. Duan, M. Zghal, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering of Higher-Order acoustic modes in Four-Core tellurite microstructured Optical Fiber,” Appl. Phys. Express 5(10), 102501 (2012).
    [Crossref]
  25. A. Baili, R. Cherif, A. B. Salem, A. Kumar, R. K. Sinha, and M. Zghal, “Slow light generated via Brillouin scattering in small core chalcogenide photonic crystal fiber,” in “Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, Proc. of SPIE” S. Z. Yin and R. Y. Guo, eds. (2015), vol. 9586, 95860P.
  26. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
    [Crossref]
  27. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
    [Crossref]
  28. Z. M. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22(11), 2378–2384 (2005).
    [Crossref]

2017 (2)

S. Yadav, A. Kumar, T. S. Saini, and R. K. Sinha, “SBS based slow-light generation in rectangular lattice graded-index photonic crystal fiber: Design and analysis,” Optik 132, 164–170 (2017).
[Crossref]

X. Cheng, L. Xia, W. Li, and C. Li, “Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber,” Chin. Opt. Lett. 15(4), 65–67 (2017).
[Crossref]

2016 (1)

R. K. Sinha, A. Kumar, and T. S. Saini, “Analysis and design of Single-Mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features,” IEEE J. Sel. Top. Quantum Electron. 22(2), 287–292 (2016).
[Crossref]

2015 (2)

2012 (3)

S. Rawal, R. K. Sinha, and R. M. D. L. Rue, “Silicon-on-insulator photonic crystal miniature devices with slow light enhanced third-order nonlinearities,” J. Nanophotonics 6(1), 063504 (2012).
[Crossref]

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

T. L. Cheng, R. Cherif, M. S. Liao, W. Gao, Z. C. Duan, M. Zghal, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering of Higher-Order acoustic modes in Four-Core tellurite microstructured Optical Fiber,” Appl. Phys. Express 5(10), 102501 (2012).
[Crossref]

2011 (1)

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

2010 (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

2009 (1)

2008 (3)

2007 (1)

S. W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on Coherent Population Oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[Crossref]

2006 (2)

2005 (6)

Z. M. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22(11), 2378–2384 (2005).
[Crossref]

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
[Crossref]

J. T. Mok and B. J. Eggleton, “Photonics:Expect more delays,” Nature 433(7028), 811–812 (2005).
[Crossref]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical delays via Brillouin slow light in an Optical Fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

2004 (2)

Abedin, K. S.

Aggarwal, I.

Aggarwal, I. D.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

R. E. Slusher, R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Baili, A.

A. Baili, R. Cherif, A. B. Salem, A. Kumar, R. K. Sinha, and M. Zghal, “Slow light generated via Brillouin scattering in small core chalcogenide photonic crystal fiber,” in “Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, Proc. of SPIE” S. Z. Yin and R. Y. Guo, eds. (2015), vol. 9586, 95860P.

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14(25), 12063–12070 (2006).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical delays via Brillouin slow light in an Optical Fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Bourderionnet, J.

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical delays via Brillouin slow light in an Optical Fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Z. M. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22(11), 2378–2384 (2005).
[Crossref]

Cao, M. H.

D. Y. Wang, S. L. Hou, J. L. Lei, X. X. Li, L. J. Li, H. Q. Wang, and M. H. Cao, “Dependence of structure on Stimulated Brillouin Scattering Slow Light in Double-clad As2Se3 chalcogenide Photonic Crystal Fibers,” in “Third International Conference on Photonics and Optical Engineering, Proc. of SPIE” A. L. Tian, ed. (2019), vol. 11052, 110520E.

Capmany, J.

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

Chang, S. W.

S. W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on Coherent Population Oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[Crossref]

Cheng, T. L.

T. L. Cheng, R. Cherif, M. S. Liao, W. Gao, Z. C. Duan, M. Zghal, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering of Higher-Order acoustic modes in Four-Core tellurite microstructured Optical Fiber,” Appl. Phys. Express 5(10), 102501 (2012).
[Crossref]

Cheng, X.

X. Cheng, L. Xia, W. Li, and C. Li, “Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber,” Chin. Opt. Lett. 15(4), 65–67 (2017).
[Crossref]

Cherif, R.

T. L. Cheng, R. Cherif, M. S. Liao, W. Gao, Z. C. Duan, M. Zghal, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering of Higher-Order acoustic modes in Four-Core tellurite microstructured Optical Fiber,” Appl. Phys. Express 5(10), 102501 (2012).
[Crossref]

A. Baili, R. Cherif, A. B. Salem, A. Kumar, R. K. Sinha, and M. Zghal, “Slow light generated via Brillouin scattering in small core chalcogenide photonic crystal fiber,” in “Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, Proc. of SPIE” S. Z. Yin and R. Y. Guo, eds. (2015), vol. 9586, 95860P.

Chowdhury, D.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Chuang, S. L.

S. W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on Coherent Population Oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[Crossref]

Combrié, S.

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

Davies, B. L.

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Duan, Z. C.

T. L. Cheng, R. Cherif, M. S. Liao, W. Gao, Z. C. Duan, M. Zghal, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering of Higher-Order acoustic modes in Four-Core tellurite microstructured Optical Fiber,” Appl. Phys. Express 5(10), 102501 (2012).
[Crossref]

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14(25), 12063–12070 (2006).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

J. T. Mok and B. J. Eggleton, “Photonics:Expect more delays,” Nature 433(7028), 811–812 (2005).
[Crossref]

Eisenstein, G.

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

Florea, C.

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Gaeta, A. L.

Gao, W.

T. L. Cheng, R. Cherif, M. S. Liao, W. Gao, Z. C. Duan, M. Zghal, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering of Higher-Order acoustic modes in Four-Core tellurite microstructured Optical Fiber,” Appl. Phys. Express 5(10), 102501 (2012).
[Crossref]

Gauthier, D. J.

Z. M. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22(11), 2378–2384 (2005).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical delays via Brillouin slow light in an Optical Fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Hernandez, G.

Herráez, M. G.

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
[Crossref]

Herráez, M. G. L.

Hodelin, J.

Hotate, K.

Hou, S. L.

D. Y. Wang, S. L. Hou, J. L. Lei, X. X. Li, L. J. Li, H. Q. Wang, and M. H. Cao, “Dependence of structure on Stimulated Brillouin Scattering Slow Light in Double-clad As2Se3 chalcogenide Photonic Crystal Fibers,” in “Third International Conference on Photonics and Optical Engineering, Proc. of SPIE” A. L. Tian, ed. (2019), vol. 11052, 110520E.

Kitao, M.

Kobyakov, A.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Kondratko, P. K.

S. W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on Coherent Population Oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[Crossref]

Kumar, A.

S. Yadav, A. Kumar, T. S. Saini, and R. K. Sinha, “SBS based slow-light generation in rectangular lattice graded-index photonic crystal fiber: Design and analysis,” Optik 132, 164–170 (2017).
[Crossref]

R. K. Sinha, A. Kumar, and T. S. Saini, “Analysis and design of Single-Mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features,” IEEE J. Sel. Top. Quantum Electron. 22(2), 287–292 (2016).
[Crossref]

T. S. Saini, A. Kumar, and R. K. Sinha, “Slow light generation in single-mode tellurite fibers,” J. Mod. Opt. 62(7), 508–513 (2015).
[Crossref]

T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 3914–3920 µm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
[Crossref]

A. Baili, R. Cherif, A. B. Salem, A. Kumar, R. K. Sinha, and M. Zghal, “Slow light generated via Brillouin scattering in small core chalcogenide photonic crystal fiber,” in “Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, Proc. of SPIE” S. Z. Yin and R. Y. Guo, eds. (2015), vol. 9586, 95860P.

Lei, J. L.

D. Y. Wang, S. L. Hou, J. L. Lei, X. X. Li, L. J. Li, H. Q. Wang, and M. H. Cao, “Dependence of structure on Stimulated Brillouin Scattering Slow Light in Double-clad As2Se3 chalcogenide Photonic Crystal Fibers,” in “Third International Conference on Photonics and Optical Engineering, Proc. of SPIE” A. L. Tian, ed. (2019), vol. 11052, 110520E.

Lenz, G.

Li, C.

X. Cheng, L. Xia, W. Li, and C. Li, “Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber,” Chin. Opt. Lett. 15(4), 65–67 (2017).
[Crossref]

Li, H.

Li, L. J.

D. Y. Wang, S. L. Hou, J. L. Lei, X. X. Li, L. J. Li, H. Q. Wang, and M. H. Cao, “Dependence of structure on Stimulated Brillouin Scattering Slow Light in Double-clad As2Se3 chalcogenide Photonic Crystal Fibers,” in “Third International Conference on Photonics and Optical Engineering, Proc. of SPIE” A. L. Tian, ed. (2019), vol. 11052, 110520E.

Li, W.

X. Cheng, L. Xia, W. Li, and C. Li, “Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber,” Chin. Opt. Lett. 15(4), 65–67 (2017).
[Crossref]

Li, X. X.

D. Y. Wang, S. L. Hou, J. L. Lei, X. X. Li, L. J. Li, H. Q. Wang, and M. H. Cao, “Dependence of structure on Stimulated Brillouin Scattering Slow Light in Double-clad As2Se3 chalcogenide Photonic Crystal Fibers,” in “Third International Conference on Photonics and Optical Engineering, Proc. of SPIE” A. L. Tian, ed. (2019), vol. 11052, 110520E.

Liao, M. S.

T. L. Cheng, R. Cherif, M. S. Liao, W. Gao, Z. C. Duan, M. Zghal, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering of Higher-Order acoustic modes in Four-Core tellurite microstructured Optical Fiber,” Appl. Phys. Express 5(10), 102501 (2012).
[Crossref]

Mok, J. T.

J. T. Mok and B. J. Eggleton, “Photonics:Expect more delays,” Nature 433(7028), 811–812 (2005).
[Crossref]

Mori, A.

Mork, J.

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

Nguyen, V. Q.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Ogusu, K.

Ohishi, Y.

T. L. Cheng, R. Cherif, M. S. Liao, W. Gao, Z. C. Duan, M. Zghal, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering of Higher-Order acoustic modes in Four-Core tellurite microstructured Optical Fiber,” Appl. Phys. Express 5(10), 102501 (2012).
[Crossref]

G. S. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin cattering in a singlemode tellurite fiber for amplification, lasing and slow light generation,” J. Lightwave Technol. 26(5), 492–498 (2008).
[Crossref]

Okawachi, Y.

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, “Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers,” Opt. Express 14(25), 12063–12070 (2006).
[Crossref]

Qin, G. S.

Rawal, S.

S. Rawal, R. K. Sinha, and R. M. D. L. Rue, “Silicon-on-insulator photonic crystal miniature devices with slow light enhanced third-order nonlinearities,” J. Nanophotonics 6(1), 063504 (2012).
[Crossref]

S. Rawal, R. K. Sinha, and R. M. D. L. Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17(16), 13315–13325 (2009).
[Crossref]

Reithmaier, J. P.

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

Richardson, K.

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Rossi, A. D.

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

Rue, R. M. D. L.

S. Rawal, R. K. Sinha, and R. M. D. L. Rue, “Silicon-on-insulator photonic crystal miniature devices with slow light enhanced third-order nonlinearities,” J. Nanophotonics 6(1), 063504 (2012).
[Crossref]

S. Rawal, R. K. Sinha, and R. M. D. L. Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17(16), 13315–13325 (2009).
[Crossref]

Saini, T. S.

S. Yadav, A. Kumar, T. S. Saini, and R. K. Sinha, “SBS based slow-light generation in rectangular lattice graded-index photonic crystal fiber: Design and analysis,” Optik 132, 164–170 (2017).
[Crossref]

R. K. Sinha, A. Kumar, and T. S. Saini, “Analysis and design of Single-Mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features,” IEEE J. Sel. Top. Quantum Electron. 22(2), 287–292 (2016).
[Crossref]

T. S. Saini, A. Kumar, and R. K. Sinha, “Slow light generation in single-mode tellurite fibers,” J. Mod. Opt. 62(7), 508–513 (2015).
[Crossref]

T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 3914–3920 µm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
[Crossref]

Salem, A. B.

A. Baili, R. Cherif, A. B. Salem, A. Kumar, R. K. Sinha, and M. Zghal, “Slow light generated via Brillouin scattering in small core chalcogenide photonic crystal fiber,” in “Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, Proc. of SPIE” S. Z. Yin and R. Y. Guo, eds. (2015), vol. 9586, 95860P.

Sales, S.

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

Sanghera, J.

Sanghera, J. S.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Santagiustina, M.

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

Sauer, M.

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical delays via Brillouin slow light in an Optical Fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Sharping, J. E.

Shaw, L. B.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

R. E. Slusher, R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
[Crossref]

Sinha, R. K.

S. Yadav, A. Kumar, T. S. Saini, and R. K. Sinha, “SBS based slow-light generation in rectangular lattice graded-index photonic crystal fiber: Design and analysis,” Optik 132, 164–170 (2017).
[Crossref]

R. K. Sinha, A. Kumar, and T. S. Saini, “Analysis and design of Single-Mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features,” IEEE J. Sel. Top. Quantum Electron. 22(2), 287–292 (2016).
[Crossref]

T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 3914–3920 µm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
[Crossref]

T. S. Saini, A. Kumar, and R. K. Sinha, “Slow light generation in single-mode tellurite fibers,” J. Mod. Opt. 62(7), 508–513 (2015).
[Crossref]

S. Rawal, R. K. Sinha, and R. M. D. L. Rue, “Silicon-on-insulator photonic crystal miniature devices with slow light enhanced third-order nonlinearities,” J. Nanophotonics 6(1), 063504 (2012).
[Crossref]

S. Rawal, R. K. Sinha, and R. M. D. L. Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17(16), 13315–13325 (2009).
[Crossref]

A. Baili, R. Cherif, A. B. Salem, A. Kumar, R. K. Sinha, and M. Zghal, “Slow light generated via Brillouin scattering in small core chalcogenide photonic crystal fiber,” in “Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, Proc. of SPIE” S. Z. Yin and R. Y. Guo, eds. (2015), vol. 9586, 95860P.

Slusher, R. E.

Song, K. Y.

Sotobayashi, H.

Su, H.

S. W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on Coherent Population Oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[Crossref]

Suzuki, T.

T. L. Cheng, R. Cherif, M. S. Liao, W. Gao, Z. C. Duan, M. Zghal, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering of Higher-Order acoustic modes in Four-Core tellurite microstructured Optical Fiber,” Appl. Phys. Express 5(10), 102501 (2012).
[Crossref]

G. S. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin cattering in a singlemode tellurite fiber for amplification, lasing and slow light generation,” J. Lightwave Technol. 26(5), 492–498 (2008).
[Crossref]

Thévenaz, L.

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
[Crossref]

Tsuchiya, M.

Wang, D. Y.

D. Y. Wang, S. L. Hou, J. L. Lei, X. X. Li, L. J. Li, H. Q. Wang, and M. H. Cao, “Dependence of structure on Stimulated Brillouin Scattering Slow Light in Double-clad As2Se3 chalcogenide Photonic Crystal Fibers,” in “Third International Conference on Photonics and Optical Engineering, Proc. of SPIE” A. L. Tian, ed. (2019), vol. 11052, 110520E.

Wang, H. Q.

D. Y. Wang, S. L. Hou, J. L. Lei, X. X. Li, L. J. Li, H. Q. Wang, and M. H. Cao, “Dependence of structure on Stimulated Brillouin Scattering Slow Light in Double-clad As2Se3 chalcogenide Photonic Crystal Fibers,” in “Third International Conference on Photonics and Optical Engineering, Proc. of SPIE” A. L. Tian, ed. (2019), vol. 11052, 110520E.

Willner, A. E.

Xia, L.

X. Cheng, L. Xia, W. Li, and C. Li, “Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber,” Chin. Opt. Lett. 15(4), 65–67 (2017).
[Crossref]

Yadav, S.

S. Yadav, A. Kumar, T. S. Saini, and R. K. Sinha, “SBS based slow-light generation in rectangular lattice graded-index photonic crystal fiber: Design and analysis,” Optik 132, 164–170 (2017).
[Crossref]

Yvind, K.

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

Zghal, M.

T. L. Cheng, R. Cherif, M. S. Liao, W. Gao, Z. C. Duan, M. Zghal, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering of Higher-Order acoustic modes in Four-Core tellurite microstructured Optical Fiber,” Appl. Phys. Express 5(10), 102501 (2012).
[Crossref]

A. Baili, R. Cherif, A. B. Salem, A. Kumar, R. K. Sinha, and M. Zghal, “Slow light generated via Brillouin scattering in small core chalcogenide photonic crystal fiber,” in “Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, Proc. of SPIE” S. Z. Yin and R. Y. Guo, eds. (2015), vol. 9586, 95860P.

Zhang, J. P.

Zhu, Y. F.

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical delays via Brillouin slow light in an Optical Fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Z. M. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22(11), 2378–2384 (2005).
[Crossref]

Adv. Opt. Photonics (1)

A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photonics 2(1), 1–59 (2010).
[Crossref]

Appl. Phys. Express (1)

T. L. Cheng, R. Cherif, M. S. Liao, W. Gao, Z. C. Duan, M. Zghal, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin scattering of Higher-Order acoustic modes in Four-Core tellurite microstructured Optical Fiber,” Appl. Phys. Express 5(10), 102501 (2012).
[Crossref]

Appl. Phys. Lett. (1)

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[Crossref]

Chin. Opt. Lett. (1)

X. Cheng, L. Xia, W. Li, and C. Li, “Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber,” Chin. Opt. Lett. 15(4), 65–67 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

S. W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on Coherent Population Oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. K. Sinha, A. Kumar, and T. S. Saini, “Analysis and design of Single-Mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features,” IEEE J. Sel. Top. Quantum Electron. 22(2), 287–292 (2016).
[Crossref]

IEEE. Photon. Soc. Newslett. (1)

M. Santagiustina, G. Eisenstein, L. Thévenaz, J. Capmany, J. Mork, J. P. Reithmaier, A. D. Rossi, A. D. Rossi, S. Sales, K. Yvind, S. Combrié, and J. Bourderionnet, “Slow light devices and their applications to microwaves and photonics,” IEEE. Photon. Soc. Newslett. 26(1), 5–12 (2012).

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

T. S. Saini, A. Kumar, and R. K. Sinha, “Slow light generation in single-mode tellurite fibers,” J. Mod. Opt. 62(7), 508–513 (2015).
[Crossref]

J. Nanophotonics (1)

S. Rawal, R. K. Sinha, and R. M. D. L. Rue, “Silicon-on-insulator photonic crystal miniature devices with slow light enhanced third-order nonlinearities,” J. Nanophotonics 6(1), 063504 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

J. Opt. Soc. Am. B (3)

Nat. Photonics (1)

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
[Crossref]

Nature (1)

J. T. Mok and B. J. Eggleton, “Photonics:Expect more delays,” Nature 433(7028), 811–812 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optik (1)

S. Yadav, A. Kumar, T. S. Saini, and R. K. Sinha, “SBS based slow-light generation in rectangular lattice graded-index photonic crystal fiber: Design and analysis,” Optik 132, 164–170 (2017).
[Crossref]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical delays via Brillouin slow light in an Optical Fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Other (3)

D. Y. Wang, S. L. Hou, J. L. Lei, X. X. Li, L. J. Li, H. Q. Wang, and M. H. Cao, “Dependence of structure on Stimulated Brillouin Scattering Slow Light in Double-clad As2Se3 chalcogenide Photonic Crystal Fibers,” in “Third International Conference on Photonics and Optical Engineering, Proc. of SPIE” A. L. Tian, ed. (2019), vol. 11052, 110520E.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

A. Baili, R. Cherif, A. B. Salem, A. Kumar, R. K. Sinha, and M. Zghal, “Slow light generated via Brillouin scattering in small core chalcogenide photonic crystal fiber,” in “Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IX, Proc. of SPIE” S. Z. Yin and R. Y. Guo, eds. (2015), vol. 9586, 95860P.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Transverse cross-section of the double-clad As2Se3 PCF.
Fig. 2.
Fig. 2. (a) Fundamental optical mode (b) Fundamental acoustic mode
Fig. 3.
Fig. 3. High order acoustic modes with ${\textrm{d}_2}/\Lambda = 0.6$ and (a) ${\textrm{d}_1}/\Lambda = 0.4$ (b) ${\textrm{d}_1}/\Lambda = 0.6$ (c) ${\textrm{d}_1}/\Lambda = 0.9$
Fig. 4.
Fig. 4. Higher-order acoustic modes with ${\textrm{d}_1}/\Lambda = 0.4$ and (a) ${\textrm{d}_2}/\Lambda = 0.4$ (b) ${\textrm{d}_2}/\Lambda = 0.6$ (c) ${\textrm{d}_2}/\Lambda = 0.9$.
Fig. 5.
Fig. 5. Overlap integral varying with Brillouin frequency shift.
Fig. 6.
Fig. 6. Variation of Brillouin threshold with the AFF (a) in the inner cladding (b) in the outer cladding.
Fig. 7.
Fig. 7. BGS of different AFFs in the inner cladding.
Fig. 8.
Fig. 8. BGS of different AFFs in the outer cladding
Fig. 9.
Fig. 9. Brillouin gain varying with AFF, (a) the main peak in the inner cladding (b) the second peak in the inner cladding (c) the main peak in the outer cladding (d) the second peak in the outer cladding.
Fig. 10.
Fig. 10. Time delay varying with AFF (a) the main peak in the inner cladding (b) the second peak in the inner cladding (c)the main peak in the outer cladding (d) the second peak in the outer cladding
Fig. 11.
Fig. 11. Time delay varying with pump power when ${\textrm{d}_1}/\Lambda = 0.9$, ${\textrm{d}_2}/\Lambda = 0.6$
Fig. 12.
Fig. 12. Output pulse waves varying with AFF (a) in the inner cladding (b) in the outer cladding
Fig. 13.
Fig. 13. Pulse broadening factor varying with pump power.

Tables (1)

Tables Icon

Table 1. Variation of BFS (GHz) with d 1 / Λ

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d I p d z = g B I p I s α p I p ,
d I s d z = + g B I p I s α s I s .
I s ( 0 ) = I s ( L ) exp ( g B P 0 L e f f A e f f α L ) ,
L e f f = α 1 ( 1 exp ( α L ) ) ,
t 2 u + ( ω a 2 v l 2 β a 2 ) u = 0 ,
f B , i = ω a , i 2 π .
g B ( f ) = g 0 ( Δ f B / 2 ) 2 ( f f B , i ) 2 + ( Δ f B / 2 ) 2 ,
g B , i = 4 π n e f f 8 p 12 2 c λ p 3 ρ 0 f B , i Δ f B ,
I i = ( | E | 2 u i d x d y ) 2 | E | 4 d x d y | u i | 2 d x d y ,
P t h = 21 A e f f K g B L e f f ,
Δ T = K g B L e f f P p Δ f B A e f f ,
G = 10 log [ exp ( g B K P p L e f f A e f f ) ] .
B = τ o u t τ i n = [ 1 + 16 ( ln 2 ) G τ i n 2 Γ B 2 ] 1 / 2 ,

Metrics