Abstract

Solution-based copper nanowire-graphene oxides are promising building blocks in future optoelectronics ranging from transparent electrodes to electrochromic displays to stretchable electronics. In this paper, a detailed study of the optical properties extending to non-linear properties is demonstrated. An enhancement of 43% is observed for the nonlinear optical properties of these thin films in comparison to a graphene oxide thin film. Moreover, its application as transparent conductive electrodes with 93% of the optical transmittance and a sheet resistance of 10 Ω/sq is manifested.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fluoro-graphene: nonlinear optical properties

N. Liaros, A. B. Bourlinos, R. Zboril, and S. Couris
Opt. Express 21(18) 21027-21038 (2013)

Improving the graphene electrode performance in ultra-violet light emitting diode using silver nanowire networks

Tae Hoon Seo, Ah Hyun Park, Sungchan Park, S. Chandramohan, Gun Hee Lee, Myung Jong Kim, Chang-Hee Hong, and Eun-Kyung Suh
Opt. Mater. Express 5(2) 314-322 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Gong and W. Cheng, “One-Dimensional Nanomaterials for Soft Electronics,” Adv. Electron. Mater. 3(3), 1600314 (2017).
    [Crossref]
  2. S. Gong and W. Cheng, “Toward Soft Skin-Like Wearable and Implantable Energy Devices,” Adv. Energy Mater. 7(23), 1700648 (2017).
    [Crossref]
  3. J. Vossen, “Transparent conducting films,” J. Vac. Sci. Technol. 13(1), 116 (1976).
    [Crossref]
  4. T. Galstian, R. Vallée, and Y. Messaddeq, “Optical materials,” in Advanced Optical Technologies (De Gruyter, 2018), p. 205.
  5. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
    [Crossref]
  6. K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi, and S. Baik, “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nat. Nanotechnol. 5(12), 853–857 (2010).
    [Crossref]
  7. G. I. Tóth, G. Tegze, T. Pusztai, and L. Gránásy, “Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch,” Phys. Rev. Lett. 108(2), 025502 (2012).
    [Crossref]
  8. C. Liu, X. Yan, X. Song, S. Ding, D. W. Zhang, and P. Zhou, “A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications,” Nat. Nanotechnol. 13(5), 404–410 (2018).
    [Crossref]
  9. S. Pyo, W. Kim, H. I. Jung, J. Choi, and J. Kim, “Heterogeneous Integration of Carbon-Nanotube–Graphene for High-Performance, Flexible, and Transparent Photodetectors,” Small 13(27), 1700918 (2017).
    [Crossref]
  10. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
    [Crossref]
  11. Q. Tang and Z. Zhou, “Graphene-analogous low-dimensional materials,” Prog. Mater. Sci. 58(8), 1244–1315 (2013).
    [Crossref]
  12. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
    [Crossref]
  13. J. Zhao, L. Liu, and F. Li, Graphene oxide: physics and applications (Springer, 2015).
  14. Z. Luo, P. M. Vora, E. J. Mele, A. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
    [Crossref]
  15. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
    [Crossref]
  16. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref]
  17. X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
    [Crossref]
  18. Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
    [Crossref]
  19. M. Kasischke, S. Maragkaki, S. Volz, A. Ostendorf, and E. L. Gurevich, “Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses,” Appl. Surf. Sci. 445, 197–203 (2018).
    [Crossref]
  20. M. Pumera, “Graphene-based nanomaterials for energy storage,” Energy Environ. Sci. 4(3), 668–674 (2011).
    [Crossref]
  21. L. V. Thekkekara, B. Jia, Y. Zhang, L. Qiu, D. Li, and M. Gu, “On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film,” Appl. Phys. Lett. 107(3), 031105 (2015).
    [Crossref]
  22. W. Gao, “The chemistry of graphene oxide,” in Graphene oxide (Springer, 2015), pp. 61–95.
  23. J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
    [Crossref]
  24. G. Williams and P. V. Kamat, “Graphene− semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide,” Langmuir 25(24), 13869–13873 (2009).
    [Crossref]
  25. G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
    [Crossref]
  26. A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
    [Crossref]
  27. N. N. Jason, W. Shen, and W. Cheng, “Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics,” ACS Appl. Mater. Interfaces 7(30), 16760–16766 (2015).
    [Crossref]
  28. J. Li, J. Mayer, and E. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
    [Crossref]
  29. A. R. Rathmell, M. Nguyen, M. Chi, and B. J. Wiley, “Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks,” Nano Lett. 12(6), 3193–3199 (2012).
    [Crossref]
  30. S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
    [Crossref]
  31. I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
    [Crossref]
  32. L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, and J. Sun, “A long-term oxidation barrier for copper nanowires: graphene says yes,” Phys. Chem. Chem. Phys. 17(6), 4231–4236 (2015).
    [Crossref]
  33. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  34. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
    [Crossref]
  35. S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures: progress, challenges and opportunities,” Small 11(11), 1232–1252 (2015).
    [Crossref]
  36. J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
    [Crossref]
  37. M. Li, S. K. Cushing, X. Zhou, S. Guo, and N. Wu, “Fingerprinting photoluminescence of functional groups in graphene oxide,” J. Mater. Chem. 22(44), 23374–23379 (2012).
    [Crossref]
  38. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
    [Crossref]
  39. S. K. Cushing, M. Li, F. Huang, and N. Wu, “Origin of strong excitation wavelength dependent fluorescence of graphene oxide,” ACS Nano 8(1), 1002–1013 (2014).
    [Crossref]
  40. K. Subrahmanyam, A. K. Manna, S. K. Pati, and C. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
    [Crossref]
  41. X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
    [Crossref]
  42. M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
    [Crossref]
  43. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
    [Crossref]
  44. S. Biswas, A. Kole, C. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide–silver nanocomposites measured by Z-scan technique,” RSC Adv. 6(13), 10319–10325 (2016).
    [Crossref]
  45. R. K. Yadav, J. Aneesh, R. Sharma, P. Abhiramnath, T. K. Maji, G. J. Omar, A. Mishra, D. Karmakar, and K. Adarsh, “Designing hybrid graphene oxide-gold nanoparticles for nonlinear optical response: Experiment and theory,” arXiv preprint arXiv:1803.10919 (2018).
  46. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  47. M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC Adv. 6(94), 91083–91092 (2016).
    [Crossref]
  48. R. Del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21(3), 640–644 (2004).
    [Crossref]
  49. M. Luo, Y. Liu, W. Huang, W. Qiao, Y. Zhou, Y. Ye, and L.-S. Chen, “Towards flexible transparent electrodes based on carbon and metallic materials,” Micromachines 8(1), 12 (2017).
    [Crossref]
  50. U. Kreibig and M. Vollmer, Optical properties of metal clusters, Vol. 25 (Springer Science & Business Media, 2013).
  51. B. M. Van der Zande, M. R. Böhmer, L. G. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).
    [Crossref]

2018 (2)

C. Liu, X. Yan, X. Song, S. Ding, D. W. Zhang, and P. Zhou, “A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications,” Nat. Nanotechnol. 13(5), 404–410 (2018).
[Crossref]

M. Kasischke, S. Maragkaki, S. Volz, A. Ostendorf, and E. L. Gurevich, “Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses,” Appl. Surf. Sci. 445, 197–203 (2018).
[Crossref]

2017 (4)

S. Pyo, W. Kim, H. I. Jung, J. Choi, and J. Kim, “Heterogeneous Integration of Carbon-Nanotube–Graphene for High-Performance, Flexible, and Transparent Photodetectors,” Small 13(27), 1700918 (2017).
[Crossref]

S. Gong and W. Cheng, “One-Dimensional Nanomaterials for Soft Electronics,” Adv. Electron. Mater. 3(3), 1600314 (2017).
[Crossref]

S. Gong and W. Cheng, “Toward Soft Skin-Like Wearable and Implantable Energy Devices,” Adv. Energy Mater. 7(23), 1700648 (2017).
[Crossref]

M. Luo, Y. Liu, W. Huang, W. Qiao, Y. Zhou, Y. Ye, and L.-S. Chen, “Towards flexible transparent electrodes based on carbon and metallic materials,” Micromachines 8(1), 12 (2017).
[Crossref]

2016 (2)

S. Biswas, A. Kole, C. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide–silver nanocomposites measured by Z-scan technique,” RSC Adv. 6(13), 10319–10325 (2016).
[Crossref]

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC Adv. 6(94), 91083–91092 (2016).
[Crossref]

2015 (5)

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

L. V. Thekkekara, B. Jia, Y. Zhang, L. Qiu, D. Li, and M. Gu, “On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film,” Appl. Phys. Lett. 107(3), 031105 (2015).
[Crossref]

N. N. Jason, W. Shen, and W. Cheng, “Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics,” ACS Appl. Mater. Interfaces 7(30), 16760–16766 (2015).
[Crossref]

L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, and J. Sun, “A long-term oxidation barrier for copper nanowires: graphene says yes,” Phys. Chem. Chem. Phys. 17(6), 4231–4236 (2015).
[Crossref]

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures: progress, challenges and opportunities,” Small 11(11), 1232–1252 (2015).
[Crossref]

2014 (3)

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref]

S. K. Cushing, M. Li, F. Huang, and N. Wu, “Origin of strong excitation wavelength dependent fluorescence of graphene oxide,” ACS Nano 8(1), 1002–1013 (2014).
[Crossref]

2013 (3)

Q. Tang and Z. Zhou, “Graphene-analogous low-dimensional materials,” Prog. Mater. Sci. 58(8), 1244–1315 (2013).
[Crossref]

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
[Crossref]

2012 (6)

A. R. Rathmell, M. Nguyen, M. Chi, and B. J. Wiley, “Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks,” Nano Lett. 12(6), 3193–3199 (2012).
[Crossref]

M. Li, S. K. Cushing, X. Zhou, S. Guo, and N. Wu, “Fingerprinting photoluminescence of functional groups in graphene oxide,” J. Mater. Chem. 22(44), 23374–23379 (2012).
[Crossref]

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

G. I. Tóth, G. Tegze, T. Pusztai, and L. Gránásy, “Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch,” Phys. Rev. Lett. 108(2), 025502 (2012).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

2011 (2)

M. Pumera, “Graphene-based nanomaterials for energy storage,” Energy Environ. Sci. 4(3), 668–674 (2011).
[Crossref]

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref]

2010 (7)

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi, and S. Baik, “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nat. Nanotechnol. 5(12), 853–857 (2010).
[Crossref]

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
[Crossref]

K. Subrahmanyam, A. K. Manna, S. K. Pati, and C. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

2009 (3)

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[Crossref]

Z. Luo, P. M. Vora, E. J. Mele, A. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

G. Williams and P. V. Kamat, “Graphene− semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide,” Langmuir 25(24), 13869–13873 (2009).
[Crossref]

2008 (1)

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref]

2004 (1)

2003 (1)

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

2000 (1)

B. M. Van der Zande, M. R. Böhmer, L. G. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).
[Crossref]

1991 (1)

J. Li, J. Mayer, and E. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1976 (1)

J. Vossen, “Transparent conducting films,” J. Vac. Sci. Technol. 13(1), 116 (1976).
[Crossref]

1968 (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

1958 (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Abhiramnath, P.

R. K. Yadav, J. Aneesh, R. Sharma, P. Abhiramnath, T. K. Maji, G. J. Omar, A. Mishra, D. Karmakar, and K. Adarsh, “Designing hybrid graphene oxide-gold nanoparticles for nonlinear optical response: Experiment and theory,” arXiv preprint arXiv:1803.10919 (2018).

Adarsh, K.

R. K. Yadav, J. Aneesh, R. Sharma, P. Abhiramnath, T. K. Maji, G. J. Omar, A. Mishra, D. Karmakar, and K. Adarsh, “Designing hybrid graphene oxide-gold nanoparticles for nonlinear optical response: Experiment and theory,” arXiv preprint arXiv:1803.10919 (2018).

Ahn, J.-H.

K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi, and S. Baik, “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nat. Nanotechnol. 5(12), 853–857 (2010).
[Crossref]

Aneesh, J.

R. K. Yadav, J. Aneesh, R. Sharma, P. Abhiramnath, T. K. Maji, G. J. Omar, A. Mishra, D. Karmakar, and K. Adarsh, “Designing hybrid graphene oxide-gold nanoparticles for nonlinear optical response: Experiment and theory,” arXiv preprint arXiv:1803.10919 (2018).

Baik, S.

K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi, and S. Baik, “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nat. Nanotechnol. 5(12), 853–857 (2010).
[Crossref]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

Bhanushali, S.

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures: progress, challenges and opportunities,” Small 11(11), 1232–1252 (2015).
[Crossref]

Biswas, S.

S. Biswas, A. Kole, C. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide–silver nanocomposites measured by Z-scan technique,” RSC Adv. 6(13), 10319–10325 (2016).
[Crossref]

Blau, W. J.

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[Crossref]

Böhmer, M. R.

B. M. Van der Zande, M. R. Böhmer, L. G. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Cao, L.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Chen, C. W.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref]

Chen, H. A.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref]

Chen, I. S.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref]

Chen, L.-S.

M. Luo, Y. Liu, W. Huang, W. Qiao, Y. Zhou, Y. Ye, and L.-S. Chen, “Towards flexible transparent electrodes based on carbon and metallic materials,” Micromachines 8(1), 12 (2017).
[Crossref]

Chen, Q.

J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
[Crossref]

Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Chen, X.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Chen, Y.

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
[Crossref]

Cheng, L.

J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
[Crossref]

Cheng, W.

S. Gong and W. Cheng, “One-Dimensional Nanomaterials for Soft Electronics,” Adv. Electron. Mater. 3(3), 1600314 (2017).
[Crossref]

S. Gong and W. Cheng, “Toward Soft Skin-Like Wearable and Implantable Energy Devices,” Adv. Energy Mater. 7(23), 1700648 (2017).
[Crossref]

N. N. Jason, W. Shen, and W. Cheng, “Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics,” ACS Appl. Mater. Interfaces 7(30), 16760–16766 (2015).
[Crossref]

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures: progress, challenges and opportunities,” Small 11(11), 1232–1252 (2015).
[Crossref]

Chhowalla, M.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

Chi, M.

A. R. Rathmell, M. Nguyen, M. Chi, and B. J. Wiley, “Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks,” Nano Lett. 12(6), 3193–3199 (2012).
[Crossref]

Choi, H. R.

K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi, and S. Baik, “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nat. Nanotechnol. 5(12), 853–857 (2010).
[Crossref]

Choi, J.

S. Pyo, W. Kim, H. I. Jung, J. Choi, and J. Kim, “Heterogeneous Integration of Carbon-Nanotube–Graphene for High-Performance, Flexible, and Transparent Photodetectors,” Small 13(27), 1700918 (2017).
[Crossref]

Chou, H.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

Chun, K.-Y.

K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi, and S. Baik, “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nat. Nanotechnol. 5(12), 853–857 (2010).
[Crossref]

Coleman, J. N.

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[Crossref]

Colgan, E.

J. Li, J. Mayer, and E. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
[Crossref]

Cushing, S. K.

S. K. Cushing, M. Li, F. Huang, and N. Wu, “Origin of strong excitation wavelength dependent fluorescence of graphene oxide,” ACS Nano 8(1), 1002–1013 (2014).
[Crossref]

M. Li, S. K. Cushing, X. Zhou, S. Guo, and N. Wu, “Fingerprinting photoluminescence of functional groups in graphene oxide,” J. Mater. Chem. 22(44), 23374–23379 (2012).
[Crossref]

Del Coso, R.

Ding, S.

C. Liu, X. Yan, X. Song, S. Ding, D. W. Zhang, and P. Zhou, “A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications,” Nat. Nanotechnol. 13(5), 404–410 (2018).
[Crossref]

Domingues, S. H.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

Eda, G.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref]

Ellmer, K.

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

Feng, L.

J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
[Crossref]

Feng, M.

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
[Crossref]

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Fokkink, L. G.

B. M. Van der Zande, M. R. Böhmer, L. G. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).
[Crossref]

Galstian, T.

T. Galstian, R. Vallée, and Y. Messaddeq, “Optical materials,” in Advanced Optical Technologies (De Gruyter, 2018), p. 205.

Ganesh, A.

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures: progress, challenges and opportunities,” Small 11(11), 1232–1252 (2015).
[Crossref]

Gao, L.

L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, and J. Sun, “A long-term oxidation barrier for copper nanowires: graphene says yes,” Phys. Chem. Chem. Phys. 17(6), 4231–4236 (2015).
[Crossref]

Gao, W.

W. Gao, “The chemistry of graphene oxide,” in Graphene oxide (Springer, 2015), pp. 61–95.

Gates, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Ghosh, P.

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures: progress, challenges and opportunities,” Small 11(11), 1232–1252 (2015).
[Crossref]

Girisun, T. S.

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC Adv. 6(94), 91083–91092 (2016).
[Crossref]

Gong, S.

S. Gong and W. Cheng, “One-Dimensional Nanomaterials for Soft Electronics,” Adv. Electron. Mater. 3(3), 1600314 (2017).
[Crossref]

S. Gong and W. Cheng, “Toward Soft Skin-Like Wearable and Implantable Energy Devices,” Adv. Energy Mater. 7(23), 1700648 (2017).
[Crossref]

Gránásy, L.

G. I. Tóth, G. Tegze, T. Pusztai, and L. Gránásy, “Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch,” Phys. Rev. Lett. 108(2), 025502 (2012).
[Crossref]

Gu, M.

L. V. Thekkekara, B. Jia, Y. Zhang, L. Qiu, D. Li, and M. Gu, “On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film,” Appl. Phys. Lett. 107(3), 031105 (2015).
[Crossref]

Guo, L.

Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Guo, S.

M. Li, S. K. Cushing, X. Zhou, S. Guo, and N. Wu, “Fingerprinting photoluminescence of functional groups in graphene oxide,” J. Mater. Chem. 22(44), 23374–23379 (2012).
[Crossref]

Gurevich, E. L.

M. Kasischke, S. Maragkaki, S. Volz, A. Ostendorf, and E. L. Gurevich, “Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses,” Appl. Surf. Sci. 445, 197–203 (2018).
[Crossref]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Ham, J.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

Han, S.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, Y.

Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Hernandez, Y.

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[Crossref]

Hersam, M. C.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref]

Hong, S.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

Huang, F.

S. K. Cushing, M. Li, F. Huang, and N. Wu, “Origin of strong excitation wavelength dependent fluorescence of graphene oxide,” ACS Nano 8(1), 1002–1013 (2014).
[Crossref]

Huang, W.

M. Luo, Y. Liu, W. Huang, W. Qiao, Y. Zhou, Y. Ye, and L.-S. Chen, “Towards flexible transparent electrodes based on carbon and metallic materials,” Micromachines 8(1), 12 (2017).
[Crossref]

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Jariwala, D.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref]

Jason, N. N.

N. N. Jason, W. Shen, and W. Cheng, “Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics,” ACS Appl. Mater. Interfaces 7(30), 16760–16766 (2015).
[Crossref]

Jia, B.

L. V. Thekkekara, B. Jia, Y. Zhang, L. Qiu, D. Li, and M. Gu, “On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film,” Appl. Phys. Lett. 107(3), 031105 (2015).
[Crossref]

Jia, J.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Jiang, X.-F.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Johnson, A. C.

Z. Luo, P. M. Vora, E. J. Mele, A. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Jung, H. I.

S. Pyo, W. Kim, H. I. Jung, J. Choi, and J. Kim, “Heterogeneous Integration of Carbon-Nanotube–Graphene for High-Performance, Flexible, and Transparent Photodetectors,” Small 13(27), 1700918 (2017).
[Crossref]

Kamat, P. V.

G. Williams and P. V. Kamat, “Graphene− semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide,” Langmuir 25(24), 13869–13873 (2009).
[Crossref]

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref]

Kang, B.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

Karmakar, D.

R. K. Yadav, J. Aneesh, R. Sharma, P. Abhiramnath, T. K. Maji, G. J. Omar, A. Mishra, D. Karmakar, and K. Adarsh, “Designing hybrid graphene oxide-gold nanoparticles for nonlinear optical response: Experiment and theory,” arXiv preprint arXiv:1803.10919 (2018).

Kasischke, M.

M. Kasischke, S. Maragkaki, S. Volz, A. Ostendorf, and E. L. Gurevich, “Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses,” Appl. Surf. Sci. 445, 197–203 (2018).
[Crossref]

Kholmanov, I. N.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

Kikkawa, J. M.

Z. Luo, P. M. Vora, E. J. Mele, A. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Kim, F.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Kim, J.

S. Pyo, W. Kim, H. I. Jung, J. Choi, and J. Kim, “Heterogeneous Integration of Carbon-Nanotube–Graphene for High-Performance, Flexible, and Transparent Photodetectors,” Small 13(27), 1700918 (2017).
[Crossref]

Kim, J.-Y.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

Kim, W.

S. Pyo, W. Kim, H. I. Jung, J. Choi, and J. Kim, “Heterogeneous Integration of Carbon-Nanotube–Graphene for High-Performance, Flexible, and Transparent Photodetectors,” Small 13(27), 1700918 (2017).
[Crossref]

Kim, Y.-J.

K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi, and S. Baik, “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nat. Nanotechnol. 5(12), 853–857 (2010).
[Crossref]

Kole, A.

S. Biswas, A. Kole, C. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide–silver nanocomposites measured by Z-scan technique,” RSC Adv. 6(13), 10319–10325 (2016).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical properties of metal clusters, Vol. 25 (Springer Science & Business Media, 2013).

Kumbhakar, P.

S. Biswas, A. Kole, C. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide–silver nanocomposites measured by Z-scan technique,” RSC Adv. 6(13), 10319–10325 (2016).
[Crossref]

Kwon, J.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

Lauhon, L. J.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref]

Lee, J.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

Lee, P.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

Lee, S. S.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

Li, C.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Li, D.

L. V. Thekkekara, B. Jia, Y. Zhang, L. Qiu, D. Li, and M. Gu, “On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film,” Appl. Phys. Lett. 107(3), 031105 (2015).
[Crossref]

Li, F.

J. Zhao, L. Liu, and F. Li, Graphene oxide: physics and applications (Springer, 2015).

Li, H.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

Li, J.

J. Li, J. Mayer, and E. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
[Crossref]

Li, M.

S. K. Cushing, M. Li, F. Huang, and N. Wu, “Origin of strong excitation wavelength dependent fluorescence of graphene oxide,” ACS Nano 8(1), 1002–1013 (2014).
[Crossref]

M. Li, S. K. Cushing, X. Zhou, S. Guo, and N. Wu, “Fingerprinting photoluminescence of functional groups in graphene oxide,” J. Mater. Chem. 22(44), 23374–23379 (2012).
[Crossref]

Li, Q.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Li, X.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Lin, Y. Y.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref]

Liu, C.

C. Liu, X. Yan, X. Song, S. Ding, D. W. Zhang, and P. Zhou, “A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications,” Nat. Nanotechnol. 13(5), 404–410 (2018).
[Crossref]

Liu, J.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Liu, L.

J. Zhao, L. Liu, and F. Li, Graphene oxide: physics and applications (Springer, 2015).

Liu, Y.

M. Luo, Y. Liu, W. Huang, W. Qiao, Y. Zhou, Y. Ye, and L.-S. Chen, “Towards flexible transparent electrodes based on carbon and metallic materials,” Micromachines 8(1), 12 (2017).
[Crossref]

L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, and J. Sun, “A long-term oxidation barrier for copper nanowires: graphene says yes,” Phys. Chem. Chem. Phys. 17(6), 4231–4236 (2015).
[Crossref]

Liu, Z.

J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
[Crossref]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

Lotya, M.

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[Crossref]

Luo, M.

M. Luo, Y. Liu, W. Huang, W. Qiao, Y. Zhou, Y. Ye, and L.-S. Chen, “Towards flexible transparent electrodes based on carbon and metallic materials,” Micromachines 8(1), 12 (2017).
[Crossref]

Luo, Z.

Z. Luo, P. M. Vora, E. J. Mele, A. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Maji, T. K.

R. K. Yadav, J. Aneesh, R. Sharma, P. Abhiramnath, T. K. Maji, G. J. Omar, A. Mishra, D. Karmakar, and K. Adarsh, “Designing hybrid graphene oxide-gold nanoparticles for nonlinear optical response: Experiment and theory,” arXiv preprint arXiv:1803.10919 (2018).

Manna, A. K.

K. Subrahmanyam, A. K. Manna, S. K. Pati, and C. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

Maragkaki, S.

M. Kasischke, S. Maragkaki, S. Volz, A. Ostendorf, and E. L. Gurevich, “Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses,” Appl. Surf. Sci. 445, 197–203 (2018).
[Crossref]

Marks, T. J.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref]

Mattevi, C.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref]

Mayer, J.

J. Li, J. Mayer, and E. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
[Crossref]

Mayers, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Mele, E. J.

Z. Luo, P. M. Vora, E. J. Mele, A. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Messaddeq, Y.

T. Galstian, R. Vallée, and Y. Messaddeq, “Optical materials,” in Advanced Optical Technologies (De Gruyter, 2018), p. 205.

Mishra, A.

R. K. Yadav, J. Aneesh, R. Sharma, P. Abhiramnath, T. K. Maji, G. J. Omar, A. Mishra, D. Karmakar, and K. Adarsh, “Designing hybrid graphene oxide-gold nanoparticles for nonlinear optical response: Experiment and theory,” arXiv preprint arXiv:1803.10919 (2018).

Neo, S. T.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Nguyen, M.

A. R. Rathmell, M. Nguyen, M. Chi, and B. J. Wiley, “Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks,” Nano Lett. 12(6), 3193–3199 (2012).
[Crossref]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Oh, Y.

K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi, and S. Baik, “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nat. Nanotechnol. 5(12), 853–857 (2010).
[Crossref]

Omar, G. J.

R. K. Yadav, J. Aneesh, R. Sharma, P. Abhiramnath, T. K. Maji, G. J. Omar, A. Mishra, D. Karmakar, and K. Adarsh, “Designing hybrid graphene oxide-gold nanoparticles for nonlinear optical response: Experiment and theory,” arXiv preprint arXiv:1803.10919 (2018).

Ostendorf, A.

M. Kasischke, S. Maragkaki, S. Volz, A. Ostendorf, and E. L. Gurevich, “Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses,” Appl. Surf. Sci. 445, 197–203 (2018).
[Crossref]

Pati, S. K.

K. Subrahmanyam, A. K. Manna, S. K. Pati, and C. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

Peng, R.

J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
[Crossref]

Piner, R.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

Polavarapu, L.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Pumera, M.

M. Pumera, “Graphene-based nanomaterials for energy storage,” Energy Environ. Sci. 4(3), 668–674 (2011).
[Crossref]

Pusztai, T.

G. I. Tóth, G. Tegze, T. Pusztai, and L. Gránásy, “Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch,” Phys. Rev. Lett. 108(2), 025502 (2012).
[Crossref]

Pyo, S.

S. Pyo, W. Kim, H. I. Jung, J. Choi, and J. Kim, “Heterogeneous Integration of Carbon-Nanotube–Graphene for High-Performance, Flexible, and Transparent Photodetectors,” Small 13(27), 1700918 (2017).
[Crossref]

Qiao, W.

M. Luo, Y. Liu, W. Huang, W. Qiao, Y. Zhou, Y. Ye, and L.-S. Chen, “Towards flexible transparent electrodes based on carbon and metallic materials,” Micromachines 8(1), 12 (2017).
[Crossref]

Qiu, L.

L. V. Thekkekara, B. Jia, Y. Zhang, L. Qiu, D. Li, and M. Gu, “On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film,” Appl. Phys. Lett. 107(3), 031105 (2015).
[Crossref]

Rao, C.

K. Subrahmanyam, A. K. Manna, S. K. Pati, and C. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

Rao, S. V.

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC Adv. 6(94), 91083–91092 (2016).
[Crossref]

Rathmell, A. R.

A. R. Rathmell, M. Nguyen, M. Chi, and B. J. Wiley, “Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks,” Nano Lett. 12(6), 3193–3199 (2012).
[Crossref]

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref]

Ren, H.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Rho, J.

K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi, and S. Baik, “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nat. Nanotechnol. 5(12), 853–857 (2010).
[Crossref]

Ruoff, R. S.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

Sahu, A.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Sangwan, V. K.

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref]

Saravanan, M.

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC Adv. 6(94), 91083–91092 (2016).
[Crossref]

Schönenberger, C.

B. M. Van der Zande, M. R. Böhmer, L. G. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).
[Crossref]

Seger, B.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref]

Sharma, R.

R. K. Yadav, J. Aneesh, R. Sharma, P. Abhiramnath, T. K. Maji, G. J. Omar, A. Mishra, D. Karmakar, and K. Adarsh, “Designing hybrid graphene oxide-gold nanoparticles for nonlinear optical response: Experiment and theory,” arXiv preprint arXiv:1803.10919 (2018).

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, W.

N. N. Jason, W. Shen, and W. Cheng, “Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics,” ACS Appl. Mater. Interfaces 7(30), 16760–16766 (2015).
[Crossref]

Shi, L.

L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, and J. Sun, “A long-term oxidation barrier for copper nanowires: graphene says yes,” Phys. Chem. Chem. Phys. 17(6), 4231–4236 (2015).
[Crossref]

Solis, J.

Song, X.

C. Liu, X. Yan, X. Song, S. Ding, D. W. Zhang, and P. Zhou, “A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications,” Nat. Nanotechnol. 13(5), 404–410 (2018).
[Crossref]

Subrahmanyam, K.

K. Subrahmanyam, A. K. Manna, S. K. Pati, and C. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

Sun, H.-B.

Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Sun, J.

L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, and J. Sun, “A long-term oxidation barrier for copper nanowires: graphene says yes,” Phys. Chem. Chem. Phys. 17(6), 4231–4236 (2015).
[Crossref]

Sun, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tan, C.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

Tang, J.

J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
[Crossref]

Tang, Q.

Q. Tang and Z. Zhou, “Graphene-analogous low-dimensional materials,” Prog. Mater. Sci. 58(8), 1244–1315 (2013).
[Crossref]

Tauc, J.

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

Tegze, G.

G. I. Tóth, G. Tegze, T. Pusztai, and L. Gránásy, “Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch,” Phys. Rev. Lett. 108(2), 025502 (2012).
[Crossref]

Thekkekara, L. V.

L. V. Thekkekara, B. Jia, Y. Zhang, L. Qiu, D. Li, and M. Gu, “On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film,” Appl. Phys. Lett. 107(3), 031105 (2015).
[Crossref]

Tiwary, C.

S. Biswas, A. Kole, C. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide–silver nanocomposites measured by Z-scan technique,” RSC Adv. 6(13), 10319–10325 (2016).
[Crossref]

Tóth, G. I.

G. I. Tóth, G. Tegze, T. Pusztai, and L. Gránásy, “Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch,” Phys. Rev. Lett. 108(2), 025502 (2012).
[Crossref]

Vallée, R.

T. Galstian, R. Vallée, and Y. Messaddeq, “Optical materials,” in Advanced Optical Technologies (De Gruyter, 2018), p. 205.

Van der Zande, B. M.

B. M. Van der Zande, M. R. Böhmer, L. G. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Venkatesan, T.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Vinitha, G.

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC Adv. 6(94), 91083–91092 (2016).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical properties of metal clusters, Vol. 25 (Springer Science & Business Media, 2013).

Volz, S.

M. Kasischke, S. Maragkaki, S. Volz, A. Ostendorf, and E. L. Gurevich, “Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses,” Appl. Surf. Sci. 445, 197–203 (2018).
[Crossref]

Vora, P. M.

Z. Luo, P. M. Vora, E. J. Mele, A. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Vossen, J.

J. Vossen, “Transparent conducting films,” J. Vac. Sci. Technol. 13(1), 116 (1976).
[Crossref]

Wang, J.

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[Crossref]

Wang, R.

L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, and J. Sun, “A long-term oxidation barrier for copper nanowires: graphene says yes,” Phys. Chem. Chem. Phys. 17(6), 4231–4236 (2015).
[Crossref]

Wang, X.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

Wei, S.

Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wiley, B. J.

A. R. Rathmell, M. Nguyen, M. Chi, and B. J. Wiley, “Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks,” Nano Lett. 12(6), 3193–3199 (2012).
[Crossref]

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref]

Williams, G.

G. Williams and P. V. Kamat, “Graphene− semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide,” Langmuir 25(24), 13869–13873 (2009).
[Crossref]

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref]

Wu, N.

S. K. Cushing, M. Li, F. Huang, and N. Wu, “Origin of strong excitation wavelength dependent fluorescence of graphene oxide,” ACS Nano 8(1), 1002–1013 (2014).
[Crossref]

M. Li, S. K. Cushing, X. Zhou, S. Guo, and N. Wu, “Fingerprinting photoluminescence of functional groups in graphene oxide,” J. Mater. Chem. 22(44), 23374–23379 (2012).
[Crossref]

Wu, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Xia, H.

Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Xia, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Xiao, F.-S.

Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Xu, H.

J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
[Crossref]

Xu, L.

J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
[Crossref]

Xu, Q.-H.

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

Xue, G.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Yadav, R. K.

R. K. Yadav, J. Aneesh, R. Sharma, P. Abhiramnath, T. K. Maji, G. J. Omar, A. Mishra, D. Karmakar, and K. Adarsh, “Designing hybrid graphene oxide-gold nanoparticles for nonlinear optical response: Experiment and theory,” arXiv preprint arXiv:1803.10919 (2018).

Yamaguchi, H.

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref]

Yan, H.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Yan, X.

C. Liu, X. Yan, X. Song, S. Ding, D. W. Zhang, and P. Zhou, “A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications,” Nat. Nanotechnol. 13(5), 404–410 (2018).
[Crossref]

Yang, M. Y.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

Yang, P.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Ye, Y.

M. Luo, Y. Liu, W. Huang, W. Qiao, Y. Zhou, Y. Ye, and L.-S. Chen, “Towards flexible transparent electrodes based on carbon and metallic materials,” Micromachines 8(1), 12 (2017).
[Crossref]

Yeo, J.

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

Yin, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Zarbin, A. J.

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

Zhai, H.

L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, and J. Sun, “A long-term oxidation barrier for copper nanowires: graphene says yes,” Phys. Chem. Chem. Phys. 17(6), 4231–4236 (2015).
[Crossref]

Zhan, H.

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
[Crossref]

Zhang, D. W.

C. Liu, X. Yan, X. Song, S. Ding, D. W. Zhang, and P. Zhou, “A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications,” Nat. Nanotechnol. 13(5), 404–410 (2018).
[Crossref]

Zhang, S.

J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
[Crossref]

Zhang, Y.

L. V. Thekkekara, B. Jia, Y. Zhang, L. Qiu, D. Li, and M. Gu, “On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film,” Appl. Phys. Lett. 107(3), 031105 (2015).
[Crossref]

Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Zhao, J.

J. Zhao, L. Liu, and F. Li, Graphene oxide: physics and applications (Springer, 2015).

Zhou, P.

C. Liu, X. Yan, X. Song, S. Ding, D. W. Zhang, and P. Zhou, “A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications,” Nat. Nanotechnol. 13(5), 404–410 (2018).
[Crossref]

Zhou, X.

M. Li, S. K. Cushing, X. Zhou, S. Guo, and N. Wu, “Fingerprinting photoluminescence of functional groups in graphene oxide,” J. Mater. Chem. 22(44), 23374–23379 (2012).
[Crossref]

Zhou, Y.

M. Luo, Y. Liu, W. Huang, W. Qiao, Y. Zhou, Y. Ye, and L.-S. Chen, “Towards flexible transparent electrodes based on carbon and metallic materials,” Micromachines 8(1), 12 (2017).
[Crossref]

Zhou, Z.

Q. Tang and Z. Zhou, “Graphene-analogous low-dimensional materials,” Prog. Mater. Sci. 58(8), 1244–1315 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (2)

J. Tang, Q. Chen, L. Xu, S. Zhang, L. Feng, L. Cheng, H. Xu, Z. Liu, and R. Peng, “Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms,” ACS Appl. Mater. Interfaces 5(9), 3867–3874 (2013).
[Crossref]

N. N. Jason, W. Shen, and W. Cheng, “Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics,” ACS Appl. Mater. Interfaces 7(30), 16760–16766 (2015).
[Crossref]

ACS Nano (5)

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref]

I. N. Kholmanov, S. H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A. J. Zarbin, and R. S. Ruoff, “Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes,” ACS Nano 7(2), 1811–1816 (2013).
[Crossref]

D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides,” ACS Nano 8(2), 1102–1120 (2014).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

S. K. Cushing, M. Li, F. Huang, and N. Wu, “Origin of strong excitation wavelength dependent fluorescence of graphene oxide,” ACS Nano 8(1), 1002–1013 (2014).
[Crossref]

Adv. Electron. Mater. (1)

S. Gong and W. Cheng, “One-Dimensional Nanomaterials for Soft Electronics,” Adv. Electron. Mater. 3(3), 1600314 (2017).
[Crossref]

Adv. Energy Mater. (1)

S. Gong and W. Cheng, “Toward Soft Skin-Like Wearable and Implantable Energy Devices,” Adv. Energy Mater. 7(23), 1700648 (2017).
[Crossref]

Adv. Mater. (5)

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, and M. Y. Yang, “Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics,” Adv. Mater. 26(33), 5808–5814 (2014).
[Crossref]

A. R. Rathmell and B. J. Wiley, “The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates,” Adv. Mater. 23(41), 4798–4803 (2011).
[Crossref]

G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. 22(4), 505–509 (2010).
[Crossref]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21(23), 2430–2435 (2009).
[Crossref]

Appl. Phys. Lett. (3)

M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96(3), 033107 (2010).
[Crossref]

L. V. Thekkekara, B. Jia, Y. Zhang, L. Qiu, D. Li, and M. Gu, “On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film,” Appl. Phys. Lett. 107(3), 031105 (2015).
[Crossref]

Z. Luo, P. M. Vora, E. J. Mele, A. C. Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett. 94(11), 111909 (2009).
[Crossref]

Appl. Surf. Sci. (1)

M. Kasischke, S. Maragkaki, S. Volz, A. Ostendorf, and E. L. Gurevich, “Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses,” Appl. Surf. Sci. 445, 197–203 (2018).
[Crossref]

Chem. Phys. Lett. (1)

K. Subrahmanyam, A. K. Manna, S. K. Pati, and C. Rao, “A study of graphene decorated with metal nanoparticles,” Chem. Phys. Lett. 497(1-3), 70–75 (2010).
[Crossref]

Energy Environ. Sci. (1)

M. Pumera, “Graphene-based nanomaterials for energy storage,” Energy Environ. Sci. 4(3), 668–674 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Am. Chem. Soc. (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

J. Appl. Phys. (1)

J. Li, J. Mayer, and E. Colgan, “Oxidation and protection in copper and copper alloy thin films,” J. Appl. Phys. 70(5), 2820–2827 (1991).
[Crossref]

J. Mater. Chem. (1)

M. Li, S. K. Cushing, X. Zhou, S. Guo, and N. Wu, “Fingerprinting photoluminescence of functional groups in graphene oxide,” J. Mater. Chem. 22(44), 23374–23379 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

X.-F. Jiang, L. Polavarapu, S. T. Neo, T. Venkatesan, and Q.-H. Xu, “Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses,” J. Phys. Chem. Lett. 3(6), 785–790 (2012).
[Crossref]

J. Vac. Sci. Technol. (1)

J. Vossen, “Transparent conducting films,” J. Vac. Sci. Technol. 13(1), 116 (1976).
[Crossref]

Langmuir (2)

G. Williams and P. V. Kamat, “Graphene− semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide,” Langmuir 25(24), 13869–13873 (2009).
[Crossref]

B. M. Van der Zande, M. R. Böhmer, L. G. Fokkink, and C. Schönenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).
[Crossref]

Mater. Res. Bull. (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

Micromachines (1)

M. Luo, Y. Liu, W. Huang, W. Qiao, Y. Zhou, Y. Ye, and L.-S. Chen, “Towards flexible transparent electrodes based on carbon and metallic materials,” Micromachines 8(1), 12 (2017).
[Crossref]

Nano Lett. (1)

A. R. Rathmell, M. Nguyen, M. Chi, and B. J. Wiley, “Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks,” Nano Lett. 12(6), 3193–3199 (2012).
[Crossref]

Nano Today (1)

Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.-B. Sun, and F.-S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nano Today 5(1), 15–20 (2010).
[Crossref]

Nat. Chem. (1)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref]

Nat. Commun. (1)

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, and A. Sahu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref]

Nat. Nanotechnol. (2)

K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H. R. Choi, and S. Baik, “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nat. Nanotechnol. 5(12), 853–857 (2010).
[Crossref]

C. Liu, X. Yan, X. Song, S. Ding, D. W. Zhang, and P. Zhou, “A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications,” Nat. Nanotechnol. 13(5), 404–410 (2018).
[Crossref]

Nat. Photonics (2)

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Phys. Chem. Chem. Phys. (1)

L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, and J. Sun, “A long-term oxidation barrier for copper nanowires: graphene says yes,” Phys. Chem. Chem. Phys. 17(6), 4231–4236 (2015).
[Crossref]

Phys. Rev. Lett. (1)

G. I. Tóth, G. Tegze, T. Pusztai, and L. Gránásy, “Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch,” Phys. Rev. Lett. 108(2), 025502 (2012).
[Crossref]

Prog. Mater. Sci. (1)

Q. Tang and Z. Zhou, “Graphene-analogous low-dimensional materials,” Prog. Mater. Sci. 58(8), 1244–1315 (2013).
[Crossref]

RSC Adv. (2)

M. Saravanan, T. S. Girisun, G. Vinitha, and S. V. Rao, “Improved third-order optical nonlinearity and optical limiting behaviour of (nanospindle and nanosphere) zinc ferrite decorated reduced graphene oxide under continuous and ultrafast laser excitation,” RSC Adv. 6(94), 91083–91092 (2016).
[Crossref]

S. Biswas, A. Kole, C. Tiwary, and P. Kumbhakar, “Enhanced nonlinear optical properties of graphene oxide–silver nanocomposites measured by Z-scan technique,” RSC Adv. 6(13), 10319–10325 (2016).
[Crossref]

Small (2)

S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, “1D copper nanostructures: progress, challenges and opportunities,” Small 11(11), 1232–1252 (2015).
[Crossref]

S. Pyo, W. Kim, H. I. Jung, J. Choi, and J. Kim, “Heterogeneous Integration of Carbon-Nanotube–Graphene for High-Performance, Flexible, and Transparent Photodetectors,” Small 13(27), 1700918 (2017).
[Crossref]

Other (5)

T. Galstian, R. Vallée, and Y. Messaddeq, “Optical materials,” in Advanced Optical Technologies (De Gruyter, 2018), p. 205.

J. Zhao, L. Liu, and F. Li, Graphene oxide: physics and applications (Springer, 2015).

W. Gao, “The chemistry of graphene oxide,” in Graphene oxide (Springer, 2015), pp. 61–95.

R. K. Yadav, J. Aneesh, R. Sharma, P. Abhiramnath, T. K. Maji, G. J. Omar, A. Mishra, D. Karmakar, and K. Adarsh, “Designing hybrid graphene oxide-gold nanoparticles for nonlinear optical response: Experiment and theory,” arXiv preprint arXiv:1803.10919 (2018).

U. Kreibig and M. Vollmer, Optical properties of metal clusters, Vol. 25 (Springer Science & Business Media, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Conceptual illustration of CuNW-GO thin film and energy transfer between CuNWs and GOs in the thin film where excited electrons from CuNWs results in the saturable absorption (SA) in the GOs (inserted).
Fig. 2.
Fig. 2. Properties of CuNW-GO thin film. (a) Scanning electron microscopy (SEM) image of GOs coated with CuNWs having concentrations of 2 ml each. (b) Cross-section image of CuNW-GO thin film of concentration 2 ml each. (c) AFM image of the 4 ml CuNW-2 ml GO thin film. (d) Coverage density of CuNWs per cm2 in the thin films. (e) CuNWs of concentration, 2 ml with an average roughness of 100 nm. (f) GOs of concentration, 2 ml with an average roughness of 36 nm.
Fig. 3.
Fig. 3. (a) FTIR measurements on different concentrations of CuNW-GO thin films. (b) Absorptance in the GO and CuNW-GO thin films having various concentrations. (c) Energy bandgap of the CuNW-GO thin-film having various concentrations. (d) Raman spectroscopic measurements of different concentrations of CuNW-GO thin films. (e) Photoluminescence measurements of the different concentrations of CuNW-GO thin films. (f) Refractive indices of the different concentrations of CuNW-GO thin films.
Fig. 4.
Fig. 4. Schematic of Z-scan measurements.
Fig. 5.
Fig. 5. (a) Open aperture Z-scan measurement and theoretical curves of GO and CuNW-GO thin films with different concentrations using a femtosecond laser beam fluence of 2 µJ/cm2 at a wavelength of 800 nm. (b) Nonlinear absorption, βeff at various laser fluences using different concentrations of CuNW-GO thin films. (c) Closed aperture Z-scan measurement and theoretical curves of GOs. (d) Closed aperture Z-scan measurement and theoretical curves of CuNW-GO thin films with different concentrations using a femtosecond laser beam fluence of 2 µJ/cm2 at a wavelength of 800 nm. (e) Nonlinear refractive index, n2 at various laser fluences using different concentrations of CuNW-GO thin films. (f) Optical limiting properties of the GO thin film with 2 ml concentration and CuNW-GO thin film with a concentration of 2 ml each.
Fig. 6.
Fig. 6. (a) Image of transparent conductive electrodes (TCEs) made from CuNW-GO thin film. (b) Transmittance of different concentrations of CuNW-GO thin films. (c) Aging measurements of CuNW-GO thin film at room conditions for 60 days. (d) Aging measurements of CuNW-GO thin films at extreme conditions of temperature, 80°C and humidity 85%.
Fig. 7.
Fig. 7. (a) Schematic of the simulation studies on the CuNW-GO thin films. (b) Plasmonic enhancement observed with a periodicity of 100 nm for CuNW-GO arrangement with a thickness of CuNW∼100 nm and GO thickness ∼5 nm using a plane wave source of 532 nm. (c) Plasmonic enhancement observed with a periodicity of 100 nm for CuNW-GO arrangement with a thickness of CuNW ∼ 100 nm and GO thickness ∼5 nm using a plane wave source of 750 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T=1π[βI0Leff(1+z2z02)]+ln[1+βI0Leff1+z2z02exp(t2)]dt
T(x)=1+4xΔΦ(1+x2)(9+x2)
Fin=4πln2E0π2ω02(1+z2z02)

Metrics