Abstract

The quantum impact of magnetic and optical effects on electrical properties exhibited by multiwall carbon nanotubes decorated with bimetallic nanoparticles integrated by platinum and nickel was analyzed. An external magnetic field causes sensitive magneto-quantum conductivity in the samples and it can be described by the Aharonov-Bohm effect. The nature of the nanoparticles decorating the carbon nanostructures shifted the characteristic quantum response for the magneto-conductive measurements. Magnetically-controlled changes in optical phonons were considered to be responsible for the bistable hysteretic system. A laser-induced-phononic process derives in a strong modification of the electrical properties exhibited by the sample.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photoconductive logic gate based on platinum decorated carbon nanotubes

C. Mercado-Zúñiga, J. R. Vargas-García, F. Cervantes-Sodi, M. Trejo-Valdez, R. Torres-Martínez, and C. Torres-Torres
Appl. Opt. 52(22) E22-E27 (2013)

Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface

Yue Wang, Zijian Cui, Dongying Zhu, Xianbin Zhang, and Li Qian
Opt. Express 26(12) 15343-15352 (2018)

Magneto-conductivity and magnetically-controlled nonlinear optical transmittance in multi-wall carbon nanotubes

J. A. García-Merino, C. L. Martínez-González, C. R. Torres San Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres
Opt. Express 24(17) 19552-19557 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. G. Postma, D. te Brinke, I. N. Vialshin, A. S. Wong, and W. T. Huck, “A trypsin-based bistable switch,” Tetrahedron 73(33), 4896–4900 (2017).
    [Crossref]
  2. E. Perivolari, J. R. Gill, N. Podoliak, V. Apostolopoulos, T. J. Sluckin, G. D’Alessandro, and M. Kaczmarek, “Optically controlled bistable waveplates,” J. Mol. Liq. 267, 484–489 (2018).
    [Crossref]
  3. B. Chen, X. F. Wang, J. K. Yan, X. F. Zhu, and C. Jiang, “Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings,” Superlattices Microstruct. 113, 301–309 (2018).
    [Crossref]
  4. J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-SanMiguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
    [Crossref]
  5. K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108(15), 153901 (2012).
    [Crossref]
  6. E. Li, B. J. Eggleton, K. Fang, and S. Fan, “Photonic Aharonov–Bohm effect in photon–phonon intercations,” Nat. Commun. 5(1), 3225 (2014).
    [Crossref]
  7. I. Kohta and A. Tsuneya, “Optical phonon interacting with electrons in carbon nanotubes,” J. Phys. Soc. Jpn. 75(8), 084713 (2006).
    [Crossref]
  8. A. Ramazani, A. Reihani, A. Soleimani, R. Larson, and V. Sundararaghavan, “Molecular dynamics study of phonon transport in graphyne nanotubes,” Carbon 123, 635–644 (2017).
    [Crossref]
  9. J. Hone, “Phonons and thermal properties of carbon nanotubes,” in Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, 2001), pp. 273–286.
  10. Z. L. Wang, H. T. Mu, J. G. Liang, and D. W. Tang, “Thermal boundary resistance and temperature dependent phonon conduction in CNT array multilayer structure,” Int. J. Therm. Sci. 74, 53–62 (2013).
    [Crossref]
  11. I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
    [Crossref]
  12. R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
    [Crossref]
  13. A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
    [Crossref]
  14. T. Kobayashi, Z. Nie, and J. Du, “Coherent phonon coupled with exciton in semiconducting single-walled carbon nanotubes with several chiralities,” Procedia Eng. 93, 17–24 (2014).
    [Crossref]
  15. P. A. Eminov, Y. I. Sezonov, and S. V. Gordeeva, “Electron–phonon mechanism of conduction in magnetized nanotubes,” Diamond Relat. Mater. 49, 72–76 (2014).
    [Crossref]
  16. S. P. Gubin, Magnetic Nanoparticles (Wiley-VCH, 2009).
  17. H. R. Astorga and D. Mendoza, “Electrical conductivity of multiwall carbon nanotubes thin films,” Opt. Mater. 27(7), 1228–1230 (2005).
    [Crossref]
  18. M. Goumri, B. Lucas, B. Ratier, and M. Baitoul, “Electrical and optical properties of reduced graphene oxide and multi-walled carbon nanotubes based nanocomposites: A comparative study,” Opt. Mater. 60, 105–113 (2016).
    [Crossref]
  19. Y. Shen, W. Gong, B. Zheng, and L. Gao, “Ni–Al bimetallic catalysts for preparation of multiwalled carbon nanotubes from polypropylene: Influence of the ratio of Ni/Al,” Appl. Catal. B 181, 769–778 (2016).
    [Crossref]
  20. C. Gupta, P. H. Maheshwari, and S. R. Dhakate, “Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst,” Mater. Renewable Sustainable Energy 5(1), 2 (2016).
    [Crossref]
  21. G. J. Leong, M. C. Schulze, M. B. Strand, D. Maloney, S. L. Frisco, H. N. Dinh, B. Pivovar, and R. M. Richards, “Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts,” Appl. Organometal. Chem. 28(1), 1–17 (2014).
    [Crossref]
  22. H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
    [Crossref]
  23. F. Zhou, Y. Liu, Z. Y. Li, and Y. Xia, “Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials,” Opt. Express 18(13), 13337–13344 (2010).
    [Crossref]
  24. J. B. Li, S. Liang, M. D. He, L. Q. Chen, X. J. Wang, and X. F. Peng, “A tunable bistable device based on a coupled quantum dot–metallic nanoparticle nanosystem,” Appl. Phys. B 120, 161–166 (2015).
    [Crossref]
  25. W. Liu, H. Zhang, H. Sun, Q. Zhang, and D. Wang, “Optical bistability induced by spin–orbit coupling in the carbon-nanotube quantum dots,” Appl. Opt. 55(5), 1090–1094 (2016).
    [Crossref]
  26. J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-San Miguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
    [Crossref]
  27. E. Jiménez-Marín, I. Villalpando, M. Trejo-Valdez, F. Cervantes-Sodi, J. R. Vargas-García, and C. Torres-Torres, “Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes,” Mater. Sci. Eng. B 220, 22–29 (2017).
    [Crossref]
  28. A. Sarode, Z. Ahmed, P. Basarkar, A. Bhargav, and D. Banerjee, “A molecular dynamics approach of the role of carbon nanotube diameter on thermal interfacial resistance through vibrational mismatch analysis,” Int. J. Therm. Sci. 122, 33–38 (2017).
    [Crossref]
  29. J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro, “ATK-ForceField: a new generation molecular dynamics software package,” Modelling Simul,” Modell. Simul. Mater. Sci. Eng. 25(8), 085007 (2017).
    [Crossref]
  30. Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
    [Crossref]
  31. T. Nakanish and T. Ando, “Conductivity in carbon nanotubes with Aharonov-Bohm flux,” J. Phys. Soc. Jpn. 74(11), 3027–3034 (2005).
    [Crossref]
  32. S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, 2004).
  33. G. H. An, H. G. Jo, and H. J. Ahn, “Platinum nanoparticles on nitrogen-doped carbon and nickel composites surfaces: A high electrical conductivity for methanol oxidation reaction,” J. Alloys Compd. 763, 250–256 (2018).
    [Crossref]
  34. A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
    [Crossref]
  35. A. Farmani, A. Mir, and M. H. Sheikhi, “Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces,”,” J. Opt. Soc. Am. B 34(6), 1097–1106 (2017).
    [Crossref]
  36. A. Palote and G. Lubineau, “Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites,” Carbon 81, 720–730 (2015).
    [Crossref]
  37. F. Xin and L. Li, “Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites,” Composites Part A 42(8), 961–967 (2011).
    [Crossref]
  38. P. Cheng-Ma, B. Zhong-Tang, and J. Kim, “Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites,” Carbon 46(11), 1497–1505 (2008).
    [Crossref]
  39. E. Halakoo, A. Khademi, M. Ghasemi, N. Mohd-Yusof, R. Jamshidi-Gohari, and A. Fauzi-Ismail, “Production of sustainable energy by carbon nanotube/platinum catalyst in microbial fuel cell,” Procedia CIRP 26, 473–476 (2015).
    [Crossref]
  40. J. Ozhikandathil, S. Badilescu, and M. Packirisamy, “Plasmonic gold decorated MWCNT nanocomposite for localized plasmon resonance sensing,” Sci. Rep. 5(1), 13181 (2015).
    [Crossref]
  41. A. Selvakumar, R. Perumalraj, J. Sudagar, and S. Mohan, “Nickel–multiwalled carbon nanotube composite coating on aluminum alloy rotor for textile industries,” Proc. Inst. Mech. Eng., Part L 230(1), 319–327 (2016).
    [Crossref]
  42. H. Baccar, A. Thamri, P. Clément, E. Llobet, and A. Abdelghani, “Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature,” Beilstein J. Nanotechnol. 6, 919–927 (2015).
    [Crossref]
  43. P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, M. Szynkowska, and T. Maniecki, “Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol,” Appl. Catal. B 185, 281–294 (2016).
    [Crossref]
  44. K. Ramachandran, T. Raj-kumar, K. Justice-Babu, and G. Gnana-kumar, “Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications,” Sci. Rep. 6(1), 36583 (2016).
    [Crossref]
  45. C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
    [Crossref]
  46. M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, “Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system,” Nat. Nanotechnol. 8(3), 165–169 (2013).
    [Crossref]
  47. Y. Zhao, L. Yifeng-E, Y. Fan, S. Qiu, and Yang, “A new route for the electrodeposition of platinum–nickel alloy nanoparticles on multi-walled carbon nanotubes,” Electrochim. Acta 52(19), 5873–5878 (2007).
    [Crossref]
  48. M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
    [Crossref]
  49. M. K. Qaleh-Jooq, A. Mir, S. Mirzakuchaki, and A. Farmani, “Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors,” Phys. E 104, 286–296 (2018).
    [Crossref]
  50. Z. Zanolli and J. Charlier, “Single-molecule sensing using carbon nanotubes decorated with magnetic clusters,” ACS Nano 6(12), 10786–10791 (2012).
    [Crossref]
  51. J. K. Moser, “Bistable systems of differential equations with applications to tunnel diode circuits,” IBM J. Res. Dev. 5(3), 226–240 (1961).
    [Crossref]
  52. S. Lefrant, J. P. Buisson, J. Y. Mevellec, M. Baibarac, and I. Baltog, “Non-linear and resonance effects in carbon nanotube structures,” Opt. Mater. 33(9), 1410–1414 (2011).
    [Crossref]

2018 (8)

E. Perivolari, J. R. Gill, N. Podoliak, V. Apostolopoulos, T. J. Sluckin, G. D’Alessandro, and M. Kaczmarek, “Optically controlled bistable waveplates,” J. Mol. Liq. 267, 484–489 (2018).
[Crossref]

B. Chen, X. F. Wang, J. K. Yan, X. F. Zhu, and C. Jiang, “Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings,” Superlattices Microstruct. 113, 301–309 (2018).
[Crossref]

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

G. H. An, H. G. Jo, and H. J. Ahn, “Platinum nanoparticles on nitrogen-doped carbon and nickel composites surfaces: A high electrical conductivity for methanol oxidation reaction,” J. Alloys Compd. 763, 250–256 (2018).
[Crossref]

A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
[Crossref]

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

M. K. Qaleh-Jooq, A. Mir, S. Mirzakuchaki, and A. Farmani, “Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors,” Phys. E 104, 286–296 (2018).
[Crossref]

2017 (8)

A. Farmani, A. Mir, and M. H. Sheikhi, “Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces,”,” J. Opt. Soc. Am. B 34(6), 1097–1106 (2017).
[Crossref]

S. G. Postma, D. te Brinke, I. N. Vialshin, A. S. Wong, and W. T. Huck, “A trypsin-based bistable switch,” Tetrahedron 73(33), 4896–4900 (2017).
[Crossref]

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-San Miguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

E. Jiménez-Marín, I. Villalpando, M. Trejo-Valdez, F. Cervantes-Sodi, J. R. Vargas-García, and C. Torres-Torres, “Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes,” Mater. Sci. Eng. B 220, 22–29 (2017).
[Crossref]

A. Sarode, Z. Ahmed, P. Basarkar, A. Bhargav, and D. Banerjee, “A molecular dynamics approach of the role of carbon nanotube diameter on thermal interfacial resistance through vibrational mismatch analysis,” Int. J. Therm. Sci. 122, 33–38 (2017).
[Crossref]

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro, “ATK-ForceField: a new generation molecular dynamics software package,” Modelling Simul,” Modell. Simul. Mater. Sci. Eng. 25(8), 085007 (2017).
[Crossref]

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-SanMiguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

A. Ramazani, A. Reihani, A. Soleimani, R. Larson, and V. Sundararaghavan, “Molecular dynamics study of phonon transport in graphyne nanotubes,” Carbon 123, 635–644 (2017).
[Crossref]

2016 (8)

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

M. Goumri, B. Lucas, B. Ratier, and M. Baitoul, “Electrical and optical properties of reduced graphene oxide and multi-walled carbon nanotubes based nanocomposites: A comparative study,” Opt. Mater. 60, 105–113 (2016).
[Crossref]

Y. Shen, W. Gong, B. Zheng, and L. Gao, “Ni–Al bimetallic catalysts for preparation of multiwalled carbon nanotubes from polypropylene: Influence of the ratio of Ni/Al,” Appl. Catal. B 181, 769–778 (2016).
[Crossref]

C. Gupta, P. H. Maheshwari, and S. R. Dhakate, “Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst,” Mater. Renewable Sustainable Energy 5(1), 2 (2016).
[Crossref]

A. Selvakumar, R. Perumalraj, J. Sudagar, and S. Mohan, “Nickel–multiwalled carbon nanotube composite coating on aluminum alloy rotor for textile industries,” Proc. Inst. Mech. Eng., Part L 230(1), 319–327 (2016).
[Crossref]

P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, M. Szynkowska, and T. Maniecki, “Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol,” Appl. Catal. B 185, 281–294 (2016).
[Crossref]

K. Ramachandran, T. Raj-kumar, K. Justice-Babu, and G. Gnana-kumar, “Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications,” Sci. Rep. 6(1), 36583 (2016).
[Crossref]

W. Liu, H. Zhang, H. Sun, Q. Zhang, and D. Wang, “Optical bistability induced by spin–orbit coupling in the carbon-nanotube quantum dots,” Appl. Opt. 55(5), 1090–1094 (2016).
[Crossref]

2015 (6)

H. Baccar, A. Thamri, P. Clément, E. Llobet, and A. Abdelghani, “Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature,” Beilstein J. Nanotechnol. 6, 919–927 (2015).
[Crossref]

E. Halakoo, A. Khademi, M. Ghasemi, N. Mohd-Yusof, R. Jamshidi-Gohari, and A. Fauzi-Ismail, “Production of sustainable energy by carbon nanotube/platinum catalyst in microbial fuel cell,” Procedia CIRP 26, 473–476 (2015).
[Crossref]

J. Ozhikandathil, S. Badilescu, and M. Packirisamy, “Plasmonic gold decorated MWCNT nanocomposite for localized plasmon resonance sensing,” Sci. Rep. 5(1), 13181 (2015).
[Crossref]

A. Palote and G. Lubineau, “Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites,” Carbon 81, 720–730 (2015).
[Crossref]

J. B. Li, S. Liang, M. D. He, L. Q. Chen, X. J. Wang, and X. F. Peng, “A tunable bistable device based on a coupled quantum dot–metallic nanoparticle nanosystem,” Appl. Phys. B 120, 161–166 (2015).
[Crossref]

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

2014 (5)

G. J. Leong, M. C. Schulze, M. B. Strand, D. Maloney, S. L. Frisco, H. N. Dinh, B. Pivovar, and R. M. Richards, “Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts,” Appl. Organometal. Chem. 28(1), 1–17 (2014).
[Crossref]

T. Kobayashi, Z. Nie, and J. Du, “Coherent phonon coupled with exciton in semiconducting single-walled carbon nanotubes with several chiralities,” Procedia Eng. 93, 17–24 (2014).
[Crossref]

P. A. Eminov, Y. I. Sezonov, and S. V. Gordeeva, “Electron–phonon mechanism of conduction in magnetized nanotubes,” Diamond Relat. Mater. 49, 72–76 (2014).
[Crossref]

E. Li, B. J. Eggleton, K. Fang, and S. Fan, “Photonic Aharonov–Bohm effect in photon–phonon intercations,” Nat. Commun. 5(1), 3225 (2014).
[Crossref]

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

2013 (3)

M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, “Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system,” Nat. Nanotechnol. 8(3), 165–169 (2013).
[Crossref]

Z. L. Wang, H. T. Mu, J. G. Liang, and D. W. Tang, “Thermal boundary resistance and temperature dependent phonon conduction in CNT array multilayer structure,” Int. J. Therm. Sci. 74, 53–62 (2013).
[Crossref]

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

2012 (2)

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108(15), 153901 (2012).
[Crossref]

Z. Zanolli and J. Charlier, “Single-molecule sensing using carbon nanotubes decorated with magnetic clusters,” ACS Nano 6(12), 10786–10791 (2012).
[Crossref]

2011 (2)

S. Lefrant, J. P. Buisson, J. Y. Mevellec, M. Baibarac, and I. Baltog, “Non-linear and resonance effects in carbon nanotube structures,” Opt. Mater. 33(9), 1410–1414 (2011).
[Crossref]

F. Xin and L. Li, “Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites,” Composites Part A 42(8), 961–967 (2011).
[Crossref]

2010 (1)

2008 (1)

P. Cheng-Ma, B. Zhong-Tang, and J. Kim, “Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites,” Carbon 46(11), 1497–1505 (2008).
[Crossref]

2007 (1)

Y. Zhao, L. Yifeng-E, Y. Fan, S. Qiu, and Yang, “A new route for the electrodeposition of platinum–nickel alloy nanoparticles on multi-walled carbon nanotubes,” Electrochim. Acta 52(19), 5873–5878 (2007).
[Crossref]

2006 (1)

I. Kohta and A. Tsuneya, “Optical phonon interacting with electrons in carbon nanotubes,” J. Phys. Soc. Jpn. 75(8), 084713 (2006).
[Crossref]

2005 (2)

H. R. Astorga and D. Mendoza, “Electrical conductivity of multiwall carbon nanotubes thin films,” Opt. Mater. 27(7), 1228–1230 (2005).
[Crossref]

T. Nakanish and T. Ando, “Conductivity in carbon nanotubes with Aharonov-Bohm flux,” J. Phys. Soc. Jpn. 74(11), 3027–3034 (2005).
[Crossref]

1961 (1)

J. K. Moser, “Bistable systems of differential equations with applications to tunnel diode circuits,” IBM J. Res. Dev. 5(3), 226–240 (1961).
[Crossref]

Abdelghani, A.

H. Baccar, A. Thamri, P. Clément, E. Llobet, and A. Abdelghani, “Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature,” Beilstein J. Nanotechnol. 6, 919–927 (2015).
[Crossref]

Adams, A. P.

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Ahmed, Z.

A. Sarode, Z. Ahmed, P. Basarkar, A. Bhargav, and D. Banerjee, “A molecular dynamics approach of the role of carbon nanotube diameter on thermal interfacial resistance through vibrational mismatch analysis,” Int. J. Therm. Sci. 122, 33–38 (2017).
[Crossref]

Ahn, H. J.

G. H. An, H. G. Jo, and H. J. Ahn, “Platinum nanoparticles on nitrogen-doped carbon and nickel composites surfaces: A high electrical conductivity for methanol oxidation reaction,” J. Alloys Compd. 763, 250–256 (2018).
[Crossref]

Alamusi,

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Alvarado-Gil, J.

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

An, G. H.

G. H. An, H. G. Jo, and H. J. Ahn, “Platinum nanoparticles on nitrogen-doped carbon and nickel composites surfaces: A high electrical conductivity for methanol oxidation reaction,” J. Alloys Compd. 763, 250–256 (2018).
[Crossref]

Ando, T.

T. Nakanish and T. Ando, “Conductivity in carbon nanotubes with Aharonov-Bohm flux,” J. Phys. Soc. Jpn. 74(11), 3027–3034 (2005).
[Crossref]

Apostolopoulos, V.

E. Perivolari, J. R. Gill, N. Podoliak, V. Apostolopoulos, T. J. Sluckin, G. D’Alessandro, and M. Kaczmarek, “Optically controlled bistable waveplates,” J. Mol. Liq. 267, 484–489 (2018).
[Crossref]

Asensio, M. C.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Astorga, H. R.

H. R. Astorga and D. Mendoza, “Electrical conductivity of multiwall carbon nanotubes thin films,” Opt. Mater. 27(7), 1228–1230 (2005).
[Crossref]

Atobe, S.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Avila, J.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Avvisati, G.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Baccar, H.

H. Baccar, A. Thamri, P. Clément, E. Llobet, and A. Abdelghani, “Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature,” Beilstein J. Nanotechnol. 6, 919–927 (2015).
[Crossref]

Badilescu, S.

J. Ozhikandathil, S. Badilescu, and M. Packirisamy, “Plasmonic gold decorated MWCNT nanocomposite for localized plasmon resonance sensing,” Sci. Rep. 5(1), 13181 (2015).
[Crossref]

Baibarac, M.

S. Lefrant, J. P. Buisson, J. Y. Mevellec, M. Baibarac, and I. Baltog, “Non-linear and resonance effects in carbon nanotube structures,” Opt. Mater. 33(9), 1410–1414 (2011).
[Crossref]

Baitoul, M.

M. Goumri, B. Lucas, B. Ratier, and M. Baitoul, “Electrical and optical properties of reduced graphene oxide and multi-walled carbon nanotubes based nanocomposites: A comparative study,” Opt. Mater. 60, 105–113 (2016).
[Crossref]

Baltog, I.

S. Lefrant, J. P. Buisson, J. Y. Mevellec, M. Baibarac, and I. Baltog, “Non-linear and resonance effects in carbon nanotube structures,” Opt. Mater. 33(9), 1410–1414 (2011).
[Crossref]

Banerjee, D.

A. Sarode, Z. Ahmed, P. Basarkar, A. Bhargav, and D. Banerjee, “A molecular dynamics approach of the role of carbon nanotube diameter on thermal interfacial resistance through vibrational mismatch analysis,” Int. J. Therm. Sci. 122, 33–38 (2017).
[Crossref]

Basarkar, P.

A. Sarode, Z. Ahmed, P. Basarkar, A. Bhargav, and D. Banerjee, “A molecular dynamics approach of the role of carbon nanotube diameter on thermal interfacial resistance through vibrational mismatch analysis,” Int. J. Therm. Sci. 122, 33–38 (2017).
[Crossref]

Betti, M. G.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Bhargav, A.

A. Sarode, Z. Ahmed, P. Basarkar, A. Bhargav, and D. Banerjee, “A molecular dynamics approach of the role of carbon nanotube diameter on thermal interfacial resistance through vibrational mismatch analysis,” Int. J. Therm. Sci. 122, 33–38 (2017).
[Crossref]

Blom, A.

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro, “ATK-ForceField: a new generation molecular dynamics software package,” Modelling Simul,” Modell. Simul. Mater. Sci. Eng. 25(8), 085007 (2017).
[Crossref]

Briones-Leon, A.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Buisson, J. P.

S. Lefrant, J. P. Buisson, J. Y. Mevellec, M. Baibarac, and I. Baltog, “Non-linear and resonance effects in carbon nanotube structures,” Opt. Mater. 33(9), 1410–1414 (2011).
[Crossref]

Bulin, J.

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro, “ATK-ForceField: a new generation molecular dynamics software package,” Modelling Simul,” Modell. Simul. Mater. Sci. Eng. 25(8), 085007 (2017).
[Crossref]

Cervantes-Sodi, F.

E. Jiménez-Marín, I. Villalpando, M. Trejo-Valdez, F. Cervantes-Sodi, J. R. Vargas-García, and C. Torres-Torres, “Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes,” Mater. Sci. Eng. B 220, 22–29 (2017).
[Crossref]

Chang, C.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Charlier, J.

Z. Zanolli and J. Charlier, “Single-molecule sensing using carbon nanotubes decorated with magnetic clusters,” ACS Nano 6(12), 10786–10791 (2012).
[Crossref]

Chen, B.

B. Chen, X. F. Wang, J. K. Yan, X. F. Zhu, and C. Jiang, “Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings,” Superlattices Microstruct. 113, 301–309 (2018).
[Crossref]

Chen, C.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Chen, L. Q.

J. B. Li, S. Liang, M. D. He, L. Q. Chen, X. J. Wang, and X. F. Peng, “A tunable bistable device based on a coupled quantum dot–metallic nanoparticle nanosystem,” Appl. Phys. B 120, 161–166 (2015).
[Crossref]

Cheng-Ma, P.

P. Cheng-Ma, B. Zhong-Tang, and J. Kim, “Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites,” Carbon 46(11), 1497–1505 (2008).
[Crossref]

Chido, M. T.

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Chill, S. T.

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro, “ATK-ForceField: a new generation molecular dynamics software package,” Modelling Simul,” Modell. Simul. Mater. Sci. Eng. 25(8), 085007 (2017).
[Crossref]

Clément, P.

H. Baccar, A. Thamri, P. Clément, E. Llobet, and A. Abdelghani, “Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature,” Beilstein J. Nanotechnol. 6, 919–927 (2015).
[Crossref]

D’Alessandro, G.

E. Perivolari, J. R. Gill, N. Podoliak, V. Apostolopoulos, T. J. Sluckin, G. D’Alessandro, and M. Kaczmarek, “Optically controlled bistable waveplates,” J. Mol. Liq. 267, 484–489 (2018).
[Crossref]

Dhakate, S. R.

C. Gupta, P. H. Maheshwari, and S. R. Dhakate, “Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst,” Mater. Renewable Sustainable Energy 5(1), 2 (2016).
[Crossref]

Di Bernardo, I.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Dinh, H. N.

G. J. Leong, M. C. Schulze, M. B. Strand, D. Maloney, S. L. Frisco, H. N. Dinh, B. Pivovar, and R. M. Richards, “Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts,” Appl. Organometal. Chem. 28(1), 1–17 (2014).
[Crossref]

Domanov, O.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Du, J.

T. Kobayashi, Z. Nie, and J. Du, “Coherent phonon coupled with exciton in semiconducting single-walled carbon nanotubes with several chiralities,” Procedia Eng. 93, 17–24 (2014).
[Crossref]

Eggleton, B. J.

E. Li, B. J. Eggleton, K. Fang, and S. Fan, “Photonic Aharonov–Bohm effect in photon–phonon intercations,” Nat. Commun. 5(1), 3225 (2014).
[Crossref]

Eisterer, M.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Eminov, P. A.

P. A. Eminov, Y. I. Sezonov, and S. V. Gordeeva, “Electron–phonon mechanism of conduction in magnetized nanotubes,” Diamond Relat. Mater. 49, 72–76 (2014).
[Crossref]

Enick, R. M.

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Everitt, H. O.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Fan, S.

E. Li, B. J. Eggleton, K. Fang, and S. Fan, “Photonic Aharonov–Bohm effect in photon–phonon intercations,” Nat. Commun. 5(1), 3225 (2014).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108(15), 153901 (2012).
[Crossref]

Fan, Y.

Y. Zhao, L. Yifeng-E, Y. Fan, S. Qiu, and Yang, “A new route for the electrodeposition of platinum–nickel alloy nanoparticles on multi-walled carbon nanotubes,” Electrochim. Acta 52(19), 5873–5878 (2007).
[Crossref]

Fang, K.

E. Li, B. J. Eggleton, K. Fang, and S. Fan, “Photonic Aharonov–Bohm effect in photon–phonon intercations,” Nat. Commun. 5(1), 3225 (2014).
[Crossref]

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108(15), 153901 (2012).
[Crossref]

Farmani, A.

M. K. Qaleh-Jooq, A. Mir, S. Mirzakuchaki, and A. Farmani, “Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors,” Phys. E 104, 286–296 (2018).
[Crossref]

A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
[Crossref]

A. Farmani, A. Mir, and M. H. Sheikhi, “Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces,”,” J. Opt. Soc. Am. B 34(6), 1097–1106 (2017).
[Crossref]

Fauzi-Ismail, A.

E. Halakoo, A. Khademi, M. Ghasemi, N. Mohd-Yusof, R. Jamshidi-Gohari, and A. Fauzi-Ismail, “Production of sustainable energy by carbon nanotube/platinum catalyst in microbial fuel cell,” Procedia CIRP 26, 473–476 (2015).
[Crossref]

Frisco, S. L.

G. J. Leong, M. C. Schulze, M. B. Strand, D. Maloney, S. L. Frisco, H. N. Dinh, B. Pivovar, and R. M. Richards, “Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts,” Appl. Organometal. Chem. 28(1), 1–17 (2014).
[Crossref]

Fukunaga, H.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Ganzhorn, M.

M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, “Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system,” Nat. Nanotechnol. 8(3), 165–169 (2013).
[Crossref]

Gao, L.

Y. Shen, W. Gong, B. Zheng, and L. Gao, “Ni–Al bimetallic catalysts for preparation of multiwalled carbon nanotubes from polypropylene: Influence of the ratio of Ni/Al,” Appl. Catal. B 181, 769–778 (2016).
[Crossref]

García-Merino, J. A.

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-San Miguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-SanMiguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

Geib, S. J.

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Ghasemi, M.

E. Halakoo, A. Khademi, M. Ghasemi, N. Mohd-Yusof, R. Jamshidi-Gohari, and A. Fauzi-Ismail, “Production of sustainable energy by carbon nanotube/platinum catalyst in microbial fuel cell,” Procedia CIRP 26, 473–476 (2015).
[Crossref]

Gill, J. R.

E. Perivolari, J. R. Gill, N. Podoliak, V. Apostolopoulos, T. J. Sluckin, G. D’Alessandro, and M. Kaczmarek, “Optically controlled bistable waveplates,” J. Mol. Liq. 267, 484–489 (2018).
[Crossref]

Gnana-kumar, G.

K. Ramachandran, T. Raj-kumar, K. Justice-Babu, and G. Gnana-kumar, “Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications,” Sci. Rep. 6(1), 36583 (2016).
[Crossref]

Gong, W.

Y. Shen, W. Gong, B. Zheng, and L. Gao, “Ni–Al bimetallic catalysts for preparation of multiwalled carbon nanotubes from polypropylene: Influence of the ratio of Ni/Al,” Appl. Catal. B 181, 769–778 (2016).
[Crossref]

Gordeeva, S. V.

P. A. Eminov, Y. I. Sezonov, and S. V. Gordeeva, “Electron–phonon mechanism of conduction in magnetized nanotubes,” Diamond Relat. Mater. 49, 72–76 (2014).
[Crossref]

Goumri, M.

M. Goumri, B. Lucas, B. Ratier, and M. Baitoul, “Electrical and optical properties of reduced graphene oxide and multi-walled carbon nanotubes based nanocomposites: A comparative study,” Opt. Mater. 60, 105–113 (2016).
[Crossref]

Gu, B.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Gubin, S. P.

S. P. Gubin, Magnetic Nanoparticles (Wiley-VCH, 2009).

Gupta, C.

C. Gupta, P. H. Maheshwari, and S. R. Dhakate, “Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst,” Mater. Renewable Sustainable Energy 5(1), 2 (2016).
[Crossref]

Halakoo, E.

E. Halakoo, A. Khademi, M. Ghasemi, N. Mohd-Yusof, R. Jamshidi-Gohari, and A. Fauzi-Ismail, “Production of sustainable energy by carbon nanotube/platinum catalyst in microbial fuel cell,” Procedia CIRP 26, 473–476 (2015).
[Crossref]

Hamaekers, J.

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro, “ATK-ForceField: a new generation molecular dynamics software package,” Modelling Simul,” Modell. Simul. Mater. Sci. Eng. 25(8), 085007 (2017).
[Crossref]

Hameed, S.

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

He, M. D.

J. B. Li, S. Liang, M. D. He, L. Q. Chen, X. J. Wang, and X. F. Peng, “A tunable bistable device based on a coupled quantum dot–metallic nanoparticle nanosystem,” Appl. Phys. B 120, 161–166 (2015).
[Crossref]

Heimbeck, M. S.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Hines, P.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Hone, J.

J. Hone, “Phonons and thermal properties of carbon nanotubes,” in Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, 2001), pp. 273–286.

Hu, N.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Huck, W. T.

S. G. Postma, D. te Brinke, I. N. Vialshin, A. S. Wong, and W. T. Huck, “A trypsin-based bistable switch,” Tetrahedron 73(33), 4896–4900 (2017).
[Crossref]

Ito, Y.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Jamshidi-Gohari, R.

E. Halakoo, A. Khademi, M. Ghasemi, N. Mohd-Yusof, R. Jamshidi-Gohari, and A. Fauzi-Ismail, “Production of sustainable energy by carbon nanotube/platinum catalyst in microbial fuel cell,” Procedia CIRP 26, 473–476 (2015).
[Crossref]

Jiang, C.

B. Chen, X. F. Wang, J. K. Yan, X. F. Zhu, and C. Jiang, “Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings,” Superlattices Microstruct. 113, 301–309 (2018).
[Crossref]

Jiménez-Marín, E.

E. Jiménez-Marín, I. Villalpando, M. Trejo-Valdez, F. Cervantes-Sodi, J. R. Vargas-García, and C. Torres-Torres, “Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes,” Mater. Sci. Eng. B 220, 22–29 (2017).
[Crossref]

Jo, H. G.

G. H. An, H. G. Jo, and H. J. Ahn, “Platinum nanoparticles on nitrogen-doped carbon and nickel composites surfaces: A high electrical conductivity for methanol oxidation reaction,” J. Alloys Compd. 763, 250–256 (2018).
[Crossref]

Justice-Babu, K.

K. Ramachandran, T. Raj-kumar, K. Justice-Babu, and G. Gnana-kumar, “Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications,” Sci. Rep. 6(1), 36583 (2016).
[Crossref]

Kaczmarek, M.

E. Perivolari, J. R. Gill, N. Podoliak, V. Apostolopoulos, T. J. Sluckin, G. D’Alessandro, and M. Kaczmarek, “Optically controlled bistable waveplates,” J. Mol. Liq. 267, 484–489 (2018).
[Crossref]

Kailong, H.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Keith, J. A.

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Khademi, A.

E. Halakoo, A. Khademi, M. Ghasemi, N. Mohd-Yusof, R. Jamshidi-Gohari, and A. Fauzi-Ismail, “Production of sustainable energy by carbon nanotube/platinum catalyst in microbial fuel cell,” Procedia CIRP 26, 473–476 (2015).
[Crossref]

Kim, J.

P. Cheng-Ma, B. Zhong-Tang, and J. Kim, “Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites,” Carbon 46(11), 1497–1505 (2008).
[Crossref]

Klyatskaya, S.

M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, “Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system,” Nat. Nanotechnol. 8(3), 165–169 (2013).
[Crossref]

Kobayashi, T.

T. Kobayashi, Z. Nie, and J. Du, “Coherent phonon coupled with exciton in semiconducting single-walled carbon nanotubes with several chiralities,” Procedia Eng. 93, 17–24 (2014).
[Crossref]

Kohta, I.

I. Kohta and A. Tsuneya, “Optical phonon interacting with electrons in carbon nanotubes,” J. Phys. Soc. Jpn. 75(8), 084713 (2006).
[Crossref]

Kono, J.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Koronaios, P.

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Lang, W.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Larson, R.

A. Ramazani, A. Reihani, A. Soleimani, R. Larson, and V. Sundararaghavan, “Molecular dynamics study of phonon transport in graphyne nanotubes,” Carbon 123, 635–644 (2017).
[Crossref]

Lefrant, S.

S. Lefrant, J. P. Buisson, J. Y. Mevellec, M. Baibarac, and I. Baltog, “Non-linear and resonance effects in carbon nanotube structures,” Opt. Mater. 33(9), 1410–1414 (2011).
[Crossref]

Leong, G. J.

G. J. Leong, M. C. Schulze, M. B. Strand, D. Maloney, S. L. Frisco, H. N. Dinh, B. Pivovar, and R. M. Richards, “Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts,” Appl. Organometal. Chem. 28(1), 1–17 (2014).
[Crossref]

Li, E.

E. Li, B. J. Eggleton, K. Fang, and S. Fan, “Photonic Aharonov–Bohm effect in photon–phonon intercations,” Nat. Commun. 5(1), 3225 (2014).
[Crossref]

Li, J.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Li, J. B.

J. B. Li, S. Liang, M. D. He, L. Q. Chen, X. J. Wang, and X. F. Peng, “A tunable bistable device based on a coupled quantum dot–metallic nanoparticle nanosystem,” Appl. Phys. B 120, 161–166 (2015).
[Crossref]

Li, L.

F. Xin and L. Li, “Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites,” Composites Part A 42(8), 961–967 (2011).
[Crossref]

Li, Y.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Li, Z. Y.

Liang, J. G.

Z. L. Wang, H. T. Mu, J. G. Liang, and D. W. Tang, “Thermal boundary resistance and temperature dependent phonon conduction in CNT array multilayer structure,” Int. J. Therm. Sci. 74, 53–62 (2013).
[Crossref]

Liang, S.

J. B. Li, S. Liang, M. D. He, L. Q. Chen, X. J. Wang, and X. F. Peng, “A tunable bistable device based on a coupled quantum dot–metallic nanoparticle nanosystem,” Appl. Phys. B 120, 161–166 (2015).
[Crossref]

Lipton-Duffin, J.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Liu, W.

Liu, Y.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

F. Zhou, Y. Liu, Z. Y. Li, and Y. Xia, “Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials,” Opt. Express 18(13), 13337–13344 (2010).
[Crossref]

Llobet, E.

H. Baccar, A. Thamri, P. Clément, E. Llobet, and A. Abdelghani, “Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature,” Beilstein J. Nanotechnol. 6, 919–927 (2015).
[Crossref]

Lubineau, G.

A. Palote and G. Lubineau, “Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites,” Carbon 81, 720–730 (2015).
[Crossref]

Lucas, B.

M. Goumri, B. Lucas, B. Ratier, and M. Baitoul, “Electrical and optical properties of reduced graphene oxide and multi-walled carbon nanotubes based nanocomposites: A comparative study,” Opt. Mater. 60, 105–113 (2016).
[Crossref]

Maheshwari, P. H.

C. Gupta, P. H. Maheshwari, and S. R. Dhakate, “Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst,” Mater. Renewable Sustainable Energy 5(1), 2 (2016).
[Crossref]

Maloney, D.

G. J. Leong, M. C. Schulze, M. B. Strand, D. Maloney, S. L. Frisco, H. N. Dinh, B. Pivovar, and R. M. Richards, “Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts,” Appl. Organometal. Chem. 28(1), 1–17 (2014).
[Crossref]

Maniecki, T.

P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, M. Szynkowska, and T. Maniecki, “Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol,” Appl. Catal. B 185, 281–294 (2016).
[Crossref]

Maniukiewicz, W.

P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, M. Szynkowska, and T. Maniecki, “Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol,” Appl. Catal. B 185, 281–294 (2016).
[Crossref]

Mariani, C.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Martínez-González, C. L.

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-SanMiguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-San Miguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

Martínez-Torres, P.

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

Maultzsch, J.

S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, 2004).

Medina-Esquivel, R.

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

Mendoza, D.

H. R. Astorga and D. Mendoza, “Electrical conductivity of multiwall carbon nanotubes thin films,” Opt. Mater. 27(7), 1228–1230 (2005).
[Crossref]

Mercado-Zúñiga, C.

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-San Miguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-SanMiguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

Mevellec, J. Y.

S. Lefrant, J. P. Buisson, J. Y. Mevellec, M. Baibarac, and I. Baltog, “Non-linear and resonance effects in carbon nanotube structures,” Opt. Mater. 33(9), 1410–1414 (2011).
[Crossref]

Mierczynska, A.

P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, M. Szynkowska, and T. Maniecki, “Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol,” Appl. Catal. B 185, 281–294 (2016).
[Crossref]

Mierczynski, P.

P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, M. Szynkowska, and T. Maniecki, “Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol,” Appl. Catal. B 185, 281–294 (2016).
[Crossref]

Mir, A.

A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
[Crossref]

M. K. Qaleh-Jooq, A. Mir, S. Mirzakuchaki, and A. Farmani, “Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors,” Phys. E 104, 286–296 (2018).
[Crossref]

A. Farmani, A. Mir, and M. H. Sheikhi, “Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces,”,” J. Opt. Soc. Am. B 34(6), 1097–1106 (2017).
[Crossref]

Mirzakuchaki, S.

M. K. Qaleh-Jooq, A. Mir, S. Mirzakuchaki, and A. Farmani, “Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors,” Phys. E 104, 286–296 (2018).
[Crossref]

Mohan, S.

A. Selvakumar, R. Perumalraj, J. Sudagar, and S. Mohan, “Nickel–multiwalled carbon nanotube composite coating on aluminum alloy rotor for textile industries,” Proc. Inst. Mech. Eng., Part L 230(1), 319–327 (2016).
[Crossref]

Mohd-Yusof, N.

E. Halakoo, A. Khademi, M. Ghasemi, N. Mohd-Yusof, R. Jamshidi-Gohari, and A. Fauzi-Ismail, “Production of sustainable energy by carbon nanotube/platinum catalyst in microbial fuel cell,” Procedia CIRP 26, 473–476 (2015).
[Crossref]

Moser, J. K.

J. K. Moser, “Bistable systems of differential equations with applications to tunnel diode circuits,” IBM J. Res. Dev. 5(3), 226–240 (1961).
[Crossref]

Motta, N.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Mu, H. T.

Z. L. Wang, H. T. Mu, J. G. Liang, and D. W. Tang, “Thermal boundary resistance and temperature dependent phonon conduction in CNT array multilayer structure,” Int. J. Therm. Sci. 74, 53–62 (2013).
[Crossref]

Nakanish, T.

T. Nakanish and T. Ando, “Conductivity in carbon nanotubes with Aharonov-Bohm flux,” J. Phys. Soc. Jpn. 74(11), 3027–3034 (2005).
[Crossref]

Nie, Z.

T. Kobayashi, Z. Nie, and J. Du, “Coherent phonon coupled with exciton in semiconducting single-walled carbon nanotubes with several chiralities,” Procedia Eng. 93, 17–24 (2014).
[Crossref]

Ning, H.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Ozhikandathil, J.

J. Ozhikandathil, S. Badilescu, and M. Packirisamy, “Plasmonic gold decorated MWCNT nanocomposite for localized plasmon resonance sensing,” Sci. Rep. 5(1), 13181 (2015).
[Crossref]

Packirisamy, M.

J. Ozhikandathil, S. Badilescu, and M. Packirisamy, “Plasmonic gold decorated MWCNT nanocomposite for localized plasmon resonance sensing,” Sci. Rep. 5(1), 13181 (2015).
[Crossref]

Palote, A.

A. Palote and G. Lubineau, “Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites,” Carbon 81, 720–730 (2015).
[Crossref]

Pasquali, M.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Peng, X.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Peng, X. F.

J. B. Li, S. Liang, M. D. He, L. Q. Chen, X. J. Wang, and X. F. Peng, “A tunable bistable device based on a coupled quantum dot–metallic nanoparticle nanosystem,” Appl. Phys. B 120, 161–166 (2015).
[Crossref]

Perivolari, E.

E. Perivolari, J. R. Gill, N. Podoliak, V. Apostolopoulos, T. J. Sluckin, G. D’Alessandro, and M. Kaczmarek, “Optically controlled bistable waveplates,” J. Mol. Liq. 267, 484–489 (2018).
[Crossref]

Perumalraj, R.

A. Selvakumar, R. Perumalraj, J. Sudagar, and S. Mohan, “Nickel–multiwalled carbon nanotube composite coating on aluminum alloy rotor for textile industries,” Proc. Inst. Mech. Eng., Part L 230(1), 319–327 (2016).
[Crossref]

Peterlik, H.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Pichler, T.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Pivovar, B.

G. J. Leong, M. C. Schulze, M. B. Strand, D. Maloney, S. L. Frisco, H. N. Dinh, B. Pivovar, and R. M. Richards, “Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts,” Appl. Organometal. Chem. 28(1), 1–17 (2014).
[Crossref]

Podoliak, N.

E. Perivolari, J. R. Gill, N. Podoliak, V. Apostolopoulos, T. J. Sluckin, G. D’Alessandro, and M. Kaczmarek, “Optically controlled bistable waveplates,” J. Mol. Liq. 267, 484–489 (2018).
[Crossref]

Postma, S. G.

S. G. Postma, D. te Brinke, I. N. Vialshin, A. S. Wong, and W. T. Huck, “A trypsin-based bistable switch,” Tetrahedron 73(33), 4896–4900 (2017).
[Crossref]

Qaleh-Jooq, M. K.

M. K. Qaleh-Jooq, A. Mir, S. Mirzakuchaki, and A. Farmani, “Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors,” Phys. E 104, 286–296 (2018).
[Crossref]

Qiu, S.

Y. Zhao, L. Yifeng-E, Y. Fan, S. Qiu, and Yang, “A new route for the electrodeposition of platinum–nickel alloy nanoparticles on multi-walled carbon nanotubes,” Electrochim. Acta 52(19), 5873–5878 (2007).
[Crossref]

Raj-kumar, T.

K. Ramachandran, T. Raj-kumar, K. Justice-Babu, and G. Gnana-kumar, “Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications,” Sci. Rep. 6(1), 36583 (2016).
[Crossref]

Ramachandran, K.

K. Ramachandran, T. Raj-kumar, K. Justice-Babu, and G. Gnana-kumar, “Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications,” Sci. Rep. 6(1), 36583 (2016).
[Crossref]

Ramazani, A.

A. Ramazani, A. Reihani, A. Soleimani, R. Larson, and V. Sundararaghavan, “Molecular dynamics study of phonon transport in graphyne nanotubes,” Carbon 123, 635–644 (2017).
[Crossref]

Ratier, B.

M. Goumri, B. Lucas, B. Ratier, and M. Baitoul, “Electrical and optical properties of reduced graphene oxide and multi-walled carbon nanotubes based nanocomposites: A comparative study,” Opt. Mater. 60, 105–113 (2016).
[Crossref]

Reich, S.

S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, 2004).

Reihani, A.

A. Ramazani, A. Reihani, A. Soleimani, R. Larson, and V. Sundararaghavan, “Molecular dynamics study of phonon transport in graphyne nanotubes,” Carbon 123, 635–644 (2017).
[Crossref]

Richards, R. M.

G. J. Leong, M. C. Schulze, M. B. Strand, D. Maloney, S. L. Frisco, H. N. Dinh, B. Pivovar, and R. M. Richards, “Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts,” Appl. Organometal. Chem. 28(1), 1–17 (2014).
[Crossref]

Rintoul, L.

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

Ruben, M.

M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, “Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system,” Nat. Nanotechnol. 8(3), 165–169 (2013).
[Crossref]

Saito, T.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Saravanan, K.

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Sarode, A.

A. Sarode, Z. Ahmed, P. Basarkar, A. Bhargav, and D. Banerjee, “A molecular dynamics approach of the role of carbon nanotube diameter on thermal interfacial resistance through vibrational mismatch analysis,” Int. J. Therm. Sci. 122, 33–38 (2017).
[Crossref]

Sato, Y.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Schneider, J.

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro, “ATK-ForceField: a new generation molecular dynamics software package,” Modelling Simul,” Modell. Simul. Mater. Sci. Eng. 25(8), 085007 (2017).
[Crossref]

Schulze, M. C.

G. J. Leong, M. C. Schulze, M. B. Strand, D. Maloney, S. L. Frisco, H. N. Dinh, B. Pivovar, and R. M. Richards, “Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts,” Appl. Organometal. Chem. 28(1), 1–17 (2014).
[Crossref]

Selvakumar, A.

A. Selvakumar, R. Perumalraj, J. Sudagar, and S. Mohan, “Nickel–multiwalled carbon nanotube composite coating on aluminum alloy rotor for textile industries,” Proc. Inst. Mech. Eng., Part L 230(1), 319–327 (2016).
[Crossref]

Sezonov, Y. I.

P. A. Eminov, Y. I. Sezonov, and S. V. Gordeeva, “Electron–phonon mechanism of conduction in magnetized nanotubes,” Diamond Relat. Mater. 49, 72–76 (2014).
[Crossref]

Sharifpour, Z.

A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
[Crossref]

Sheikhi, M. H.

Shen, Y.

Y. Shen, W. Gong, B. Zheng, and L. Gao, “Ni–Al bimetallic catalysts for preparation of multiwalled carbon nanotubes from polypropylene: Influence of the ratio of Ni/Al,” Appl. Catal. B 181, 769–778 (2016).
[Crossref]

Shiozawa, H.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Sluckin, T. J.

E. Perivolari, J. R. Gill, N. Podoliak, V. Apostolopoulos, T. J. Sluckin, G. D’Alessandro, and M. Kaczmarek, “Optically controlled bistable waveplates,” J. Mol. Liq. 267, 484–489 (2018).
[Crossref]

Smidstrup, S.

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro, “ATK-ForceField: a new generation molecular dynamics software package,” Modelling Simul,” Modell. Simul. Mater. Sci. Eng. 25(8), 085007 (2017).
[Crossref]

Soleimani, A.

A. Ramazani, A. Reihani, A. Soleimani, R. Larson, and V. Sundararaghavan, “Molecular dynamics study of phonon transport in graphyne nanotubes,” Carbon 123, 635–644 (2017).
[Crossref]

Star, A.

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Stokbro, K.

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro, “ATK-ForceField: a new generation molecular dynamics software package,” Modelling Simul,” Modell. Simul. Mater. Sci. Eng. 25(8), 085007 (2017).
[Crossref]

Strand, M. B.

G. J. Leong, M. C. Schulze, M. B. Strand, D. Maloney, S. L. Frisco, H. N. Dinh, B. Pivovar, and R. M. Richards, “Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts,” Appl. Organometal. Chem. 28(1), 1–17 (2014).
[Crossref]

Sudagar, J.

A. Selvakumar, R. Perumalraj, J. Sudagar, and S. Mohan, “Nickel–multiwalled carbon nanotube composite coating on aluminum alloy rotor for textile industries,” Proc. Inst. Mech. Eng., Part L 230(1), 319–327 (2016).
[Crossref]

Suenaga, K.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Sun, H.

Sundararaghavan, V.

A. Ramazani, A. Reihani, A. Soleimani, R. Larson, and V. Sundararaghavan, “Molecular dynamics study of phonon transport in graphyne nanotubes,” Carbon 123, 635–644 (2017).
[Crossref]

Sunkara, H. B.

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Surina,

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Szynkowska, M.

P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, M. Szynkowska, and T. Maniecki, “Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol,” Appl. Catal. B 185, 281–294 (2016).
[Crossref]

Tang, D. W.

Z. L. Wang, H. T. Mu, J. G. Liang, and D. W. Tang, “Thermal boundary resistance and temperature dependent phonon conduction in CNT array multilayer structure,” Int. J. Therm. Sci. 74, 53–62 (2013).
[Crossref]

te Brinke, D.

S. G. Postma, D. te Brinke, I. N. Vialshin, A. S. Wong, and W. T. Huck, “A trypsin-based bistable switch,” Tetrahedron 73(33), 4896–4900 (2017).
[Crossref]

Thamri, A.

H. Baccar, A. Thamri, P. Clément, E. Llobet, and A. Abdelghani, “Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature,” Beilstein J. Nanotechnol. 6, 919–927 (2015).
[Crossref]

Thesen, R.

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro, “ATK-ForceField: a new generation molecular dynamics software package,” Modelling Simul,” Modell. Simul. Mater. Sci. Eng. 25(8), 085007 (2017).
[Crossref]

Thomsen, C.

S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, 2004).

Torres-San Miguel, C. R.

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-San Miguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

Torres-SanMiguel, C. R.

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-SanMiguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

Torres-Torres, C.

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-SanMiguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-San Miguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

E. Jiménez-Marín, I. Villalpando, M. Trejo-Valdez, F. Cervantes-Sodi, J. R. Vargas-García, and C. Torres-Torres, “Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes,” Mater. Sci. Eng. B 220, 22–29 (2017).
[Crossref]

Trejo-Valdez, M.

E. Jiménez-Marín, I. Villalpando, M. Trejo-Valdez, F. Cervantes-Sodi, J. R. Vargas-García, and C. Torres-Torres, “Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes,” Mater. Sci. Eng. B 220, 22–29 (2017).
[Crossref]

Tsentalovich, D. E.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Tsuneya, A.

I. Kohta and A. Tsuneya, “Optical phonon interacting with electrons in carbon nanotubes,” J. Phys. Soc. Jpn. 75(8), 084713 (2006).
[Crossref]

Vales-Pinzón, C.

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

Vargas-García, J. R.

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-SanMiguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

E. Jiménez-Marín, I. Villalpando, M. Trejo-Valdez, F. Cervantes-Sodi, J. R. Vargas-García, and C. Torres-Torres, “Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes,” Mater. Sci. Eng. B 220, 22–29 (2017).
[Crossref]

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-San Miguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

Vasilev, K.

P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, M. Szynkowska, and T. Maniecki, “Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol,” Appl. Catal. B 185, 281–294 (2016).
[Crossref]

Velankar, S. S.

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Vialshin, I. N.

S. G. Postma, D. te Brinke, I. N. Vialshin, A. S. Wong, and W. T. Huck, “A trypsin-based bistable switch,” Tetrahedron 73(33), 4896–4900 (2017).
[Crossref]

Villalpando, I.

E. Jiménez-Marín, I. Villalpando, M. Trejo-Valdez, F. Cervantes-Sodi, J. R. Vargas-García, and C. Torres-Torres, “Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes,” Mater. Sci. Eng. B 220, 22–29 (2017).
[Crossref]

Wang, C.

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

Wang, D.

Wang, R.

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

Wang, X. F.

B. Chen, X. F. Wang, J. K. Yan, X. F. Zhu, and C. Jiang, “Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings,” Superlattices Microstruct. 113, 301–309 (2018).
[Crossref]

Wang, X. J.

J. B. Li, S. Liang, M. D. He, L. Q. Chen, X. J. Wang, and X. F. Peng, “A tunable bistable device based on a coupled quantum dot–metallic nanoparticle nanosystem,” Appl. Phys. B 120, 161–166 (2015).
[Crossref]

Wang, Z. L.

Z. L. Wang, H. T. Mu, J. G. Liang, and D. W. Tang, “Thermal boundary resistance and temperature dependent phonon conduction in CNT array multilayer structure,” Int. J. Therm. Sci. 74, 53–62 (2013).
[Crossref]

Wernsdorfer, W.

M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, “Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system,” Nat. Nanotechnol. 8(3), 165–169 (2013).
[Crossref]

Weschke, E.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Wong, A. S.

S. G. Postma, D. te Brinke, I. N. Vialshin, A. S. Wong, and W. T. Huck, “A trypsin-based bistable switch,” Tetrahedron 73(33), 4896–4900 (2017).
[Crossref]

Wu, L.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Xia, Y.

Xie, L.

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

Xin, F.

F. Xin and L. Li, “Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites,” Composites Part A 42(8), 961–967 (2011).
[Crossref]

Yan, J. K.

B. Chen, X. F. Wang, J. K. Yan, X. F. Zhu, and C. Jiang, “Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings,” Superlattices Microstruct. 113, 301–309 (2018).
[Crossref]

Yang,

Y. Zhao, L. Yifeng-E, Y. Fan, S. Qiu, and Yang, “A new route for the electrodeposition of platinum–nickel alloy nanoparticles on multi-walled carbon nanotubes,” Electrochim. Acta 52(19), 5873–5878 (2007).
[Crossref]

Yifeng-E, L.

Y. Zhao, L. Yifeng-E, Y. Fan, S. Qiu, and Yang, “A new route for the electrodeposition of platinum–nickel alloy nanoparticles on multi-walled carbon nanotubes,” Electrochim. Acta 52(19), 5873–5878 (2007).
[Crossref]

Ying, Y.

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

Young, C. C.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Yu, Z.

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108(15), 153901 (2012).
[Crossref]

Yuan, W.

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Zanolli, Z.

Z. Zanolli and J. Charlier, “Single-molecule sensing using carbon nanotubes decorated with magnetic clusters,” ACS Nano 6(12), 10786–10791 (2012).
[Crossref]

Zechner, G.

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Zhang, H.

Zhang, Q.

Zhao, Y.

Y. Zhao, L. Yifeng-E, Y. Fan, S. Qiu, and Yang, “A new route for the electrodeposition of platinum–nickel alloy nanoparticles on multi-walled carbon nanotubes,” Electrochim. Acta 52(19), 5873–5878 (2007).
[Crossref]

Zheng, B.

Y. Shen, W. Gong, B. Zheng, and L. Gao, “Ni–Al bimetallic catalysts for preparation of multiwalled carbon nanotubes from polypropylene: Influence of the ratio of Ni/Al,” Appl. Catal. B 181, 769–778 (2016).
[Crossref]

Zhong-Tang, B.

P. Cheng-Ma, B. Zhong-Tang, and J. Kim, “Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites,” Carbon 46(11), 1497–1505 (2008).
[Crossref]

Zhou, F.

Zhu, Q.

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Zhu, X. F.

B. Chen, X. F. Wang, J. K. Yan, X. F. Zhu, and C. Jiang, “Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings,” Superlattices Microstruct. 113, 301–309 (2018).
[Crossref]

Zubair, A.

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

ACS Nano (1)

Z. Zanolli and J. Charlier, “Single-molecule sensing using carbon nanotubes decorated with magnetic clusters,” ACS Nano 6(12), 10786–10791 (2012).
[Crossref]

Appl. Catal. B (2)

Y. Shen, W. Gong, B. Zheng, and L. Gao, “Ni–Al bimetallic catalysts for preparation of multiwalled carbon nanotubes from polypropylene: Influence of the ratio of Ni/Al,” Appl. Catal. B 181, 769–778 (2016).
[Crossref]

P. Mierczynski, K. Vasilev, A. Mierczynska, W. Maniukiewicz, M. Szynkowska, and T. Maniecki, “Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol,” Appl. Catal. B 185, 281–294 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Organometal. Chem. (1)

G. J. Leong, M. C. Schulze, M. B. Strand, D. Maloney, S. L. Frisco, H. N. Dinh, B. Pivovar, and R. M. Richards, “Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts,” Appl. Organometal. Chem. 28(1), 1–17 (2014).
[Crossref]

Appl. Phys. B (1)

J. B. Li, S. Liang, M. D. He, L. Q. Chen, X. J. Wang, and X. F. Peng, “A tunable bistable device based on a coupled quantum dot–metallic nanoparticle nanosystem,” Appl. Phys. B 120, 161–166 (2015).
[Crossref]

Appl. Phys. Lett. (1)

A. Zubair, D. E. Tsentalovich, C. C. Young, M. S. Heimbeck, H. O. Everitt, M. Pasquali, and J. Kono, “Carbon nanotube fiber terahertz polarizer,” Appl. Phys. Lett. 108(14), 141107 (2016).
[Crossref]

Appl. Surf. Sci. (1)

A. Farmani, A. Mir, and Z. Sharifpour, “Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect,” Appl. Surf. Sci. 453, 358–364 (2018).
[Crossref]

Beilstein J. Nanotechnol. (1)

H. Baccar, A. Thamri, P. Clément, E. Llobet, and A. Abdelghani, “Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature,” Beilstein J. Nanotechnol. 6, 919–927 (2015).
[Crossref]

Carbon (5)

P. Cheng-Ma, B. Zhong-Tang, and J. Kim, “Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites,” Carbon 46(11), 1497–1505 (2008).
[Crossref]

A. Palote and G. Lubineau, “Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites,” Carbon 81, 720–730 (2015).
[Crossref]

I. Di Bernardo, G. Avvisati, C. Chen, J. Avila, M. C. Asensio, H. Kailong, Y. Ito, P. Hines, J. Lipton-Duffin, L. Rintoul, N. Motta, C. Mariani, and M. G. Betti, “Topology and doping effects in three-dimensional nanoporous graphene,” Carbon 131, 258–265 (2018).
[Crossref]

R. Wang, L. Xie, S. Hameed, C. Wang, and Y. Ying, “Mechanisms and applications of carbon nanotubes in terahertz devices: A review,” Carbon 132, 42–58 (2018).
[Crossref]

A. Ramazani, A. Reihani, A. Soleimani, R. Larson, and V. Sundararaghavan, “Molecular dynamics study of phonon transport in graphyne nanotubes,” Carbon 123, 635–644 (2017).
[Crossref]

Chem. Mater. (1)

M. T. Chido, P. Koronaios, K. Saravanan, A. P. Adams, S. J. Geib, Q. Zhu, H. B. Sunkara, S. S. Velankar, R. M. Enick, J. A. Keith, and A. Star, “Oligomer hydrate crystallization improves carbon nanotube memory,” Chem. Mater. 30(11), 3813–3818 (2018).
[Crossref]

Composites Part A (1)

F. Xin and L. Li, “Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites,” Composites Part A 42(8), 961–967 (2011).
[Crossref]

Diamond Relat. Mater. (1)

P. A. Eminov, Y. I. Sezonov, and S. V. Gordeeva, “Electron–phonon mechanism of conduction in magnetized nanotubes,” Diamond Relat. Mater. 49, 72–76 (2014).
[Crossref]

Electrochim. Acta (1)

Y. Zhao, L. Yifeng-E, Y. Fan, S. Qiu, and Yang, “A new route for the electrodeposition of platinum–nickel alloy nanoparticles on multi-walled carbon nanotubes,” Electrochim. Acta 52(19), 5873–5878 (2007).
[Crossref]

IBM J. Res. Dev. (1)

J. K. Moser, “Bistable systems of differential equations with applications to tunnel diode circuits,” IBM J. Res. Dev. 5(3), 226–240 (1961).
[Crossref]

Int. J. Therm. Sci. (2)

A. Sarode, Z. Ahmed, P. Basarkar, A. Bhargav, and D. Banerjee, “A molecular dynamics approach of the role of carbon nanotube diameter on thermal interfacial resistance through vibrational mismatch analysis,” Int. J. Therm. Sci. 122, 33–38 (2017).
[Crossref]

Z. L. Wang, H. T. Mu, J. G. Liang, and D. W. Tang, “Thermal boundary resistance and temperature dependent phonon conduction in CNT array multilayer structure,” Int. J. Therm. Sci. 74, 53–62 (2013).
[Crossref]

J. Alloys Compd. (1)

G. H. An, H. G. Jo, and H. J. Ahn, “Platinum nanoparticles on nitrogen-doped carbon and nickel composites surfaces: A high electrical conductivity for methanol oxidation reaction,” J. Alloys Compd. 763, 250–256 (2018).
[Crossref]

J. Magn. Magn. Mater. (1)

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

J. Mol. Liq. (1)

E. Perivolari, J. R. Gill, N. Podoliak, V. Apostolopoulos, T. J. Sluckin, G. D’Alessandro, and M. Kaczmarek, “Optically controlled bistable waveplates,” J. Mol. Liq. 267, 484–489 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (2)

T. Nakanish and T. Ando, “Conductivity in carbon nanotubes with Aharonov-Bohm flux,” J. Phys. Soc. Jpn. 74(11), 3027–3034 (2005).
[Crossref]

I. Kohta and A. Tsuneya, “Optical phonon interacting with electrons in carbon nanotubes,” J. Phys. Soc. Jpn. 75(8), 084713 (2006).
[Crossref]

Mater. Renewable Sustainable Energy (1)

C. Gupta, P. H. Maheshwari, and S. R. Dhakate, “Development of multiwalled carbon nanotubes platinum nanocomposite as efficient PEM fuel cell catalyst,” Mater. Renewable Sustainable Energy 5(1), 2 (2016).
[Crossref]

Mater. Res. Express (2)

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-SanMiguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

J. A. García-Merino, C. Mercado-Zúñiga, C. L. Martínez-González, C. R. Torres-San Miguel, J. R. Vargas-García, and C. Torres-Torres, “Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids,” Mater. Res. Express 4(3), 035601 (2017).
[Crossref]

Mater. Sci. Eng. B (1)

E. Jiménez-Marín, I. Villalpando, M. Trejo-Valdez, F. Cervantes-Sodi, J. R. Vargas-García, and C. Torres-Torres, “Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes,” Mater. Sci. Eng. B 220, 22–29 (2017).
[Crossref]

Modell. Simul. Mater. Sci. Eng. (1)

J. Schneider, J. Hamaekers, S. T. Chill, S. Smidstrup, J. Bulin, R. Thesen, A. Blom, and K. Stokbro, “ATK-ForceField: a new generation molecular dynamics software package,” Modelling Simul,” Modell. Simul. Mater. Sci. Eng. 25(8), 085007 (2017).
[Crossref]

Nanotechnology (1)

Alamusi, Y. Li, N. Hu, L. Wu, W. Yuan, X. Peng, B. Gu, C. Chang, Y. Liu, H. Ning, J. Li, Surina, S. Atobe, and H. Fukunaga, “Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance,” Nanotechnology 24(45), 455501 (2013).
[Crossref]

Nat. Commun. (1)

E. Li, B. J. Eggleton, K. Fang, and S. Fan, “Photonic Aharonov–Bohm effect in photon–phonon intercations,” Nat. Commun. 5(1), 3225 (2014).
[Crossref]

Nat. Nanotechnol. (1)

M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, “Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system,” Nat. Nanotechnol. 8(3), 165–169 (2013).
[Crossref]

Opt. Express (1)

Opt. Mater. (3)

S. Lefrant, J. P. Buisson, J. Y. Mevellec, M. Baibarac, and I. Baltog, “Non-linear and resonance effects in carbon nanotube structures,” Opt. Mater. 33(9), 1410–1414 (2011).
[Crossref]

H. R. Astorga and D. Mendoza, “Electrical conductivity of multiwall carbon nanotubes thin films,” Opt. Mater. 27(7), 1228–1230 (2005).
[Crossref]

M. Goumri, B. Lucas, B. Ratier, and M. Baitoul, “Electrical and optical properties of reduced graphene oxide and multi-walled carbon nanotubes based nanocomposites: A comparative study,” Opt. Mater. 60, 105–113 (2016).
[Crossref]

Phys. E (1)

M. K. Qaleh-Jooq, A. Mir, S. Mirzakuchaki, and A. Farmani, “Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors,” Phys. E 104, 286–296 (2018).
[Crossref]

Phys. Rev. Lett. (1)

K. Fang, Z. Yu, and S. Fan, “Photonic Aharonov-Bohm effect based on dynamic modulation,” Phys. Rev. Lett. 108(15), 153901 (2012).
[Crossref]

Proc. Inst. Mech. Eng., Part L (1)

A. Selvakumar, R. Perumalraj, J. Sudagar, and S. Mohan, “Nickel–multiwalled carbon nanotube composite coating on aluminum alloy rotor for textile industries,” Proc. Inst. Mech. Eng., Part L 230(1), 319–327 (2016).
[Crossref]

Procedia CIRP (1)

E. Halakoo, A. Khademi, M. Ghasemi, N. Mohd-Yusof, R. Jamshidi-Gohari, and A. Fauzi-Ismail, “Production of sustainable energy by carbon nanotube/platinum catalyst in microbial fuel cell,” Procedia CIRP 26, 473–476 (2015).
[Crossref]

Procedia Eng. (1)

T. Kobayashi, Z. Nie, and J. Du, “Coherent phonon coupled with exciton in semiconducting single-walled carbon nanotubes with several chiralities,” Procedia Eng. 93, 17–24 (2014).
[Crossref]

Sci. Rep. (3)

J. Ozhikandathil, S. Badilescu, and M. Packirisamy, “Plasmonic gold decorated MWCNT nanocomposite for localized plasmon resonance sensing,” Sci. Rep. 5(1), 13181 (2015).
[Crossref]

K. Ramachandran, T. Raj-kumar, K. Justice-Babu, and G. Gnana-kumar, “Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications,” Sci. Rep. 6(1), 36583 (2016).
[Crossref]

H. Shiozawa, A. Briones-Leon, O. Domanov, G. Zechner, Y. Sato, K. Suenaga, T. Saito, M. Eisterer, E. Weschke, W. Lang, H. Peterlik, and T. Pichler, “Nickel clusters embedded in carbon nanotubes as high performance magnets,” Sci. Rep. 5, 15033 (2015).
[Crossref]

Superlattices Microstruct. (1)

B. Chen, X. F. Wang, J. K. Yan, X. F. Zhu, and C. Jiang, “Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings,” Superlattices Microstruct. 113, 301–309 (2018).
[Crossref]

Tetrahedron (1)

S. G. Postma, D. te Brinke, I. N. Vialshin, A. S. Wong, and W. T. Huck, “A trypsin-based bistable switch,” Tetrahedron 73(33), 4896–4900 (2017).
[Crossref]

Other (3)

J. Hone, “Phonons and thermal properties of carbon nanotubes,” in Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, 2001), pp. 273–286.

S. P. Gubin, Magnetic Nanoparticles (Wiley-VCH, 2009).

S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Magneto-conductivity experiment as a function of visible irradiance. (b) Aharonov-Bohm effect and phonon excited scheme.
Fig. 2.
Fig. 2. (a) SEM image, (b) EDX and (c) XRD patterns of Ni-Pt/MWCNT.
Fig. 3.
Fig. 3. (a) Numerical phonon DOS, and (b) complex impedance spectra of the studied samples.
Fig. 4.
Fig. 4. Transient photothermal response of change in temperature of two selected irradiances in the studied samples (a) 2 MW/cm2 and (b) 4 MW/cm2. Marks are associated with experimental data and lines with numerical approximation.
Fig. 5.
Fig. 5. Change in conductivity of the studied samples as a function on thermo-optical activity (a) Ni/MWCNT (b) Ni-Pt/MWCNT.
Fig. 6.
Fig. 6. Phonon scatter in magneto-conductivity of Ni/MWCNT sample. The marks indicate the experimental data, and the continuous lines correspond to the better curve fitting.
Fig. 7.
Fig. 7. Magneto-conductive bistability in MWCNT thin film decorated with (a) Ni at 10% wt, (b) Ni-Pt at 5% wt each element. The direction of the arrows exhibit the evolution of the magnetic field.

Tables (1)

Tables Icon

Table 1. Comparison of the parameters obtained from numerical and experimental results.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T t ( x , y , t ) = κ 2 T ( x , y , t ) + 1 ρ C p α I ( x , y , t )
δ ( B ) = e 2 π ( Λ K + + Λ K )
1 Λ K ± = 2 π W ~ L ( 2 π L k 0 ± ) 2 ( A B / ϕ 0 + φ e )
k 0 ± = ( E / γ ) 2 k B ± φ e 2
k B ± φ e = 2 π L ( Γ + A B / ϕ 0 ± φ e )

Metrics