Abstract

Transmission Mueller-matrix spectroscopic ellipsometry is applied to study femtosecond laser induced nanogratings in silica glass in a wide spectral range 250–1800 nm. By using differential decomposition of the Mueller matrix, the circular birefringence and dichroism of femtosecond laser irradiated SiO2 are quantified for the first time in the UV and near-IR range. A maximum value of the effective specific rotation of α ∼ −860°/mm at 290 nm is found. In the near-IR range, we found a linear and circular dichroism band peaking around 1240 nm, which might be attributed to the formation of anisotropic species like the formation of oriented OH species and Si-O-Si bond.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Study of femtosecond laser-induced circular optical properties in silica by Mueller matrix spectropolarimetry

Jing Tian, Matthieu Lancry, Sang Hyuk Yoo, Enric Garcia-Caurel, Razvigor Ossikovski, and Bertrand Poumellec
Opt. Lett. 42(20) 4103-4106 (2017)

Pure circular dichroism by curved rows of plasmonic nanoparticles

Meng Wang, Bruno Gompf, Martin Dressel, Nathalie Destouches, and Audrey Berrier
Opt. Mater. Express 8(6) 1515-1527 (2018)

Optical activity in sub-wavelength metallic grids and fishnet metamaterials in the conical mount

Thomas W. H. Oates, Babak Dastmalchi, Christian Helgert, Lars Reissmann, Uwe Huebner, Ernst-Bernhard Kley, Marc A. Verschuuren, Iris Bergmair, Thomas Pertsch, Kurt Hingerl, and Karsten Hinrichs
Opt. Mater. Express 3(4) 439-451 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
    [Crossref]
  2. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [Crossref]
  3. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
    [Crossref]
  4. K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref]
  5. M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
    [Crossref]
  6. S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
    [Crossref]
  7. Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref]
  8. H. Zhang, S. Eaton, and P. Herman, “Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14(11), 4826–4834 (2006).
    [Crossref]
  9. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
    [Crossref]
  10. G. Marshall and M. Withford, “Rapid Production of Arbitrary Fiber Bragg Gratings using Femtosecond Laser Radiation,” Lasers and Electro-Optics Society, 2005. LEOS 2005. The 18th Annual Meeting of the IEEE, 935–936 (2005).
  11. G. D. Marshall, R. J. Williams, N. Jovanovic, M. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref]
  12. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photon. 6(3), 293–339 (2014).
    [Crossref]
  13. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Harnessing Ultrafast Laser Induced Nanostructures in Transparent Materials,” in Progress in Nonlinear Nano-Optics (Springer, 2015), pp. 31–46.
  14. B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
    [Crossref]
  15. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
    [Crossref]
  16. R. Taylor, E. Simova, and C. Hnatovsky, “Creation of chiral structures inside fused silica glass,” Opt. Lett. 33(12), 1312–1314 (2008).
    [Crossref]
  17. B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, and B. Bourguignon, “Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass?” Light: Sci. Appl. 5(11), e16178 (2016).
    [Crossref]
  18. J. Tian, R. Desmarchelier, B. Poumellec, and M. Lancry, “Femtosecond laser-induced circular dichroism in silica: Dependence on energy and focusing depth,” Nucl. Instrum. Methods Phys. Res., Sect. B 435, 258–262 (2018).
    [Crossref]
  19. R. Desmarchelier, M. Lancry, J. Tian, and B. Poumellec, “Chiroptical properties photo-induced by femtosecond laser irradiation in silica glass,” Appl. Phys. Lett. 110(2), 021112 (2017).
    [Crossref]
  20. Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of Glass Using fs Laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
    [Crossref]
  21. J. Tian, M. Lancry, S. H. Yoo, E. Garcia-Caurel, R. Ossikovski, and B. Poumellec, “Study of femtosecond laser-induced circular optical properties in silica by Mueller matrix spectropolarimetry,” Opt. Lett. 42(20), 4103–4106 (2017).
    [Crossref]
  22. R. Ossikovski and O. Arteaga, “Statistical meaning of the differential Mueller matrix of depolarizing homogeneous media,” Opt. Lett. 39(15), 4470–4473 (2014).
    [Crossref]
  23. R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett. 36(12), 2330–2332 (2011).
    [Crossref]
  24. E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67(1), 1–21 (2013).
    [Crossref]
  25. E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455-456, 120–123 (2004).
    [Crossref]
  26. J. J. G. Perez and R. Ossikovski, Polarized Light and the Mueller Matrix Approach (CRC Press, 2016).
  27. O. Arteaga and A. Canillas, “Pseudopolar decomposition of the Jones and Mueller-Jones exponential polarization matrices,” J. Opt. Soc. Am. A 26(4), 783–793 (2009).
    [Crossref]
  28. O. Arteaga, Z. El-Hachemi, and A. Canillas, “Application of transmission ellipsometry to the determination of CD spectra of porphyrin J – aggregates solid – state samples,” Phys. Status Solidi A 205(4), 797–801 (2008).
    [Crossref]
  29. J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
    [Crossref]
  30. Y. Shimotsuma, S. Kubota, A. Murata, T. Kurita, M. Sakakura, K. Miura, M. Lancry, and B. Poumellec, “Tunability of form birefringence induced by femtosecond laser irradiation in anion – doped silica glass,” J. Am. Ceram. Soc. 100(9), 3912–3919 (2017).
    [Crossref]
  31. S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, “Experimental study of thickness dependence of polarization and depolarization properties of anisotropic turbid media using Mueller matrix polarimetry and differential decomposition,” Appl. Surf. Sci. 421, 870–877 (2017).
    [Crossref]
  32. A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
    [Crossref]
  33. A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789–798 (2012).
    [Crossref]
  34. M. Beresna, M. Geceviçius, M. Lancry, B. Poumellec, and P. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
    [Crossref]
  35. P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26(3), 289–292 (1978).
    [Crossref]
  36. S. Ermakov, A. Beletskii, O. Eismont, and V. Nikolaev, “Brief review of liquid crystals,” in Liquid Crystals in Biotribology (Springer, 2016), pp. 37–56.
  37. A. Burneau and C. Carteret, “Near infrared and ab initio study of the vibrational modes of isolated silanol on silica,” Phys. Chem. Chem. Phys. 2(14), 3217–3226 (2000).
    [Crossref]
  38. V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
    [Crossref]

2018 (1)

J. Tian, R. Desmarchelier, B. Poumellec, and M. Lancry, “Femtosecond laser-induced circular dichroism in silica: Dependence on energy and focusing depth,” Nucl. Instrum. Methods Phys. Res., Sect. B 435, 258–262 (2018).
[Crossref]

2017 (4)

R. Desmarchelier, M. Lancry, J. Tian, and B. Poumellec, “Chiroptical properties photo-induced by femtosecond laser irradiation in silica glass,” Appl. Phys. Lett. 110(2), 021112 (2017).
[Crossref]

J. Tian, M. Lancry, S. H. Yoo, E. Garcia-Caurel, R. Ossikovski, and B. Poumellec, “Study of femtosecond laser-induced circular optical properties in silica by Mueller matrix spectropolarimetry,” Opt. Lett. 42(20), 4103–4106 (2017).
[Crossref]

Y. Shimotsuma, S. Kubota, A. Murata, T. Kurita, M. Sakakura, K. Miura, M. Lancry, and B. Poumellec, “Tunability of form birefringence induced by femtosecond laser irradiation in anion – doped silica glass,” J. Am. Ceram. Soc. 100(9), 3912–3919 (2017).
[Crossref]

S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, “Experimental study of thickness dependence of polarization and depolarization properties of anisotropic turbid media using Mueller matrix polarimetry and differential decomposition,” Appl. Surf. Sci. 421, 870–877 (2017).
[Crossref]

2016 (1)

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, and B. Bourguignon, “Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass?” Light: Sci. Appl. 5(11), e16178 (2016).
[Crossref]

2014 (2)

2013 (5)

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of Glass Using fs Laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

M. Beresna, M. Geceviçius, M. Lancry, B. Poumellec, and P. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
[Crossref]

E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67(1), 1–21 (2013).
[Crossref]

2012 (2)

A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2(6), 789–798 (2012).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (1)

2008 (3)

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

2006 (1)

2004 (1)

E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455-456, 120–123 (2004).
[Crossref]

2003 (2)

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[Crossref]

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

2000 (2)

A. Burneau and C. Carteret, “Near infrared and ab initio study of the vibrational modes of isolated silanol on silica,” Phys. Chem. Chem. Phys. 2(14), 3217–3226 (2000).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
[Crossref]

1996 (1)

1993 (1)

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref]

1987 (1)

J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

1978 (1)

P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26(3), 289–292 (1978).
[Crossref]

Ani-Joseph, S.

Arteaga, O.

Beletskii, A.

S. Ermakov, A. Beletskii, O. Eismont, and V. Nikolaev, “Brief review of liquid crystals,” in Liquid Crystals in Biotribology (Springer, 2016), pp. 37–56.

Bellouard, Y.

Beresna, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photon. 6(3), 293–339 (2014).
[Crossref]

M. Beresna, M. Geceviçius, M. Lancry, B. Poumellec, and P. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Harnessing Ultrafast Laser Induced Nanostructures in Transparent Materials,” in Progress in Nonlinear Nano-Optics (Springer, 2015), pp. 31–46.

Bourguignon, B.

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, and B. Bourguignon, “Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass?” Light: Sci. Appl. 5(11), e16178 (2016).
[Crossref]

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

Burneau, A.

A. Burneau and C. Carteret, “Near infrared and ab initio study of the vibrational modes of isolated silanol on silica,” Phys. Chem. Chem. Phys. 2(14), 3217–3226 (2000).
[Crossref]

Canillas, A.

O. Arteaga and A. Canillas, “Pseudopolar decomposition of the Jones and Mueller-Jones exponential polarization matrices,” J. Opt. Soc. Am. A 26(4), 783–793 (2009).
[Crossref]

O. Arteaga, Z. El-Hachemi, and A. Canillas, “Application of transmission ellipsometry to the determination of CD spectra of porphyrin J – aggregates solid – state samples,” Phys. Status Solidi A 205(4), 797–801 (2008).
[Crossref]

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

Carteret, C.

A. Burneau and C. Carteret, “Near infrared and ab initio study of the vibrational modes of isolated silanol on silica,” Phys. Chem. Chem. Phys. 2(14), 3217–3226 (2000).
[Crossref]

Chahid-Erraji, A.

Champion, A.

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

Corkum, P. B.

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Davis, K.

De Martino, A.

E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67(1), 1–21 (2013).
[Crossref]

E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455-456, 120–123 (2004).
[Crossref]

Desmarchelier, R.

J. Tian, R. Desmarchelier, B. Poumellec, and M. Lancry, “Femtosecond laser-induced circular dichroism in silica: Dependence on energy and focusing depth,” Nucl. Instrum. Methods Phys. Res., Sect. B 435, 258–262 (2018).
[Crossref]

R. Desmarchelier, M. Lancry, J. Tian, and B. Poumellec, “Chiroptical properties photo-induced by femtosecond laser irradiation in silica glass,” Appl. Phys. Lett. 110(2), 021112 (2017).
[Crossref]

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, and B. Bourguignon, “Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass?” Light: Sci. Appl. 5(11), e16178 (2016).
[Crossref]

Dianov, E. M.

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
[Crossref]

Doering, S.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

Drevillon, B.

E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455-456, 120–123 (2004).
[Crossref]

Eaton, S.

Eaton, S. M.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

Eismont, O.

S. Ermakov, A. Beletskii, O. Eismont, and V. Nikolaev, “Brief review of liquid crystals,” in Liquid Crystals in Biotribology (Springer, 2016), pp. 37–56.

El-Hachemi, Z.

O. Arteaga, Z. El-Hachemi, and A. Canillas, “Application of transmission ellipsometry to the determination of CD spectra of porphyrin J – aggregates solid – state samples,” Phys. Status Solidi A 205(4), 797–801 (2008).
[Crossref]

Ermakov, S.

S. Ermakov, A. Beletskii, O. Eismont, and V. Nikolaev, “Brief review of liquid crystals,” in Liquid Crystals in Biotribology (Springer, 2016), pp. 37–56.

Franco, M.

Garcia-Caurel, E.

S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, “Experimental study of thickness dependence of polarization and depolarization properties of anisotropic turbid media using Mueller matrix polarimetry and differential decomposition,” Appl. Surf. Sci. 421, 870–877 (2017).
[Crossref]

J. Tian, M. Lancry, S. H. Yoo, E. Garcia-Caurel, R. Ossikovski, and B. Poumellec, “Study of femtosecond laser-induced circular optical properties in silica by Mueller matrix spectropolarimetry,” Opt. Lett. 42(20), 4103–4106 (2017).
[Crossref]

E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67(1), 1–21 (2013).
[Crossref]

E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455-456, 120–123 (2004).
[Crossref]

Gaston, J.-P.

Gecevicius, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photon. 6(3), 293–339 (2014).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Harnessing Ultrafast Laser Induced Nanostructures in Transparent Materials,” in Progress in Nonlinear Nano-Optics (Springer, 2015), pp. 31–46.

Geceviçius, M.

M. Beresna, M. Geceviçius, M. Lancry, B. Poumellec, and P. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

Heinrich, M.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

Herman, P.

Herman, P. R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

Hervé, E.

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, and B. Bourguignon, “Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass?” Light: Sci. Appl. 5(11), e16178 (2016).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref]

Hnatovsky, C.

Jensen, H. P.

J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

Jovanovic, N.

Kazansky, P.

M. Beresna, M. Geceviçius, M. Lancry, B. Poumellec, and P. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21(21), 24942–24951 (2013).
[Crossref]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

Kazansky, P. G.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photon. 6(3), 293–339 (2014).
[Crossref]

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Harnessing Ultrafast Laser Induced Nanostructures in Transparent Materials,” in Progress in Nonlinear Nano-Optics (Springer, 2015), pp. 31–46.

Kazuyuki, H.

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of Glass Using fs Laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
[Crossref]

Kley, E. B.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

Kubota, S.

Y. Shimotsuma, S. Kubota, A. Murata, T. Kurita, M. Sakakura, K. Miura, M. Lancry, and B. Poumellec, “Tunability of form birefringence induced by femtosecond laser irradiation in anion – doped silica glass,” J. Am. Ceram. Soc. 100(9), 3912–3919 (2017).
[Crossref]

Kurita, T.

Y. Shimotsuma, S. Kubota, A. Murata, T. Kurita, M. Sakakura, K. Miura, M. Lancry, and B. Poumellec, “Tunability of form birefringence induced by femtosecond laser irradiation in anion – doped silica glass,” J. Am. Ceram. Soc. 100(9), 3912–3919 (2017).
[Crossref]

Lancry, M.

J. Tian, R. Desmarchelier, B. Poumellec, and M. Lancry, “Femtosecond laser-induced circular dichroism in silica: Dependence on energy and focusing depth,” Nucl. Instrum. Methods Phys. Res., Sect. B 435, 258–262 (2018).
[Crossref]

J. Tian, M. Lancry, S. H. Yoo, E. Garcia-Caurel, R. Ossikovski, and B. Poumellec, “Study of femtosecond laser-induced circular optical properties in silica by Mueller matrix spectropolarimetry,” Opt. Lett. 42(20), 4103–4106 (2017).
[Crossref]

R. Desmarchelier, M. Lancry, J. Tian, and B. Poumellec, “Chiroptical properties photo-induced by femtosecond laser irradiation in silica glass,” Appl. Phys. Lett. 110(2), 021112 (2017).
[Crossref]

Y. Shimotsuma, S. Kubota, A. Murata, T. Kurita, M. Sakakura, K. Miura, M. Lancry, and B. Poumellec, “Tunability of form birefringence induced by femtosecond laser irradiation in anion – doped silica glass,” J. Am. Ceram. Soc. 100(9), 3912–3919 (2017).
[Crossref]

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, and B. Bourguignon, “Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass?” Light: Sci. Appl. 5(11), e16178 (2016).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

M. Beresna, M. Geceviçius, M. Lancry, B. Poumellec, and P. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
[Crossref]

Marshall, G.

G. Marshall and M. Withford, “Rapid Production of Arbitrary Fiber Bragg Gratings using Femtosecond Laser Radiation,” Lasers and Electro-Optics Society, 2005. LEOS 2005. The 18th Annual Meeting of the IEEE, 935–936 (2005).

Marshall, G. D.

Miura, K.

Y. Shimotsuma, S. Kubota, A. Murata, T. Kurita, M. Sakakura, K. Miura, M. Lancry, and B. Poumellec, “Tunability of form birefringence induced by femtosecond laser irradiation in anion – doped silica glass,” J. Am. Ceram. Soc. 100(9), 3912–3919 (2017).
[Crossref]

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of Glass Using fs Laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
[Crossref]

K. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref]

Murata, A.

Y. Shimotsuma, S. Kubota, A. Murata, T. Kurita, M. Sakakura, K. Miura, M. Lancry, and B. Poumellec, “Tunability of form birefringence induced by femtosecond laser irradiation in anion – doped silica glass,” J. Am. Ceram. Soc. 100(9), 3912–3919 (2017).
[Crossref]

Mysyrowicz, A.

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

Nikolaev, V.

S. Ermakov, A. Beletskii, O. Eismont, and V. Nikolaev, “Brief review of liquid crystals,” in Liquid Crystals in Biotribology (Springer, 2016), pp. 37–56.

Nolte, S.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

Osellame, R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

Ossikovski, R.

S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, “Experimental study of thickness dependence of polarization and depolarization properties of anisotropic turbid media using Mueller matrix polarimetry and differential decomposition,” Appl. Surf. Sci. 421, 870–877 (2017).
[Crossref]

J. Tian, M. Lancry, S. H. Yoo, E. Garcia-Caurel, R. Ossikovski, and B. Poumellec, “Study of femtosecond laser-induced circular optical properties in silica by Mueller matrix spectropolarimetry,” Opt. Lett. 42(20), 4103–4106 (2017).
[Crossref]

R. Ossikovski and O. Arteaga, “Statistical meaning of the differential Mueller matrix of depolarizing homogeneous media,” Opt. Lett. 39(15), 4470–4473 (2014).
[Crossref]

R. Ossikovski, “Differential matrix formalism for depolarizing anisotropic media,” Opt. Lett. 36(12), 2330–2332 (2011).
[Crossref]

J. J. G. Perez and R. Ossikovski, Polarized Light and the Mueller Matrix Approach (CRC Press, 2016).

Perez, J. J. G.

J. J. G. Perez and R. Ossikovski, Polarized Light and the Mueller Matrix Approach (CRC Press, 2016).

Peschel, U.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

Plech, A.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

Plotnichenko, V. G.

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
[Crossref]

Poulin, J. Ä.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

Poulin, J. C.

Poumellec, B.

J. Tian, R. Desmarchelier, B. Poumellec, and M. Lancry, “Femtosecond laser-induced circular dichroism in silica: Dependence on energy and focusing depth,” Nucl. Instrum. Methods Phys. Res., Sect. B 435, 258–262 (2018).
[Crossref]

Y. Shimotsuma, S. Kubota, A. Murata, T. Kurita, M. Sakakura, K. Miura, M. Lancry, and B. Poumellec, “Tunability of form birefringence induced by femtosecond laser irradiation in anion – doped silica glass,” J. Am. Ceram. Soc. 100(9), 3912–3919 (2017).
[Crossref]

J. Tian, M. Lancry, S. H. Yoo, E. Garcia-Caurel, R. Ossikovski, and B. Poumellec, “Study of femtosecond laser-induced circular optical properties in silica by Mueller matrix spectropolarimetry,” Opt. Lett. 42(20), 4103–4106 (2017).
[Crossref]

R. Desmarchelier, M. Lancry, J. Tian, and B. Poumellec, “Chiroptical properties photo-induced by femtosecond laser irradiation in silica glass,” Appl. Phys. Lett. 110(2), 021112 (2017).
[Crossref]

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, and B. Bourguignon, “Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass?” Light: Sci. Appl. 5(11), e16178 (2016).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

M. Beresna, M. Geceviçius, M. Lancry, B. Poumellec, and P. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited],” Opt. Mater. Express 1(4), 766–782 (2011).
[Crossref]

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joseph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16(22), 18354–18361 (2008).
[Crossref]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[Crossref]

Prade, B.

Qiu, J.

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

Richter, S.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

Sakakura, M.

Y. Shimotsuma, S. Kubota, A. Murata, T. Kurita, M. Sakakura, K. Miura, M. Lancry, and B. Poumellec, “Tunability of form birefringence induced by femtosecond laser irradiation in anion – doped silica glass,” J. Am. Ceram. Soc. 100(9), 3912–3919 (2017).
[Crossref]

Schellman, J.

J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

Shimotsuma, Y.

Y. Shimotsuma, S. Kubota, A. Murata, T. Kurita, M. Sakakura, K. Miura, M. Lancry, and B. Poumellec, “Tunability of form birefringence induced by femtosecond laser irradiation in anion – doped silica glass,” J. Am. Ceram. Soc. 100(9), 3912–3919 (2017).
[Crossref]

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of Glass Using fs Laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
[Crossref]

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

Simova, E.

Sokolov, V. O.

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
[Crossref]

Steel, M.

Steinert, M.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

Sudrie, L.

Sugimoto, N.

Taylor, R.

Tian, J.

J. Tian, R. Desmarchelier, B. Poumellec, and M. Lancry, “Femtosecond laser-induced circular dichroism in silica: Dependence on energy and focusing depth,” Nucl. Instrum. Methods Phys. Res., Sect. B 435, 258–262 (2018).
[Crossref]

R. Desmarchelier, M. Lancry, J. Tian, and B. Poumellec, “Chiroptical properties photo-induced by femtosecond laser irradiation in silica glass,” Appl. Phys. Lett. 110(2), 021112 (2017).
[Crossref]

J. Tian, M. Lancry, S. H. Yoo, E. Garcia-Caurel, R. Ossikovski, and B. Poumellec, “Study of femtosecond laser-induced circular optical properties in silica by Mueller matrix spectropolarimetry,” Opt. Lett. 42(20), 4103–4106 (2017).
[Crossref]

Tunnermann, A.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

Williams, R. J.

Withford, M.

G. Marshall and M. Withford, “Rapid Production of Arbitrary Fiber Bragg Gratings using Femtosecond Laser Radiation,” Lasers and Electro-Optics Society, 2005. LEOS 2005. The 18th Annual Meeting of the IEEE, 935–936 (2005).

Withford, M. J.

Yan, L.

Yeh, P.

P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26(3), 289–292 (1978).
[Crossref]

Yoo, S. H.

S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, “Experimental study of thickness dependence of polarization and depolarization properties of anisotropic turbid media using Mueller matrix polarimetry and differential decomposition,” Appl. Surf. Sci. 421, 870–877 (2017).
[Crossref]

J. Tian, M. Lancry, S. H. Yoo, E. Garcia-Caurel, R. Ossikovski, and B. Poumellec, “Study of femtosecond laser-induced circular optical properties in silica by Mueller matrix spectropolarimetry,” Opt. Lett. 42(20), 4103–4106 (2017).
[Crossref]

Zhang, H.

Zimmermann, F.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

M. Beresna, M. Geceviçius, M. Lancry, B. Poumellec, and P. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

R. Desmarchelier, M. Lancry, J. Tian, and B. Poumellec, “Chiroptical properties photo-induced by femtosecond laser irradiation in silica glass,” Appl. Phys. Lett. 110(2), 021112 (2017).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

S. H. Yoo, R. Ossikovski, and E. Garcia-Caurel, “Experimental study of thickness dependence of polarization and depolarization properties of anisotropic turbid media using Mueller matrix polarimetry and differential decomposition,” Appl. Surf. Sci. 421, 870–877 (2017).
[Crossref]

Chem. Rev. (1)

J. Schellman and H. P. Jensen, “Optical spectroscopy of oriented molecules,” Chem. Rev. 87(6), 1359–1399 (1987).
[Crossref]

Int. J. Appl. Glass Sci. (1)

Y. Shimotsuma, K. Miura, and H. Kazuyuki, “Nanomodification of Glass Using fs Laser,” Int. J. Appl. Glass Sci. 4(3), 182–191 (2013).
[Crossref]

J. Am. Ceram. Soc. (1)

Y. Shimotsuma, S. Kubota, A. Murata, T. Kurita, M. Sakakura, K. Miura, M. Lancry, and B. Poumellec, “Tunability of form birefringence induced by femtosecond laser irradiation in anion – doped silica glass,” J. Am. Ceram. Soc. 100(9), 3912–3919 (2017).
[Crossref]

J. Non-Cryst. Solids (2)

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11-13), 2387–2391 (2011).
[Crossref]

V. G. Plotnichenko, V. O. Sokolov, and E. M. Dianov, “Hydroxyl groups in high-purity silica glass,” J. Non-Cryst. Solids 261(1-3), 186–194 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photon. Rev. (2)

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. Ä. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photon. Rev. 7(6), 953–962 (2013).
[Crossref]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Doering, F. Zimmermann, U. Peschel, E. B. Kley, A. Tunnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Photon. Rev. 6(6), 787–792 (2012).
[Crossref]

Light: Sci. Appl. (1)

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, and B. Bourguignon, “Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass?” Light: Sci. Appl. 5(11), e16178 (2016).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

J. Tian, R. Desmarchelier, B. Poumellec, and M. Lancry, “Femtosecond laser-induced circular dichroism in silica: Dependence on energy and focusing depth,” Nucl. Instrum. Methods Phys. Res., Sect. B 435, 258–262 (2018).
[Crossref]

Opt. Commun. (1)

P. Yeh, “A new optical model for wire grid polarizers,” Opt. Commun. 26(3), 289–292 (1978).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Opt. Mater. Express (2)

Phys. Chem. Chem. Phys. (1)

A. Burneau and C. Carteret, “Near infrared and ab initio study of the vibrational modes of isolated silanol on silica,” Phys. Chem. Chem. Phys. 2(14), 3217–3226 (2000).
[Crossref]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71(13), 1994–1997 (1993).
[Crossref]

Phys. Status Solidi A (1)

O. Arteaga, Z. El-Hachemi, and A. Canillas, “Application of transmission ellipsometry to the determination of CD spectra of porphyrin J – aggregates solid – state samples,” Phys. Status Solidi A 205(4), 797–801 (2008).
[Crossref]

Thin Solid Films (1)

E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” Thin Solid Films 455-456, 120–123 (2004).
[Crossref]

Other (4)

J. J. G. Perez and R. Ossikovski, Polarized Light and the Mueller Matrix Approach (CRC Press, 2016).

G. Marshall and M. Withford, “Rapid Production of Arbitrary Fiber Bragg Gratings using Femtosecond Laser Radiation,” Lasers and Electro-Optics Society, 2005. LEOS 2005. The 18th Annual Meeting of the IEEE, 935–936 (2005).

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Harnessing Ultrafast Laser Induced Nanostructures in Transparent Materials,” in Progress in Nonlinear Nano-Optics (Springer, 2015), pp. 31–46.

S. Ermakov, A. Beletskii, O. Eismont, and V. Nikolaev, “Brief review of liquid crystals,” in Liquid Crystals in Biotribology (Springer, 2016), pp. 37–56.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup scheme for X + 45° writing configuration and SEM image of sub-wavelength periodic structure formed in cross-section of the irradiated region. Original image is courtesy of Dr. Cyril Hnatovsky.
Fig. 2.
Fig. 2. Normalized Mueller matrix of Suprasil1 written using X + 45° configuration. Red lines are for the liquid crystals ellipsometer whereas the one obtained with photoelastic modulator ellipsometer correspond to the black lines. The dash blue line corresponds to the second order approximation taking into account the linear contribution
Fig. 3.
Fig. 3. Spectral dependence of the anisotropic linear and circular optical properties and extracted after Mueller matrix decomposition. (Suprasil1 silica, 1030 nm, 250 fs, 0.6 NA, 1 mm/s, 100kHz, 1,5µJ/pulse, X + 45° configuration). The dashed lines correspond to data decomposed using the second order approximation taking into account the linear contribution. The right inset corresponds to the Degree of Polarization (DoP) spectral dependence.
Fig. 4.
Fig. 4. Near-IR spectral dependence of the total linear birefringence, LB (Left), and the total linear dichroism, LD (Right), as a function of fs pulse energy. (1030 nm, 250 fs, 0.6 NA, 1 mm/s, 100kHz, X + 45° configuration). Dots are for Suprasil1 silica whereas full line is for 100 ppm OH sample.
Fig. 5.
Fig. 5. Near-IR spectral dependence of circular birefringence, CB (Left), and circular dichroism, CD (Right), (expressed in radians) as a function of femtosecond laser pulse energy (1030 nm, 250 fs, 0.6 NA, 1 mm/s, 100kHz, X + 45° configuration). Dots are for Suprasil1 silica (830 ppm OH) whereas full brown line is for 100 ppm OH silica sample.

Metrics