Abstract

In this paper, an up-tapered fiber (UTF) cascaded with a single-mode-fiber (SMF)-formed droplet-like multimode interferometer (DLMI) for simultaneous three-parameter measurement is proposed. In our setup, a segment of coating-stripped SMF is bent into a droplet-like structure. A UTF is introduced in front of a leading-in SMF of DLMI to enhance the excitation of high-order cladding modes in SMF due to its much bigger divergence angle like a convex lens. As a result, three sets of main interference between fiber core mode and cladding modes appear and then are recovered respectively by use of Fourier-transform-interrogation-based technique. Due to the fact that each recovered interference component of the sensor responses differently to the changes in liquid level, surrounding refractive index (RI) and temperature, simultaneous liquid level, surrounding RI and temperature measurement is achieved, with maximal sensitivity of −154.00 pm/mm, −132.47 nm/RIU, 238.97 pm/°C respectively. The all fiber sensor we proposed is simple, easy fabrication and low cost, especially with better mechanical strength and suitable for practical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-parameter four-beam interferometric sensor for the measurement of temperature and strain with a double air-gaps structure based on graded-index few mode fiber

Xinghu Fu, Lianxu Liu, Shuangyu Ma, Guangwei Fu, Wa Jin, and Weihong Bi
OSA Continuum 2(12) 3381-3392 (2019)

Etched multicore fiber Bragg gratings for refractive index sensing with temperature in-line compensation

Wenbin Hu, Chi Li, Shu Cheng, Farhan Mumtaz, Cheng Du, and Minghong Yang
OSA Continuum 3(4) 1058-1067 (2020)

Highly sensitive vector curvature sensor based on a triple-core fiber interferometer

Shaoxian Zhang, Ai Zhou, Huiyong Guo, Yujia Zhao, and Libo Yuan
OSA Continuum 2(6) 1953-1963 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Liu, J. Wang, Y. Liao, X. Wang, and S. Wang, “All-fiber Mach–Zehnder interferometer for tunable two quasi-continuous points’ temperature sensing in seawater,” Opt. Express 26(9), 12277–12290 (2018).
    [Crossref]
  2. S. Javdani, M. Fabian, J. S. Carlton, T. Sun, and K. T. V. Grattan, “Underwater free-vibration analysis of full-scale marine propeller using a fiber bragg grating-based sensor system,” IEEE Sens. J. 16(4), 946–953 (2016).
    [Crossref]
  3. B. R. Heidemann, I. Chiamenti, M. M. Oliveira, M. Muller, and J. L. Fabris, “Functionalized long period grating - plasmonic fiber sensor applied to the detection of glyphosate in water,” J. Lightwave Technol. 36(4), 863–870 (2018).
    [Crossref]
  4. N. Zhong, M. Zhao, and Y. Li, “U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring,” Biomed. Opt. Express 7(2), 335–351 (2016).
    [Crossref]
  5. F. Scurti, J. Mcgarrahan, and J. Schwartz, “Effects of metallic coatings on the thermal sensitivity of optical fiber sensors at cryogenic temperatures,” Opt. Mater. Express 7(6), 1754–1766 (2017).
    [Crossref]
  6. A. L. Khalaf, F. S. Mohamad, N. A. Rahman, H. N. Lim, S. Paiman, and N. A. Yusof, “Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite,” Opt. Mater. Express 7(6), 1858–1870 (2017).
    [Crossref]
  7. L. Yuan, P. Jian, Y. Tao, and G. Han, “Analysis of the compensation mechanism of a fiber-optic displacement sensor,” Sens. Actuators A 63(3), 177–181 (1997).
    [Crossref]
  8. Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, and F. Xu, “Compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13(5), 1447–1451 (2013).
    [Crossref]
  9. F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in mach-zehnder interferometer for refractive index and temperature sensing,” IEEE Photon. Technol. Lett. 28(18), 1968–1971 (2016).
    [Crossref]
  10. B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
    [Crossref]
  11. S. Zhang, W. Zhang, P. Geng, and L. Wang, “A mach–zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
    [Crossref]
  12. Y. Tan, L. P. Sun, L. Jin, and B. O. Guan, “Long period grating-based microfiber mach-zehnder interferometer for sensing applications,” Opt. Express 21(1), 154–164 (2013).
    [Crossref]
  13. M. Xiong, H. Gong, Z. Wang, C. L. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on mach–zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 4295–4299 (2016).
    [Crossref]
  14. J. Shi, S. Xiao, M. Bi, L. Yi, and P. Yang, “Discrimination between strain and temperature by cascading single-mode thin-core diameter fibers,” Appl. Opt. 51(14), 2733–2738 (2012).
    [Crossref]
  15. A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, and J. Yang, “Hybrid structured fiber-optic fabry-perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
    [Crossref]
  16. R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, and M. L. Zibaii, “Simultaneous measurement of temperature and refractive index using focused ion beam milled fabry-perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
    [Crossref]
  17. B. Xu, Y. M. Liu, D. N. Wang, and J. Q. Li, “Fiber fabry–pérot interferometer for measurement of gas pressure and temperature,” J. Lightwave Technol. 34(21), 4920–4925 (2016).
    [Crossref]
  18. H. Liu, H. Z. Yang, X. G. Qiao, M. L. Hu, Z. Y. Feng, and R. Wang, “Strain measurement at high temperature environment based on fabry-perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
    [Crossref]
  19. Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
    [Crossref]
  20. E. Huertamascotte, J. M. Sierrahernandez, R. I. Matachavez, D. Jaureguivazquez, A. Castilloguzman, and J. M. Estudilloayala, “A core-offset mach zehnder interferometer based on a non-zero dispersion-shifted fiber and its torsion sensing application,” Sensors 16(6), 856–864 (2016).
    [Crossref]
  21. C. Li, T. Ning, C. Zhang, J. Li, C. Zhang, and X. Wen, “All-fiber multipath mach–zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators, A 248, 148–154 (2016).
    [Crossref]
  22. W. Lin, B. Song, Y. Miao, H. Zhang, D. Yan, and B. Liu, “Liquid-filled photonic-crystal-fiber-based multimodal interferometer for simultaneous measurement of temperature and force,” Appl. Opt. 54(6), 1309–1313 (2015).
    [Crossref]
  23. S. Pevec and D. Donlagic, “Multiparameter fiber-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive Index, and temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
    [Crossref]
  24. T. Zhao, S. Lou, X. Wang, W. Zhang, and Y. Wang, “Simultaneous Measurement of Curvature, Strain and Temperature Using a Twin-Core Photonic Crystal Fiber-Based Sensor,” Sensors 18(7), 2145 (2018).
    [Crossref]
  25. L. Xu, Y. Li, and B. Li, “Semicircular fiber-based high-sensitivity displacement sensor,” Opt. Lett. 38(1), 64–66 (2013).
    [Crossref]
  26. X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
    [Crossref]
  27. X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “Enhancement of RI Sensitivity Through Bending a Tapered-SMF-Based Balloon-Like Interferometer,” J. Lightwave Technol. 34(14), 3293–3299 (2016).
    [Crossref]
  28. Y. Zhao, X. Liu, R. Q. Lv, and Q. Wang, “Simultaneous measurement of RI and temperature based on the combination of sagnac loop mirror and balloon-like interferometer,” Sens. Actuators B 243, 800–805 (2017).
    [Crossref]
  29. K. Tian, G. Farrell, W. Yang, X. Wang, E. Lewis, and P. Wang, “Simultaneous Measurement of Displacement and Temperature Based on a Balloon-Shaped Bent SMF Structure Incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
    [Crossref]
  30. X. Fang, Q. Chen, and Y. Lu, “Waterdrop-shaped micro-displacement sensor with high sensitivity and wide displacement variation range,” International Conference on Optical Communications and Networks (IEEE, 2017), pp.1–3.
  31. M. Y. Mohd Noor, A. I. Azmi, A. S. Abdullah, A. S. Mohd Supa’At, N. Mohd Kassim, M. H. Ibrahim, and N. H. Ngajikin, “High sensitivity of balloon-like bent MMI fiber low-temperature Sensor,” IEEE Photon. Technol. Lett. 27(18), 1989–1992 (2015).
    [Crossref]
  32. H. Y. Fu, X. W. Shu, A. P. Zhang, and W. S. Liu, “Implementation and Characterization of Liquid-Level Sensor Based on a Long-Period Fiber Grating Mach–Zehnder Interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
    [Crossref]
  33. A. A. Jasim, N. Hayashi, S. W. Harun, R. Penny, and Y. Mizuno, “Refractive index and strain sensing using inline Mach–Zehnder interferometer comprising perfluorinated graded-index plastic optical fiber,” Sens. Actuators A 219(219), 94–99 (2014).
    [Crossref]

2018 (4)

2017 (4)

Y. Zhao, X. Liu, R. Q. Lv, and Q. Wang, “Simultaneous measurement of RI and temperature based on the combination of sagnac loop mirror and balloon-like interferometer,” Sens. Actuators B 243, 800–805 (2017).
[Crossref]

S. Pevec and D. Donlagic, “Multiparameter fiber-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive Index, and temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

F. Scurti, J. Mcgarrahan, and J. Schwartz, “Effects of metallic coatings on the thermal sensitivity of optical fiber sensors at cryogenic temperatures,” Opt. Mater. Express 7(6), 1754–1766 (2017).
[Crossref]

A. L. Khalaf, F. S. Mohamad, N. A. Rahman, H. N. Lim, S. Paiman, and N. A. Yusof, “Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite,” Opt. Mater. Express 7(6), 1858–1870 (2017).
[Crossref]

2016 (10)

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in mach-zehnder interferometer for refractive index and temperature sensing,” IEEE Photon. Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

N. Zhong, M. Zhao, and Y. Li, “U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring,” Biomed. Opt. Express 7(2), 335–351 (2016).
[Crossref]

S. Javdani, M. Fabian, J. S. Carlton, T. Sun, and K. T. V. Grattan, “Underwater free-vibration analysis of full-scale marine propeller using a fiber bragg grating-based sensor system,” IEEE Sens. J. 16(4), 946–953 (2016).
[Crossref]

M. Xiong, H. Gong, Z. Wang, C. L. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on mach–zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 4295–4299 (2016).
[Crossref]

R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, and M. L. Zibaii, “Simultaneous measurement of temperature and refractive index using focused ion beam milled fabry-perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
[Crossref]

B. Xu, Y. M. Liu, D. N. Wang, and J. Q. Li, “Fiber fabry–pérot interferometer for measurement of gas pressure and temperature,” J. Lightwave Technol. 34(21), 4920–4925 (2016).
[Crossref]

H. Liu, H. Z. Yang, X. G. Qiao, M. L. Hu, Z. Y. Feng, and R. Wang, “Strain measurement at high temperature environment based on fabry-perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

E. Huertamascotte, J. M. Sierrahernandez, R. I. Matachavez, D. Jaureguivazquez, A. Castilloguzman, and J. M. Estudilloayala, “A core-offset mach zehnder interferometer based on a non-zero dispersion-shifted fiber and its torsion sensing application,” Sensors 16(6), 856–864 (2016).
[Crossref]

C. Li, T. Ning, C. Zhang, J. Li, C. Zhang, and X. Wen, “All-fiber multipath mach–zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators, A 248, 148–154 (2016).
[Crossref]

X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “Enhancement of RI Sensitivity Through Bending a Tapered-SMF-Based Balloon-Like Interferometer,” J. Lightwave Technol. 34(14), 3293–3299 (2016).
[Crossref]

2015 (3)

M. Y. Mohd Noor, A. I. Azmi, A. S. Abdullah, A. S. Mohd Supa’At, N. Mohd Kassim, M. H. Ibrahim, and N. H. Ngajikin, “High sensitivity of balloon-like bent MMI fiber low-temperature Sensor,” IEEE Photon. Technol. Lett. 27(18), 1989–1992 (2015).
[Crossref]

W. Lin, B. Song, Y. Miao, H. Zhang, D. Yan, and B. Liu, “Liquid-filled photonic-crystal-fiber-based multimodal interferometer for simultaneous measurement of temperature and force,” Appl. Opt. 54(6), 1309–1313 (2015).
[Crossref]

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

2014 (3)

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, and J. Yang, “Hybrid structured fiber-optic fabry-perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
[Crossref]

A. A. Jasim, N. Hayashi, S. W. Harun, R. Penny, and Y. Mizuno, “Refractive index and strain sensing using inline Mach–Zehnder interferometer comprising perfluorinated graded-index plastic optical fiber,” Sens. Actuators A 219(219), 94–99 (2014).
[Crossref]

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A mach–zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

2013 (3)

2012 (1)

2011 (2)

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref]

H. Y. Fu, X. W. Shu, A. P. Zhang, and W. S. Liu, “Implementation and Characterization of Liquid-Level Sensor Based on a Long-Period Fiber Grating Mach–Zehnder Interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

2008 (1)

Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

1997 (1)

L. Yuan, P. Jian, Y. Tao, and G. Han, “Analysis of the compensation mechanism of a fiber-optic displacement sensor,” Sens. Actuators A 63(3), 177–181 (1997).
[Crossref]

Abdullah, A. S.

M. Y. Mohd Noor, A. I. Azmi, A. S. Abdullah, A. S. Mohd Supa’At, N. Mohd Kassim, M. H. Ibrahim, and N. H. Ngajikin, “High sensitivity of balloon-like bent MMI fiber low-temperature Sensor,” IEEE Photon. Technol. Lett. 27(18), 1989–1992 (2015).
[Crossref]

Ahmed, F.

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in mach-zehnder interferometer for refractive index and temperature sensing,” IEEE Photon. Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

Ahsani, V.

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in mach-zehnder interferometer for refractive index and temperature sensing,” IEEE Photon. Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

André, R. M.

Azmi, A. I.

M. Y. Mohd Noor, A. I. Azmi, A. S. Abdullah, A. S. Mohd Supa’At, N. Mohd Kassim, M. H. Ibrahim, and N. H. Ngajikin, “High sensitivity of balloon-like bent MMI fiber low-temperature Sensor,” IEEE Photon. Technol. Lett. 27(18), 1989–1992 (2015).
[Crossref]

Becker, M.

Bi, M.

Cao, Z.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, and F. Xu, “Compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13(5), 1447–1451 (2013).
[Crossref]

Carlton, J. S.

S. Javdani, M. Fabian, J. S. Carlton, T. Sun, and K. T. V. Grattan, “Underwater free-vibration analysis of full-scale marine propeller using a fiber bragg grating-based sensor system,” IEEE Sens. J. 16(4), 946–953 (2016).
[Crossref]

Castilloguzman, A.

E. Huertamascotte, J. M. Sierrahernandez, R. I. Matachavez, D. Jaureguivazquez, A. Castilloguzman, and J. M. Estudilloayala, “A core-offset mach zehnder interferometer based on a non-zero dispersion-shifted fiber and its torsion sensing application,” Sensors 16(6), 856–864 (2016).
[Crossref]

Chen, Q.

X. Fang, Q. Chen, and Y. Lu, “Waterdrop-shaped micro-displacement sensor with high sensitivity and wide displacement variation range,” International Conference on Optical Communications and Networks (IEEE, 2017), pp.1–3.

Chiamenti, I.

Dellith, J.

Dong, X.

M. Xiong, H. Gong, Z. Wang, C. L. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on mach–zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 4295–4299 (2016).
[Crossref]

Donlagic, D.

S. Pevec and D. Donlagic, “Multiparameter fiber-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive Index, and temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

Estudilloayala, J. M.

E. Huertamascotte, J. M. Sierrahernandez, R. I. Matachavez, D. Jaureguivazquez, A. Castilloguzman, and J. M. Estudilloayala, “A core-offset mach zehnder interferometer based on a non-zero dispersion-shifted fiber and its torsion sensing application,” Sensors 16(6), 856–864 (2016).
[Crossref]

Fabian, M.

S. Javdani, M. Fabian, J. S. Carlton, T. Sun, and K. T. V. Grattan, “Underwater free-vibration analysis of full-scale marine propeller using a fiber bragg grating-based sensor system,” IEEE Sens. J. 16(4), 946–953 (2016).
[Crossref]

Fabris, J. L.

Fang, X.

X. Fang, Q. Chen, and Y. Lu, “Waterdrop-shaped micro-displacement sensor with high sensitivity and wide displacement variation range,” International Conference on Optical Communications and Networks (IEEE, 2017), pp.1–3.

Farrell, G.

Feng, Z. Y.

H. Liu, H. Z. Yang, X. G. Qiao, M. L. Hu, Z. Y. Feng, and R. Wang, “Strain measurement at high temperature environment based on fabry-perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Fu, H. Y.

H. Y. Fu, X. W. Shu, A. P. Zhang, and W. S. Liu, “Implementation and Characterization of Liquid-Level Sensor Based on a Long-Period Fiber Grating Mach–Zehnder Interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Geng, P.

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A mach–zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Gong, H.

M. Xiong, H. Gong, Z. Wang, C. L. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on mach–zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 4295–4299 (2016).
[Crossref]

Grattan, K. T. V.

S. Javdani, M. Fabian, J. S. Carlton, T. Sun, and K. T. V. Grattan, “Underwater free-vibration analysis of full-scale marine propeller using a fiber bragg grating-based sensor system,” IEEE Sens. J. 16(4), 946–953 (2016).
[Crossref]

Gu, B.

Guan, B. O.

Han, G.

L. Yuan, P. Jian, Y. Tao, and G. Han, “Analysis of the compensation mechanism of a fiber-optic displacement sensor,” Sens. Actuators A 63(3), 177–181 (1997).
[Crossref]

Harun, S. W.

A. A. Jasim, N. Hayashi, S. W. Harun, R. Penny, and Y. Mizuno, “Refractive index and strain sensing using inline Mach–Zehnder interferometer comprising perfluorinated graded-index plastic optical fiber,” Sens. Actuators A 219(219), 94–99 (2014).
[Crossref]

Hayashi, N.

A. A. Jasim, N. Hayashi, S. W. Harun, R. Penny, and Y. Mizuno, “Refractive index and strain sensing using inline Mach–Zehnder interferometer comprising perfluorinated graded-index plastic optical fiber,” Sens. Actuators A 219(219), 94–99 (2014).
[Crossref]

He, S.

Heidemann, B. R.

Hu, M. L.

H. Liu, H. Z. Yang, X. G. Qiao, M. L. Hu, Z. Y. Feng, and R. Wang, “Strain measurement at high temperature environment based on fabry-perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Huertamascotte, E.

E. Huertamascotte, J. M. Sierrahernandez, R. I. Matachavez, D. Jaureguivazquez, A. Castilloguzman, and J. M. Estudilloayala, “A core-offset mach zehnder interferometer based on a non-zero dispersion-shifted fiber and its torsion sensing application,” Sensors 16(6), 856–864 (2016).
[Crossref]

Ibrahim, M. H.

M. Y. Mohd Noor, A. I. Azmi, A. S. Abdullah, A. S. Mohd Supa’At, N. Mohd Kassim, M. H. Ibrahim, and N. H. Ngajikin, “High sensitivity of balloon-like bent MMI fiber low-temperature Sensor,” IEEE Photon. Technol. Lett. 27(18), 1989–1992 (2015).
[Crossref]

Jasim, A. A.

A. A. Jasim, N. Hayashi, S. W. Harun, R. Penny, and Y. Mizuno, “Refractive index and strain sensing using inline Mach–Zehnder interferometer comprising perfluorinated graded-index plastic optical fiber,” Sens. Actuators A 219(219), 94–99 (2014).
[Crossref]

Jaureguivazquez, D.

E. Huertamascotte, J. M. Sierrahernandez, R. I. Matachavez, D. Jaureguivazquez, A. Castilloguzman, and J. M. Estudilloayala, “A core-offset mach zehnder interferometer based on a non-zero dispersion-shifted fiber and its torsion sensing application,” Sensors 16(6), 856–864 (2016).
[Crossref]

Javdani, S.

S. Javdani, M. Fabian, J. S. Carlton, T. Sun, and K. T. V. Grattan, “Underwater free-vibration analysis of full-scale marine propeller using a fiber bragg grating-based sensor system,” IEEE Sens. J. 16(4), 946–953 (2016).
[Crossref]

Ji, X.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, and F. Xu, “Compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13(5), 1447–1451 (2013).
[Crossref]

Jian, P.

L. Yuan, P. Jian, Y. Tao, and G. Han, “Analysis of the compensation mechanism of a fiber-optic displacement sensor,” Sens. Actuators A 63(3), 177–181 (1997).
[Crossref]

Jin, L.

Jun, M. B. G.

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in mach-zehnder interferometer for refractive index and temperature sensing,” IEEE Photon. Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

Khalaf, A. L.

Lewis, E.

Li, B.

Li, C.

C. Li, T. Ning, C. Zhang, J. Li, C. Zhang, and X. Wen, “All-fiber multipath mach–zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators, A 248, 148–154 (2016).
[Crossref]

Li, J.

C. Li, T. Ning, C. Zhang, J. Li, C. Zhang, and X. Wen, “All-fiber multipath mach–zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators, A 248, 148–154 (2016).
[Crossref]

Li, J. Q.

Li, Y.

Liao, Y.

Lim, H. N.

Lin, W.

Liu, B.

Liu, H.

H. Liu, H. Z. Yang, X. G. Qiao, M. L. Hu, Z. Y. Feng, and R. Wang, “Strain measurement at high temperature environment based on fabry-perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Liu, T.

Liu, W. S.

H. Y. Fu, X. W. Shu, A. P. Zhang, and W. S. Liu, “Implementation and Characterization of Liquid-Level Sensor Based on a Long-Period Fiber Grating Mach–Zehnder Interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Liu, X.

Y. Zhao, X. Liu, R. Q. Lv, and Q. Wang, “Simultaneous measurement of RI and temperature based on the combination of sagnac loop mirror and balloon-like interferometer,” Sens. Actuators B 243, 800–805 (2017).
[Crossref]

X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “Enhancement of RI Sensitivity Through Bending a Tapered-SMF-Based Balloon-Like Interferometer,” J. Lightwave Technol. 34(14), 3293–3299 (2016).
[Crossref]

Liu, Y. M.

Liu, Z.

Loock, H. P.

Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Lou, S.

T. Zhao, S. Lou, X. Wang, W. Zhang, and Y. Wang, “Simultaneous Measurement of Curvature, Strain and Temperature Using a Twin-Core Photonic Crystal Fiber-Based Sensor,” Sensors 18(7), 2145 (2018).
[Crossref]

Lu, Y.

X. Fang, Q. Chen, and Y. Lu, “Waterdrop-shaped micro-displacement sensor with high sensitivity and wide displacement variation range,” International Conference on Optical Communications and Networks (IEEE, 2017), pp.1–3.

Lv, R. Q.

Y. Zhao, X. Liu, R. Q. Lv, and Q. Wang, “Simultaneous measurement of RI and temperature based on the combination of sagnac loop mirror and balloon-like interferometer,” Sens. Actuators B 243, 800–805 (2017).
[Crossref]

X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “Enhancement of RI Sensitivity Through Bending a Tapered-SMF-Based Balloon-Like Interferometer,” J. Lightwave Technol. 34(14), 3293–3299 (2016).
[Crossref]

Matachavez, R. I.

E. Huertamascotte, J. M. Sierrahernandez, R. I. Matachavez, D. Jaureguivazquez, A. Castilloguzman, and J. M. Estudilloayala, “A core-offset mach zehnder interferometer based on a non-zero dispersion-shifted fiber and its torsion sensing application,” Sensors 16(6), 856–864 (2016).
[Crossref]

Mcgarrahan, J.

Miao, Y.

Mizuno, Y.

A. A. Jasim, N. Hayashi, S. W. Harun, R. Penny, and Y. Mizuno, “Refractive index and strain sensing using inline Mach–Zehnder interferometer comprising perfluorinated graded-index plastic optical fiber,” Sens. Actuators A 219(219), 94–99 (2014).
[Crossref]

Mohamad, F. S.

Mohd Kassim, N.

M. Y. Mohd Noor, A. I. Azmi, A. S. Abdullah, A. S. Mohd Supa’At, N. Mohd Kassim, M. H. Ibrahim, and N. H. Ngajikin, “High sensitivity of balloon-like bent MMI fiber low-temperature Sensor,” IEEE Photon. Technol. Lett. 27(18), 1989–1992 (2015).
[Crossref]

Mohd Noor, M. Y.

M. Y. Mohd Noor, A. I. Azmi, A. S. Abdullah, A. S. Mohd Supa’At, N. Mohd Kassim, M. H. Ibrahim, and N. H. Ngajikin, “High sensitivity of balloon-like bent MMI fiber low-temperature Sensor,” IEEE Photon. Technol. Lett. 27(18), 1989–1992 (2015).
[Crossref]

Mohd Supa’At, A. S.

M. Y. Mohd Noor, A. I. Azmi, A. S. Abdullah, A. S. Mohd Supa’At, N. Mohd Kassim, M. H. Ibrahim, and N. H. Ngajikin, “High sensitivity of balloon-like bent MMI fiber low-temperature Sensor,” IEEE Photon. Technol. Lett. 27(18), 1989–1992 (2015).
[Crossref]

Muller, M.

Ngajikin, N. H.

M. Y. Mohd Noor, A. I. Azmi, A. S. Abdullah, A. S. Mohd Supa’At, N. Mohd Kassim, M. H. Ibrahim, and N. H. Ngajikin, “High sensitivity of balloon-like bent MMI fiber low-temperature Sensor,” IEEE Photon. Technol. Lett. 27(18), 1989–1992 (2015).
[Crossref]

Ning, T.

C. Li, T. Ning, C. Zhang, J. Li, C. Zhang, and X. Wen, “All-fiber multipath mach–zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators, A 248, 148–154 (2016).
[Crossref]

Oliveira, M. M.

Paiman, S.

Peng, W.

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

Penny, R.

A. A. Jasim, N. Hayashi, S. W. Harun, R. Penny, and Y. Mizuno, “Refractive index and strain sensing using inline Mach–Zehnder interferometer comprising perfluorinated graded-index plastic optical fiber,” Sens. Actuators A 219(219), 94–99 (2014).
[Crossref]

Pevec, S.

S. Pevec and D. Donlagic, “Multiparameter fiber-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive Index, and temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

Qian, J.

Qiao, X. G.

H. Liu, H. Z. Yang, X. G. Qiao, M. L. Hu, Z. Y. Feng, and R. Wang, “Strain measurement at high temperature environment based on fabry-perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Qin, B.

Rahman, N. A.

Rothhardt, M.

Saad, A.

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in mach-zehnder interferometer for refractive index and temperature sensing,” IEEE Photon. Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

Schwartz, J.

Scurti, F.

Shi, J.

Shu, X. W.

H. Y. Fu, X. W. Shu, A. P. Zhang, and W. S. Liu, “Implementation and Characterization of Liquid-Level Sensor Based on a Long-Period Fiber Grating Mach–Zehnder Interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Shui, T.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, and F. Xu, “Compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13(5), 1447–1451 (2013).
[Crossref]

Sierrahernandez, J. M.

E. Huertamascotte, J. M. Sierrahernandez, R. I. Matachavez, D. Jaureguivazquez, A. Castilloguzman, and J. M. Estudilloayala, “A core-offset mach zehnder interferometer based on a non-zero dispersion-shifted fiber and its torsion sensing application,” Sensors 16(6), 856–864 (2016).
[Crossref]

Song, B.

Sun, L. P.

Sun, T.

S. Javdani, M. Fabian, J. S. Carlton, T. Sun, and K. T. V. Grattan, “Underwater free-vibration analysis of full-scale marine propeller using a fiber bragg grating-based sensor system,” IEEE Sens. J. 16(4), 946–953 (2016).
[Crossref]

Tan, Y.

Tao, Y.

L. Yuan, P. Jian, Y. Tao, and G. Han, “Analysis of the compensation mechanism of a fiber-optic displacement sensor,” Sens. Actuators A 63(3), 177–181 (1997).
[Crossref]

Tian, K.

Tian, Z.

Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Wang, D. N.

Wang, J.

Wang, L.

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A mach–zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Wang, P.

Wang, Q.

Y. Zhao, X. Liu, R. Q. Lv, and Q. Wang, “Simultaneous measurement of RI and temperature based on the combination of sagnac loop mirror and balloon-like interferometer,” Sens. Actuators B 243, 800–805 (2017).
[Crossref]

X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “Enhancement of RI Sensitivity Through Bending a Tapered-SMF-Based Balloon-Like Interferometer,” J. Lightwave Technol. 34(14), 3293–3299 (2016).
[Crossref]

Wang, R.

H. Liu, H. Z. Yang, X. G. Qiao, M. L. Hu, Z. Y. Feng, and R. Wang, “Strain measurement at high temperature environment based on fabry-perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, and F. Xu, “Compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13(5), 1447–1451 (2013).
[Crossref]

Wang, S.

Wang, X.

Wang, Y.

T. Zhao, S. Lou, X. Wang, W. Zhang, and Y. Wang, “Simultaneous Measurement of Curvature, Strain and Temperature Using a Twin-Core Photonic Crystal Fiber-Based Sensor,” Sensors 18(7), 2145 (2018).
[Crossref]

Wang, Z.

M. Xiong, H. Gong, Z. Wang, C. L. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on mach–zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 4295–4299 (2016).
[Crossref]

Warren-Smith, S. C.

Wen, X.

C. Li, T. Ning, C. Zhang, J. Li, C. Zhang, and X. Wen, “All-fiber multipath mach–zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators, A 248, 148–154 (2016).
[Crossref]

Xiao, S.

Xiong, M.

M. Xiong, H. Gong, Z. Wang, C. L. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on mach–zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 4295–4299 (2016).
[Crossref]

Xu, B.

Xu, F.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, and F. Xu, “Compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13(5), 1447–1451 (2013).
[Crossref]

Xu, L.

Yam, S. H.

Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Yan, D.

Yang, H. Z.

H. Liu, H. Z. Yang, X. G. Qiao, M. L. Hu, Z. Y. Feng, and R. Wang, “Strain measurement at high temperature environment based on fabry-perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Yang, J.

Yang, P.

Yang, W.

Yi, L.

Yin, M.

Yuan, L.

L. Yuan, P. Jian, Y. Tao, and G. Han, “Analysis of the compensation mechanism of a fiber-optic displacement sensor,” Sens. Actuators A 63(3), 177–181 (1997).
[Crossref]

Yusof, N. A.

Zhang, A. P.

B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19(5), 4140–4146 (2011).
[Crossref]

H. Y. Fu, X. W. Shu, A. P. Zhang, and W. S. Liu, “Implementation and Characterization of Liquid-Level Sensor Based on a Long-Period Fiber Grating Mach–Zehnder Interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Zhang, C.

C. Li, T. Ning, C. Zhang, J. Li, C. Zhang, and X. Wen, “All-fiber multipath mach–zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators, A 248, 148–154 (2016).
[Crossref]

C. Li, T. Ning, C. Zhang, J. Li, C. Zhang, and X. Wen, “All-fiber multipath mach–zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators, A 248, 148–154 (2016).
[Crossref]

Zhang, H.

Zhang, S.

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A mach–zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Zhang, W.

T. Zhao, S. Lou, X. Wang, W. Zhang, and Y. Wang, “Simultaneous Measurement of Curvature, Strain and Temperature Using a Twin-Core Photonic Crystal Fiber-Based Sensor,” Sensors 18(7), 2145 (2018).
[Crossref]

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A mach–zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Zhang, X.

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

Zhang, Y.

Zhang, Z.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, and F. Xu, “Compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13(5), 1447–1451 (2013).
[Crossref]

Zhao, C. L.

M. Xiong, H. Gong, Z. Wang, C. L. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on mach–zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 4295–4299 (2016).
[Crossref]

Zhao, M.

Zhao, T.

T. Zhao, S. Lou, X. Wang, W. Zhang, and Y. Wang, “Simultaneous Measurement of Curvature, Strain and Temperature Using a Twin-Core Photonic Crystal Fiber-Based Sensor,” Sensors 18(7), 2145 (2018).
[Crossref]

Zhao, Y.

Y. Zhao, X. Liu, R. Q. Lv, and Q. Wang, “Simultaneous measurement of RI and temperature based on the combination of sagnac loop mirror and balloon-like interferometer,” Sens. Actuators B 243, 800–805 (2017).
[Crossref]

X. Liu, Y. Zhao, R. Q. Lv, and Q. Wang, “Enhancement of RI Sensitivity Through Bending a Tapered-SMF-Based Balloon-Like Interferometer,” J. Lightwave Technol. 34(14), 3293–3299 (2016).
[Crossref]

Zhong, N.

Zhou, A.

Zhu, Z.

Zibaii, M. L.

Appl. Opt. (2)

Biomed. Opt. Express (1)

IEEE Photon. Technol. Lett. (3)

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in mach-zehnder interferometer for refractive index and temperature sensing,” IEEE Photon. Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

X. Zhang and W. Peng, “Fiber optic refractometer based on leaky-mode interference of bent fiber,” IEEE Photon. Technol. Lett. 27(1), 11–14 (2015).
[Crossref]

M. Y. Mohd Noor, A. I. Azmi, A. S. Abdullah, A. S. Mohd Supa’At, N. Mohd Kassim, M. H. Ibrahim, and N. H. Ngajikin, “High sensitivity of balloon-like bent MMI fiber low-temperature Sensor,” IEEE Photon. Technol. Lett. 27(18), 1989–1992 (2015).
[Crossref]

IEEE Photonics J. (1)

S. Pevec and D. Donlagic, “Multiparameter fiber-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive Index, and temperature,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Tian, S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

IEEE Sens. J. (4)

H. Y. Fu, X. W. Shu, A. P. Zhang, and W. S. Liu, “Implementation and Characterization of Liquid-Level Sensor Based on a Long-Period Fiber Grating Mach–Zehnder Interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

M. Xiong, H. Gong, Z. Wang, C. L. Zhao, and X. Dong, “Simultaneous refractive index and temperature measurement based on mach–zehnder interferometer concatenating two bi-tapers and a long-period grating,” IEEE Sens. J. 16(11), 4295–4299 (2016).
[Crossref]

S. Javdani, M. Fabian, J. S. Carlton, T. Sun, and K. T. V. Grattan, “Underwater free-vibration analysis of full-scale marine propeller using a fiber bragg grating-based sensor system,” IEEE Sens. J. 16(4), 946–953 (2016).
[Crossref]

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, and F. Xu, “Compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13(5), 1447–1451 (2013).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. (1)

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A mach–zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (2)

Sens. Actuators A (3)

L. Yuan, P. Jian, Y. Tao, and G. Han, “Analysis of the compensation mechanism of a fiber-optic displacement sensor,” Sens. Actuators A 63(3), 177–181 (1997).
[Crossref]

H. Liu, H. Z. Yang, X. G. Qiao, M. L. Hu, Z. Y. Feng, and R. Wang, “Strain measurement at high temperature environment based on fabry-perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

A. A. Jasim, N. Hayashi, S. W. Harun, R. Penny, and Y. Mizuno, “Refractive index and strain sensing using inline Mach–Zehnder interferometer comprising perfluorinated graded-index plastic optical fiber,” Sens. Actuators A 219(219), 94–99 (2014).
[Crossref]

Sens. Actuators B (1)

Y. Zhao, X. Liu, R. Q. Lv, and Q. Wang, “Simultaneous measurement of RI and temperature based on the combination of sagnac loop mirror and balloon-like interferometer,” Sens. Actuators B 243, 800–805 (2017).
[Crossref]

Sens. Actuators, A (1)

C. Li, T. Ning, C. Zhang, J. Li, C. Zhang, and X. Wen, “All-fiber multipath mach–zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators, A 248, 148–154 (2016).
[Crossref]

Sensors (2)

T. Zhao, S. Lou, X. Wang, W. Zhang, and Y. Wang, “Simultaneous Measurement of Curvature, Strain and Temperature Using a Twin-Core Photonic Crystal Fiber-Based Sensor,” Sensors 18(7), 2145 (2018).
[Crossref]

E. Huertamascotte, J. M. Sierrahernandez, R. I. Matachavez, D. Jaureguivazquez, A. Castilloguzman, and J. M. Estudilloayala, “A core-offset mach zehnder interferometer based on a non-zero dispersion-shifted fiber and its torsion sensing application,” Sensors 16(6), 856–864 (2016).
[Crossref]

Other (1)

X. Fang, Q. Chen, and Y. Lu, “Waterdrop-shaped micro-displacement sensor with high sensitivity and wide displacement variation range,” International Conference on Optical Communications and Networks (IEEE, 2017), pp.1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) The schematic diagram of a UTF cascaded with SMF-formed DLMI, (b) detailed light paths for three main points of (i), (ii) and (iii) in Fig. 1(a).
Fig. 2.
Fig. 2. (a), (b), (c) and (d) The fabrication steps of UTF, (e), (f), (g), (h) the fabrication steps of DLMI
Fig. 3.
Fig. 3. The SFS of the DLMI of D = 1.0, 0.9, 0.8 cm without UTF respectively, inset shows the corresponding transmission spectra
Fig. 4.
Fig. 4. (a) The SFS of The UTF cascaded with DLMI, inset shows the corresponding transmission spectrum, (b) inverse Fourier transformed cosine wavelength spectra of peak 1, peak 2 and peak 3 respectively
Fig. 5.
Fig. 5. Experiment setup for simultaneous measurement of three parameters based on the UTF cascaded with DLMI
Fig. 6.
Fig. 6. Relationship between the rise of liquid level and the corresponding wavelength shift for the recovered wavelength spectra from (a) peak 1, (b) peak 2 and (c) peak 3, insets show the corresponding recovered wavelength spectra respectively
Fig. 7.
Fig. 7. Relationship between the increase of RI and the corresponding wavelength shift for the recovered wavelength spectra from (a) peak 1, (b) peak 2 and (c) peak 3, insets show the corresponding recovered wavelength spectra respectively.
Fig. 8.
Fig. 8. Relationship between the rise of temperature and the corresponding wavelength shift for the recovered wavelength spectra from (a) peak 1, (b) peak 2 and (c) peak 3, insets show the corresponding recovered wavelength spectra respectively.
Fig. 9.
Fig. 9. Sensor output as determined by Eq. (10) for the applied liquid level at the constant liquid RI and temperature, applied liquid RI at the constant liquid level and temperature and applied liquid temperature at the constant liquid level and RI respectively

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I = I core + m = 1 3 [ I cladding m + 2 I clad m I core cos ( Δ φ m ) ] ,
Δ φ m = 4 π ( n e f f c o r e n e f f c l a d , m ) L λ ,
λ n m 0 = 2 ( n e f f c o r e n e f f c l a d , m , air ) L 2 n + 1 ,
λ n m = 2 ( n e f f c o r e n e f f c l a d , m , air ) L a i r 2 n + 1 + 2 ( n e f f c o r e n e f f c l a d , m , liquid ) L l i q u i d 2 n + 1 ,
Δ λ n m = δ λ n m δ l i q u i d Δ l i q u i d + δ λ n m δ R I Δ R I + δ λ n m δ T Δ T = K m n L Δ l i q u i d + K m n R Δ R I + K m n T Δ T ,
K m n L = 2 ( n e f f c l a d , m , air n e f f c l a d , m , liquid ) 2 n + 1 δ L l i q u i d δ l i q u i d ,
K m n R = 2 L l i q u i d , T 2 n + 1 δ n e f f c l a d , m , liquid δ R I ,
K m n T = 2 L l i q u i d , T 2 n + 1 δ n e f f c o r e δ T + 2 ( 2 n e f f c o r e n e f f c l a d , m , liquid n e f f c l a d , m , air ) 2 n + 1 δ L l i q u i d δ T ,
[ Δ λ 1 Δ λ 2 Δ λ 3 ] = [ K 1 L K 1 R K 1 T K 2 L K 2 R K 2 T K 3 L K 3 R K 3 T ] [ Δ liquid Δ RI Δ T ] ,
[ Δ l i q u i d Δ RI Δ T ] = [ 154.00 pm / mm 132.47 nm / RIU 119.66 pm / C 79.43 pm / mm 109.81 nm / RIU 104.91 pm / C 65.43 pm / mm 17.56 nm / RIU 238.97 pm / C ] 1 [ Δ λ 1 Δ λ 2 Δ λ 3 ] ,

Metrics