Abstract

We present the design and construction of a fiber combiner comprising 7 × 1 35/50 µm input fibers with thin cladding and an output fiber with 125 µm diameter to maintain the high beam brightness. A transmission higher than 98% between the input fibers and the tapered fiber bundle is achieved. The coupling efficiency between the bundle and the output fiber exceeds 95%. The-near field beam profiles of the fabrication steps are measured and analyzed. Due to the thin cladding of the input fibers, we analyze optical tunneling effects with respect to the numerical aperture of the light.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of 4 × 1 signal combiner for high-power lasers using hydrofluoric acid

In Seok Choi, Jongseon Park, Hoon Jeong, Ji Won Kim, Min Yong Jeon, and Hong-Seok Seo
Opt. Express 26(23) 30667-30677 (2018)

Tapered fiber bundles for combining high-power diode lasers

Andrey Kosterin, Valery Temyanko, Mahmoud Fallahi, and Masud Mansuripur
Appl. Opt. 43(19) 3893-3900 (2004)

High-beam-quality signal and pump combiner with large-mode-area fiber for high-power fiber laser and amplifier

Yanran Gu, Chengmin Lei, Huan Yang, Hu Xiao, Jinyong Leng, and Zilun Chen
Appl. Opt. 58(6) 1336-1340 (2019)

References

  • View by:
  • |
  • |
  • |

  1. “BRIDLE” http://www.bridle.eu .
  2. U. Witte, M. Traub, A. Di Meo, M. Hamann, D. Rubel, S. Hengesbach, and D. Hoffmann, “Compact 35 μm Fiber Coupled Diode Laser Module Based on Dense Multiplexing,” Proc. SPIE 9733, 97330H (2016).
    [Crossref]
  3. Q. Xiao, H. Ren, X. Chen, P. Yan, and M. Gong, “Tapered Fiber Bundle 7 × 1 End-Pumping Coupler Capable of High Power CW Operation,” IEEE Photon. Technol. Lett. 25(24), 2442–2445 (2013).
    [Crossref]
  4. G. Zhu, “High Efficiency Pump Combiner Fabricated by CO2 Laser Splicing System,” Proc. SPIE 10513, 105131C (2018).
    [Crossref]
  5. M. Plötner, O. de Vries, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High power incoherent beam combining by an all-glass 7:1 fiber coupler with high beam quality,” Advanced Solid State Lasers (2014).
  6. D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, J. Johansen, F. Becker, S. Bekle, M. Blomqvist, and J. Lægsgaard, “All-fiber 7 × 1 signal combiner for incoherent laser beam combining,” Proc. SPIE 7914, 79142L (2011).
    [Crossref]
  7. H. Zhou, Z. Chen, X. Zhou, J. Hou, and J. Chen, “All-fiber 7 × 1 signal combiner for high power fiber lasers,” Appl. Opt. 54(11), 3090–3094 (2015).
    [Crossref]
  8. B. Wang and E. Mies, “Review of Fabrication Techniques for Fused Fiber Components for Fiber Lasers,” in Proceedings of SPIE Photonic West ‘09, Fiber Lasers VI: Technology, Systems, and Applications, (2009).
  9. D. Meschede, Optik, Licht und Laser (Teubner, 2008).
  10. A. E. Siegman, IEEE Fellow, M. W. Sasnett, and T. F. Johnston, “Choice of Clip Levels for Beam Width Measurements,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
    [Crossref]

2018 (1)

G. Zhu, “High Efficiency Pump Combiner Fabricated by CO2 Laser Splicing System,” Proc. SPIE 10513, 105131C (2018).
[Crossref]

2016 (1)

U. Witte, M. Traub, A. Di Meo, M. Hamann, D. Rubel, S. Hengesbach, and D. Hoffmann, “Compact 35 μm Fiber Coupled Diode Laser Module Based on Dense Multiplexing,” Proc. SPIE 9733, 97330H (2016).
[Crossref]

2015 (1)

2013 (1)

Q. Xiao, H. Ren, X. Chen, P. Yan, and M. Gong, “Tapered Fiber Bundle 7 × 1 End-Pumping Coupler Capable of High Power CW Operation,” IEEE Photon. Technol. Lett. 25(24), 2442–2445 (2013).
[Crossref]

2011 (1)

D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, J. Johansen, F. Becker, S. Bekle, M. Blomqvist, and J. Lægsgaard, “All-fiber 7 × 1 signal combiner for incoherent laser beam combining,” Proc. SPIE 7914, 79142L (2011).
[Crossref]

1991 (1)

A. E. Siegman, IEEE Fellow, M. W. Sasnett, and T. F. Johnston, “Choice of Clip Levels for Beam Width Measurements,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
[Crossref]

Becker, F.

D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, J. Johansen, F. Becker, S. Bekle, M. Blomqvist, and J. Lægsgaard, “All-fiber 7 × 1 signal combiner for incoherent laser beam combining,” Proc. SPIE 7914, 79142L (2011).
[Crossref]

Bekle, S.

D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, J. Johansen, F. Becker, S. Bekle, M. Blomqvist, and J. Lægsgaard, “All-fiber 7 × 1 signal combiner for incoherent laser beam combining,” Proc. SPIE 7914, 79142L (2011).
[Crossref]

Blomqvist, M.

D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, J. Johansen, F. Becker, S. Bekle, M. Blomqvist, and J. Lægsgaard, “All-fiber 7 × 1 signal combiner for incoherent laser beam combining,” Proc. SPIE 7914, 79142L (2011).
[Crossref]

Chen, J.

Chen, X.

Q. Xiao, H. Ren, X. Chen, P. Yan, and M. Gong, “Tapered Fiber Bundle 7 × 1 End-Pumping Coupler Capable of High Power CW Operation,” IEEE Photon. Technol. Lett. 25(24), 2442–2445 (2013).
[Crossref]

Chen, Z.

de Vries, O.

M. Plötner, O. de Vries, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High power incoherent beam combining by an all-glass 7:1 fiber coupler with high beam quality,” Advanced Solid State Lasers (2014).

Di Meo, A.

U. Witte, M. Traub, A. Di Meo, M. Hamann, D. Rubel, S. Hengesbach, and D. Hoffmann, “Compact 35 μm Fiber Coupled Diode Laser Module Based on Dense Multiplexing,” Proc. SPIE 9733, 97330H (2016).
[Crossref]

Eberhardt, R.

M. Plötner, O. de Vries, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High power incoherent beam combining by an all-glass 7:1 fiber coupler with high beam quality,” Advanced Solid State Lasers (2014).

Fellow, IEEE

A. E. Siegman, IEEE Fellow, M. W. Sasnett, and T. F. Johnston, “Choice of Clip Levels for Beam Width Measurements,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
[Crossref]

Gong, M.

Q. Xiao, H. Ren, X. Chen, P. Yan, and M. Gong, “Tapered Fiber Bundle 7 × 1 End-Pumping Coupler Capable of High Power CW Operation,” IEEE Photon. Technol. Lett. 25(24), 2442–2445 (2013).
[Crossref]

Hamann, M.

U. Witte, M. Traub, A. Di Meo, M. Hamann, D. Rubel, S. Hengesbach, and D. Hoffmann, “Compact 35 μm Fiber Coupled Diode Laser Module Based on Dense Multiplexing,” Proc. SPIE 9733, 97330H (2016).
[Crossref]

Hengesbach, S.

U. Witte, M. Traub, A. Di Meo, M. Hamann, D. Rubel, S. Hengesbach, and D. Hoffmann, “Compact 35 μm Fiber Coupled Diode Laser Module Based on Dense Multiplexing,” Proc. SPIE 9733, 97330H (2016).
[Crossref]

Hoffmann, D.

U. Witte, M. Traub, A. Di Meo, M. Hamann, D. Rubel, S. Hengesbach, and D. Hoffmann, “Compact 35 μm Fiber Coupled Diode Laser Module Based on Dense Multiplexing,” Proc. SPIE 9733, 97330H (2016).
[Crossref]

Hou, J.

Johansen, J.

D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, J. Johansen, F. Becker, S. Bekle, M. Blomqvist, and J. Lægsgaard, “All-fiber 7 × 1 signal combiner for incoherent laser beam combining,” Proc. SPIE 7914, 79142L (2011).
[Crossref]

Johnston, T. F.

A. E. Siegman, IEEE Fellow, M. W. Sasnett, and T. F. Johnston, “Choice of Clip Levels for Beam Width Measurements,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
[Crossref]

Lægsgaard, J.

D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, J. Johansen, F. Becker, S. Bekle, M. Blomqvist, and J. Lægsgaard, “All-fiber 7 × 1 signal combiner for incoherent laser beam combining,” Proc. SPIE 7914, 79142L (2011).
[Crossref]

Maack, M. D.

D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, J. Johansen, F. Becker, S. Bekle, M. Blomqvist, and J. Lægsgaard, “All-fiber 7 × 1 signal combiner for incoherent laser beam combining,” Proc. SPIE 7914, 79142L (2011).
[Crossref]

Meschede, D.

D. Meschede, Optik, Licht und Laser (Teubner, 2008).

Mies, E.

B. Wang and E. Mies, “Review of Fabrication Techniques for Fused Fiber Components for Fiber Lasers,” in Proceedings of SPIE Photonic West ‘09, Fiber Lasers VI: Technology, Systems, and Applications, (2009).

Noordegraaf, D.

D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, J. Johansen, F. Becker, S. Bekle, M. Blomqvist, and J. Lægsgaard, “All-fiber 7 × 1 signal combiner for incoherent laser beam combining,” Proc. SPIE 7914, 79142L (2011).
[Crossref]

Plötner, M.

M. Plötner, O. de Vries, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High power incoherent beam combining by an all-glass 7:1 fiber coupler with high beam quality,” Advanced Solid State Lasers (2014).

Ren, H.

Q. Xiao, H. Ren, X. Chen, P. Yan, and M. Gong, “Tapered Fiber Bundle 7 × 1 End-Pumping Coupler Capable of High Power CW Operation,” IEEE Photon. Technol. Lett. 25(24), 2442–2445 (2013).
[Crossref]

Rubel, D.

U. Witte, M. Traub, A. Di Meo, M. Hamann, D. Rubel, S. Hengesbach, and D. Hoffmann, “Compact 35 μm Fiber Coupled Diode Laser Module Based on Dense Multiplexing,” Proc. SPIE 9733, 97330H (2016).
[Crossref]

Sasnett, M. W.

A. E. Siegman, IEEE Fellow, M. W. Sasnett, and T. F. Johnston, “Choice of Clip Levels for Beam Width Measurements,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
[Crossref]

Schreiber, T.

M. Plötner, O. de Vries, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High power incoherent beam combining by an all-glass 7:1 fiber coupler with high beam quality,” Advanced Solid State Lasers (2014).

Siegman, A. E.

A. E. Siegman, IEEE Fellow, M. W. Sasnett, and T. F. Johnston, “Choice of Clip Levels for Beam Width Measurements,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
[Crossref]

Skovgaard, P. M. W.

D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, J. Johansen, F. Becker, S. Bekle, M. Blomqvist, and J. Lægsgaard, “All-fiber 7 × 1 signal combiner for incoherent laser beam combining,” Proc. SPIE 7914, 79142L (2011).
[Crossref]

Traub, M.

U. Witte, M. Traub, A. Di Meo, M. Hamann, D. Rubel, S. Hengesbach, and D. Hoffmann, “Compact 35 μm Fiber Coupled Diode Laser Module Based on Dense Multiplexing,” Proc. SPIE 9733, 97330H (2016).
[Crossref]

Tünnermann, A.

M. Plötner, O. de Vries, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High power incoherent beam combining by an all-glass 7:1 fiber coupler with high beam quality,” Advanced Solid State Lasers (2014).

Wang, B.

B. Wang and E. Mies, “Review of Fabrication Techniques for Fused Fiber Components for Fiber Lasers,” in Proceedings of SPIE Photonic West ‘09, Fiber Lasers VI: Technology, Systems, and Applications, (2009).

Witte, U.

U. Witte, M. Traub, A. Di Meo, M. Hamann, D. Rubel, S. Hengesbach, and D. Hoffmann, “Compact 35 μm Fiber Coupled Diode Laser Module Based on Dense Multiplexing,” Proc. SPIE 9733, 97330H (2016).
[Crossref]

Xiao, Q.

Q. Xiao, H. Ren, X. Chen, P. Yan, and M. Gong, “Tapered Fiber Bundle 7 × 1 End-Pumping Coupler Capable of High Power CW Operation,” IEEE Photon. Technol. Lett. 25(24), 2442–2445 (2013).
[Crossref]

Yan, P.

Q. Xiao, H. Ren, X. Chen, P. Yan, and M. Gong, “Tapered Fiber Bundle 7 × 1 End-Pumping Coupler Capable of High Power CW Operation,” IEEE Photon. Technol. Lett. 25(24), 2442–2445 (2013).
[Crossref]

Zhou, H.

Zhou, X.

Zhu, G.

G. Zhu, “High Efficiency Pump Combiner Fabricated by CO2 Laser Splicing System,” Proc. SPIE 10513, 105131C (2018).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

A. E. Siegman, IEEE Fellow, M. W. Sasnett, and T. F. Johnston, “Choice of Clip Levels for Beam Width Measurements,” IEEE J. Quantum Electron. 27(4), 1098–1104 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Q. Xiao, H. Ren, X. Chen, P. Yan, and M. Gong, “Tapered Fiber Bundle 7 × 1 End-Pumping Coupler Capable of High Power CW Operation,” IEEE Photon. Technol. Lett. 25(24), 2442–2445 (2013).
[Crossref]

Proc. SPIE (3)

G. Zhu, “High Efficiency Pump Combiner Fabricated by CO2 Laser Splicing System,” Proc. SPIE 10513, 105131C (2018).
[Crossref]

U. Witte, M. Traub, A. Di Meo, M. Hamann, D. Rubel, S. Hengesbach, and D. Hoffmann, “Compact 35 μm Fiber Coupled Diode Laser Module Based on Dense Multiplexing,” Proc. SPIE 9733, 97330H (2016).
[Crossref]

D. Noordegraaf, M. D. Maack, P. M. W. Skovgaard, J. Johansen, F. Becker, S. Bekle, M. Blomqvist, and J. Lægsgaard, “All-fiber 7 × 1 signal combiner for incoherent laser beam combining,” Proc. SPIE 7914, 79142L (2011).
[Crossref]

Other (4)

B. Wang and E. Mies, “Review of Fabrication Techniques for Fused Fiber Components for Fiber Lasers,” in Proceedings of SPIE Photonic West ‘09, Fiber Lasers VI: Technology, Systems, and Applications, (2009).

D. Meschede, Optik, Licht und Laser (Teubner, 2008).

“BRIDLE” http://www.bridle.eu .

M. Plötner, O. de Vries, T. Schreiber, R. Eberhardt, and A. Tünnermann, “High power incoherent beam combining by an all-glass 7:1 fiber coupler with high beam quality,” Advanced Solid State Lasers (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic representation of the fiber bundle [8].
Fig. 2.
Fig. 2. Schematic representation of the facet of the untapered fiber bundle.
Fig. 3.
Fig. 3. Schematic representation (left) and microscopic measurement of the facet of the tapered fiber bundle (right).
Fig. 4.
Fig. 4. Penetration depth with respect to the numerical aperture of light (left) and expected percentage losses per total reflection with respect to the cladding thickness (right).
Fig. 5.
Fig. 5. Intensity profile of the fiber bundle facet.
Fig. 6.
Fig. 6. Measurement of the transmission of a fiber bundle for a numerical aperture of 0.2 (left) and near field intensity profile of the combiner output fiber (right).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V R = 7 9 ( d c o r e d c l a d ) 2 ,
B P P = ω 0 θ = 1 2 d c o r e A N , L ,
A N , L , t a p e r e d = A N , L r c r c , t a p e r e d = A N , L V T a p e r ,
B P P i n B P P o u t .
r c , i n r c , o u t .
A N , i n A N , o u t .
d p = λ 0 2 π n C o r e ( sin ϑ N ) 2 ( n C l a d n C o r e ) 2 ,

Metrics