Abstract

To investigate the influence of phosphor coating on an UV-responsive coated enhancement CCD spectrometer, firstly, a phosphor coating mathematical model was established and its feasibility has been proved through experiments. Secondly, a spectral resolution improvement algorithm based on the MAP technique was introduced by employing the simplified model. Finally, the resolution improvement experiments of the spectra obtained from different coated CCDs with one CCD-based spectrometer were carried out, of which the results verify the effectiveness of the algorithm. The proposed phosphor coating mathematical model and spectral resolution improvement algorithm could be adequately applied to the field of UV-responsive coated enhancement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silica-based photonic crystal fiber for the generation of broad band UV radiation

S. Perret, C. Poudel, A. N. Ghosh, G. Fanjoux, L. Provino, T. Taunay, A. Monteville, D. Landais, C. F. Kaminski, J. M. Dudley, and T. Sylvestre
OSA Continuum 3(1) 31-42 (2020)

Accurate blind extraction of arbitrary unknown phase shifts by an improved quantum-behaved particle swarm optimization in generalized phase-shifting interferometry

Xuelian Yu, Renkang Song, Xiufang Li, Pan Jiang, Kangwei Wang, Zhichang Zhang, and Tao Shen
OSA Continuum 2(12) 3404-3414 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism- corrected Czerny–Turner spectrometer,” Opt. Express 18(22), 23378–23384 (2010).
    [Crossref]
  2. H. Z. Wang, L. W. Nan, H. Huang, P. Yang, H. Song, J. W. Han, Y. Q. Wu, T. T. Yan, Z. L. Yuan, and Y. Chen, “Adaptive measurement method for miniature spectrometers used in cold environments,” Appl. Opt. 56(28), 8029–8039 (2017).
    [Crossref]
  3. V. Protopopov, “Automatic Gain Control in Compact Spectrometers,” Appl. Spectrosc. 70(3), 539–542 (2016).
    [Crossref]
  4. Y. Chen and L. Dai, “Automated decomposition algorithm for Raman spectra based on a Voigt line profile model,” Appl. Opt. 55(15), 4085–4094 (2016).
    [Crossref]
  5. C. R. Muzzio, N. Gabrielsimionato, and L. Daniela, “Determination of moisture content in lyophilized mannitol through intact glass vials using NIR micro-spectrometers,” Braz. J. Pharm. Sci. 47(2), 289–297 (2011).
    [Crossref]
  6. C. Otto, C. J. D. Grauw, J. J. Duindam, N. M. Sijtsema, and J. Greve, “Applications of Micro-Raman Imaging in Biomedical Research,” J. Raman Spectrosc. 28(2–3), 143–150 (1997).
    [Crossref]
  7. P. Colomban, F. Ambrosi, A. T. Ngo, T. A. Lu, X. L. Feng, S. Chen, and C. Choi, “Comparative analysis of wucai, Chinese porcelains using mobile and fixed Raman micro spectrometers,” Ceram. Int. 43(16), 14244–14256 (2017).
    [Crossref]
  8. E. T. Hamden, F. Greer, M. E. Hoenk, J. Blacksberg, M. R. Dickie, S. Nikzad, D. C. Martin, and D. Schiminovich, “Ultraviolet antireflection coatings for use in silicon detector design,” Appl. Opt. 50(21), 4180–4188 (2011).
    [Crossref]
  9. S. Nikzad, M. E. Hoenk, F. Greer, B. Jacquot, S. Monacos, T. J. Jones, J. Blacksberg, E. Hamden, D. Schiminovich, C. Martin, and P. Morrissey, “Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications,” Appl. Opt. 51(3), 365–369 (2012).
    [Crossref]
  10. W. A. R. Franks, M. J. Kiik, and A. Nathan, “UV-responsive CCD image sensors with enhanced inorganic phosphor coatings,” IEEE Trans. Electron. Dev. 50(2), 352–358 (2003).
    [Crossref]
  11. D. E. Groom, S. Haque, S. E. Holland, and W. F. Kolbe, “Quantum efficiency modeling for a thick back-illuminated astronomical CCD,” J. Appl. Phys. 122(5), 055301 (2017).
    [Crossref]
  12. M. M. Blouke, M. W. Cowens, J. E. Hall, J. A. Westphal, and A. B. Christensen, “Ultraviolet down converting phosphor for use with silicon CCD imagers,” Appl. Opt. 19(19), 3318–3321 (1980).
    [Crossref]
  13. D. W. Zhang, X. Tian, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors,” Spectrosc. Spect. Anal. 30, 1171–1174 (2010).
  14. J. A. Luna, I. Sánchez, G. A. Flores, C. F. Cinvestav, R. B. Urby, and N. C. Castro, “Microwave-assisted synthesis and characterization of Y2O3: Eu (III) – benzoate hybrid nanophosphors,” J. Nanophoton. 12(2), 026019 (2018).
    [Crossref]
  15. Y. X. Meng, G. Y. Zhang, W. Yi-Hui, and P. Hao, “Process Optimization of CCD UV-Responsive Sensitivity Enhancement by Spin-Coating,” Spectrosc. Spect. Anal. (2017).
  16. D. G. Cameron, D. J. Moffatt, H. H. Mantsch, and J. K. Kauppinen, “Fourier Self-Deconvolution: A Method for Resolving Intrinsically Overlapped Bands,” Appl. Spectrosc. 35(3), 271–276 (1981).
    [Crossref]
  17. E. I. Stearns and R. E. Stearns, “An example of a method for correcting radiance data for Bandpass error,” Color Res. Appl. 13(4), 257–259 (1988).
    [Crossref]
  18. Y. Ohno, “A flexible bandpass correction method for spectrometers,” in AIC Color Conference (2005), pp. 697–700.
  19. T. J. Cornwell, “A simple maximum entropy deconvolution algorithm,” Astron. Astrophys. 143, 77–83 (1985).
  20. J. Yuan and Z. Hu, “High-order statistical blind deconvolution of spectroscopic data with a Gauss-Newton algorithm,” Appl. Spectrosc. 60(6), 692–697 (2006).
    [Crossref]
  21. E. R. Woolliams, R. Baribeau, A. Bialek, and M. G. Cox, “Spectrometer bandwidth correction for generalized bandpass functions,” Metrologia 48(3), 164–172 (2011).
    [Crossref]
  22. A. M. Brinicombe, D. A. Fish, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson–Lucy algorithm,” J. Opt. Soc. Am. 12(1), 58–65 (1995).
    [Crossref]
  23. G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov Regularization and Total Least Squares,” Siam. J. Matrix. Anal. A. 21(1), 185–194 (1999).
    [Crossref]
  24. S. Eichstädt, F. Schmähling, G. Wübbeler, K. Anhalt, L. Bünger, U. Krüger, and C. Elster, “Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction,” Metrologia 50(2), 107–118 (2013).
    [Crossref]
  25. S. Q. Jin, C. Huang, G. Xia, M. Y. Hu, and Z. J. Liu, “Bandwidth correction in the spectral measurement of light-emitting diodes,” J. Opt. Soc. Am. 34(9), 1476–1480 (2017).
    [Crossref]
  26. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2(2), 164–168 (1944).
    [Crossref]
  27. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
    [Crossref]
  28. G. He and L. Zheng, “A model for LED spectra at different drive currents,” Chin. Opt. Lett. 8(11), 1090–1094 (2010).
    [Crossref]
  29. C. S. Butler and M. I. Miller, “Maximum a posteriori estimation for SPECT using regularization techniques on massively parallel computers,” IEEE T. Med. Imaging 12(1), 84–89 (1993).
    [Crossref]
  30. A. C. Chan, K. Kurokawa, S. Makita, M. Miura, and Y. Yasuno, “Maximum a posteriori estimator for high-contrast image composition of optical coherence tomography,” Opt. Lett. 41(2), 321–324 (2016).
    [Crossref]
  31. A. C. Chan, Y. J. Hong, S. Makita, M. Miura, and Y. Yasuno, “Noise-bias and polarization-artifact corrected optical coherence tomography by maximum a-posteriori intensity estimation,” Biomed. Opt. Express 8(4), 2069–2087 (2017).
    [Crossref]

2018 (1)

J. A. Luna, I. Sánchez, G. A. Flores, C. F. Cinvestav, R. B. Urby, and N. C. Castro, “Microwave-assisted synthesis and characterization of Y2O3: Eu (III) – benzoate hybrid nanophosphors,” J. Nanophoton. 12(2), 026019 (2018).
[Crossref]

2017 (5)

D. E. Groom, S. Haque, S. E. Holland, and W. F. Kolbe, “Quantum efficiency modeling for a thick back-illuminated astronomical CCD,” J. Appl. Phys. 122(5), 055301 (2017).
[Crossref]

H. Z. Wang, L. W. Nan, H. Huang, P. Yang, H. Song, J. W. Han, Y. Q. Wu, T. T. Yan, Z. L. Yuan, and Y. Chen, “Adaptive measurement method for miniature spectrometers used in cold environments,” Appl. Opt. 56(28), 8029–8039 (2017).
[Crossref]

P. Colomban, F. Ambrosi, A. T. Ngo, T. A. Lu, X. L. Feng, S. Chen, and C. Choi, “Comparative analysis of wucai, Chinese porcelains using mobile and fixed Raman micro spectrometers,” Ceram. Int. 43(16), 14244–14256 (2017).
[Crossref]

S. Q. Jin, C. Huang, G. Xia, M. Y. Hu, and Z. J. Liu, “Bandwidth correction in the spectral measurement of light-emitting diodes,” J. Opt. Soc. Am. 34(9), 1476–1480 (2017).
[Crossref]

A. C. Chan, Y. J. Hong, S. Makita, M. Miura, and Y. Yasuno, “Noise-bias and polarization-artifact corrected optical coherence tomography by maximum a-posteriori intensity estimation,” Biomed. Opt. Express 8(4), 2069–2087 (2017).
[Crossref]

2016 (3)

2013 (1)

S. Eichstädt, F. Schmähling, G. Wübbeler, K. Anhalt, L. Bünger, U. Krüger, and C. Elster, “Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction,” Metrologia 50(2), 107–118 (2013).
[Crossref]

2012 (1)

2011 (3)

E. T. Hamden, F. Greer, M. E. Hoenk, J. Blacksberg, M. R. Dickie, S. Nikzad, D. C. Martin, and D. Schiminovich, “Ultraviolet antireflection coatings for use in silicon detector design,” Appl. Opt. 50(21), 4180–4188 (2011).
[Crossref]

C. R. Muzzio, N. Gabrielsimionato, and L. Daniela, “Determination of moisture content in lyophilized mannitol through intact glass vials using NIR micro-spectrometers,” Braz. J. Pharm. Sci. 47(2), 289–297 (2011).
[Crossref]

E. R. Woolliams, R. Baribeau, A. Bialek, and M. G. Cox, “Spectrometer bandwidth correction for generalized bandpass functions,” Metrologia 48(3), 164–172 (2011).
[Crossref]

2010 (3)

G. He and L. Zheng, “A model for LED spectra at different drive currents,” Chin. Opt. Lett. 8(11), 1090–1094 (2010).
[Crossref]

K. S. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism- corrected Czerny–Turner spectrometer,” Opt. Express 18(22), 23378–23384 (2010).
[Crossref]

D. W. Zhang, X. Tian, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors,” Spectrosc. Spect. Anal. 30, 1171–1174 (2010).

2006 (1)

2003 (1)

W. A. R. Franks, M. J. Kiik, and A. Nathan, “UV-responsive CCD image sensors with enhanced inorganic phosphor coatings,” IEEE Trans. Electron. Dev. 50(2), 352–358 (2003).
[Crossref]

1999 (1)

G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov Regularization and Total Least Squares,” Siam. J. Matrix. Anal. A. 21(1), 185–194 (1999).
[Crossref]

1997 (1)

C. Otto, C. J. D. Grauw, J. J. Duindam, N. M. Sijtsema, and J. Greve, “Applications of Micro-Raman Imaging in Biomedical Research,” J. Raman Spectrosc. 28(2–3), 143–150 (1997).
[Crossref]

1995 (1)

A. M. Brinicombe, D. A. Fish, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson–Lucy algorithm,” J. Opt. Soc. Am. 12(1), 58–65 (1995).
[Crossref]

1993 (1)

C. S. Butler and M. I. Miller, “Maximum a posteriori estimation for SPECT using regularization techniques on massively parallel computers,” IEEE T. Med. Imaging 12(1), 84–89 (1993).
[Crossref]

1988 (1)

E. I. Stearns and R. E. Stearns, “An example of a method for correcting radiance data for Bandpass error,” Color Res. Appl. 13(4), 257–259 (1988).
[Crossref]

1985 (1)

T. J. Cornwell, “A simple maximum entropy deconvolution algorithm,” Astron. Astrophys. 143, 77–83 (1985).

1981 (1)

1980 (1)

1963 (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
[Crossref]

1944 (1)

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2(2), 164–168 (1944).
[Crossref]

Ambrosi, F.

P. Colomban, F. Ambrosi, A. T. Ngo, T. A. Lu, X. L. Feng, S. Chen, and C. Choi, “Comparative analysis of wucai, Chinese porcelains using mobile and fixed Raman micro spectrometers,” Ceram. Int. 43(16), 14244–14256 (2017).
[Crossref]

Anhalt, K.

S. Eichstädt, F. Schmähling, G. Wübbeler, K. Anhalt, L. Bünger, U. Krüger, and C. Elster, “Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction,” Metrologia 50(2), 107–118 (2013).
[Crossref]

Baribeau, R.

E. R. Woolliams, R. Baribeau, A. Bialek, and M. G. Cox, “Spectrometer bandwidth correction for generalized bandpass functions,” Metrologia 48(3), 164–172 (2011).
[Crossref]

Bialek, A.

E. R. Woolliams, R. Baribeau, A. Bialek, and M. G. Cox, “Spectrometer bandwidth correction for generalized bandpass functions,” Metrologia 48(3), 164–172 (2011).
[Crossref]

Blacksberg, J.

Blouke, M. M.

Brinicombe, A. M.

A. M. Brinicombe, D. A. Fish, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson–Lucy algorithm,” J. Opt. Soc. Am. 12(1), 58–65 (1995).
[Crossref]

Bünger, L.

S. Eichstädt, F. Schmähling, G. Wübbeler, K. Anhalt, L. Bünger, U. Krüger, and C. Elster, “Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction,” Metrologia 50(2), 107–118 (2013).
[Crossref]

Butler, C. S.

C. S. Butler and M. I. Miller, “Maximum a posteriori estimation for SPECT using regularization techniques on massively parallel computers,” IEEE T. Med. Imaging 12(1), 84–89 (1993).
[Crossref]

Cameron, D. G.

Castro, N. C.

J. A. Luna, I. Sánchez, G. A. Flores, C. F. Cinvestav, R. B. Urby, and N. C. Castro, “Microwave-assisted synthesis and characterization of Y2O3: Eu (III) – benzoate hybrid nanophosphors,” J. Nanophoton. 12(2), 026019 (2018).
[Crossref]

Chan, A. C.

Chen, S.

P. Colomban, F. Ambrosi, A. T. Ngo, T. A. Lu, X. L. Feng, S. Chen, and C. Choi, “Comparative analysis of wucai, Chinese porcelains using mobile and fixed Raman micro spectrometers,” Ceram. Int. 43(16), 14244–14256 (2017).
[Crossref]

Chen, Y.

Choi, C.

P. Colomban, F. Ambrosi, A. T. Ngo, T. A. Lu, X. L. Feng, S. Chen, and C. Choi, “Comparative analysis of wucai, Chinese porcelains using mobile and fixed Raman micro spectrometers,” Ceram. Int. 43(16), 14244–14256 (2017).
[Crossref]

Christensen, A. B.

Cinvestav, C. F.

J. A. Luna, I. Sánchez, G. A. Flores, C. F. Cinvestav, R. B. Urby, and N. C. Castro, “Microwave-assisted synthesis and characterization of Y2O3: Eu (III) – benzoate hybrid nanophosphors,” J. Nanophoton. 12(2), 026019 (2018).
[Crossref]

Colomban, P.

P. Colomban, F. Ambrosi, A. T. Ngo, T. A. Lu, X. L. Feng, S. Chen, and C. Choi, “Comparative analysis of wucai, Chinese porcelains using mobile and fixed Raman micro spectrometers,” Ceram. Int. 43(16), 14244–14256 (2017).
[Crossref]

Cornwell, T. J.

T. J. Cornwell, “A simple maximum entropy deconvolution algorithm,” Astron. Astrophys. 143, 77–83 (1985).

Cowens, M. W.

Cox, M. G.

E. R. Woolliams, R. Baribeau, A. Bialek, and M. G. Cox, “Spectrometer bandwidth correction for generalized bandpass functions,” Metrologia 48(3), 164–172 (2011).
[Crossref]

Dai, L.

Daniela, L.

C. R. Muzzio, N. Gabrielsimionato, and L. Daniela, “Determination of moisture content in lyophilized mannitol through intact glass vials using NIR micro-spectrometers,” Braz. J. Pharm. Sci. 47(2), 289–297 (2011).
[Crossref]

Dickie, M. R.

Duindam, J. J.

C. Otto, C. J. D. Grauw, J. J. Duindam, N. M. Sijtsema, and J. Greve, “Applications of Micro-Raman Imaging in Biomedical Research,” J. Raman Spectrosc. 28(2–3), 143–150 (1997).
[Crossref]

Eichstädt, S.

S. Eichstädt, F. Schmähling, G. Wübbeler, K. Anhalt, L. Bünger, U. Krüger, and C. Elster, “Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction,” Metrologia 50(2), 107–118 (2013).
[Crossref]

Elster, C.

S. Eichstädt, F. Schmähling, G. Wübbeler, K. Anhalt, L. Bünger, U. Krüger, and C. Elster, “Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction,” Metrologia 50(2), 107–118 (2013).
[Crossref]

Feng, X. L.

P. Colomban, F. Ambrosi, A. T. Ngo, T. A. Lu, X. L. Feng, S. Chen, and C. Choi, “Comparative analysis of wucai, Chinese porcelains using mobile and fixed Raman micro spectrometers,” Ceram. Int. 43(16), 14244–14256 (2017).
[Crossref]

Fish, D. A.

A. M. Brinicombe, D. A. Fish, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson–Lucy algorithm,” J. Opt. Soc. Am. 12(1), 58–65 (1995).
[Crossref]

Flores, G. A.

J. A. Luna, I. Sánchez, G. A. Flores, C. F. Cinvestav, R. B. Urby, and N. C. Castro, “Microwave-assisted synthesis and characterization of Y2O3: Eu (III) – benzoate hybrid nanophosphors,” J. Nanophoton. 12(2), 026019 (2018).
[Crossref]

Franks, W. A. R.

W. A. R. Franks, M. J. Kiik, and A. Nathan, “UV-responsive CCD image sensors with enhanced inorganic phosphor coatings,” IEEE Trans. Electron. Dev. 50(2), 352–358 (2003).
[Crossref]

Gabrielsimionato, N.

C. R. Muzzio, N. Gabrielsimionato, and L. Daniela, “Determination of moisture content in lyophilized mannitol through intact glass vials using NIR micro-spectrometers,” Braz. J. Pharm. Sci. 47(2), 289–297 (2011).
[Crossref]

Golub, G. H.

G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov Regularization and Total Least Squares,” Siam. J. Matrix. Anal. A. 21(1), 185–194 (1999).
[Crossref]

Grauw, C. J. D.

C. Otto, C. J. D. Grauw, J. J. Duindam, N. M. Sijtsema, and J. Greve, “Applications of Micro-Raman Imaging in Biomedical Research,” J. Raman Spectrosc. 28(2–3), 143–150 (1997).
[Crossref]

Greer, F.

Greve, J.

C. Otto, C. J. D. Grauw, J. J. Duindam, N. M. Sijtsema, and J. Greve, “Applications of Micro-Raman Imaging in Biomedical Research,” J. Raman Spectrosc. 28(2–3), 143–150 (1997).
[Crossref]

Groom, D. E.

D. E. Groom, S. Haque, S. E. Holland, and W. F. Kolbe, “Quantum efficiency modeling for a thick back-illuminated astronomical CCD,” J. Appl. Phys. 122(5), 055301 (2017).
[Crossref]

Hall, J. E.

Hamden, E.

Hamden, E. T.

Han, J. W.

Hansen, P. C.

G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov Regularization and Total Least Squares,” Siam. J. Matrix. Anal. A. 21(1), 185–194 (1999).
[Crossref]

Hao, P.

Y. X. Meng, G. Y. Zhang, W. Yi-Hui, and P. Hao, “Process Optimization of CCD UV-Responsive Sensitivity Enhancement by Spin-Coating,” Spectrosc. Spect. Anal. (2017).

Haque, S.

D. E. Groom, S. Haque, S. E. Holland, and W. F. Kolbe, “Quantum efficiency modeling for a thick back-illuminated astronomical CCD,” J. Appl. Phys. 122(5), 055301 (2017).
[Crossref]

He, G.

Hoenk, M. E.

Holland, S. E.

D. E. Groom, S. Haque, S. E. Holland, and W. F. Kolbe, “Quantum efficiency modeling for a thick back-illuminated astronomical CCD,” J. Appl. Phys. 122(5), 055301 (2017).
[Crossref]

Hong, Y. J.

Hu, M. Y.

S. Q. Jin, C. Huang, G. Xia, M. Y. Hu, and Z. J. Liu, “Bandwidth correction in the spectral measurement of light-emitting diodes,” J. Opt. Soc. Am. 34(9), 1476–1480 (2017).
[Crossref]

Hu, Z.

Huang, C.

S. Q. Jin, C. Huang, G. Xia, M. Y. Hu, and Z. J. Liu, “Bandwidth correction in the spectral measurement of light-emitting diodes,” J. Opt. Soc. Am. 34(9), 1476–1480 (2017).
[Crossref]

Huang, H.

Huang, Y. S.

D. W. Zhang, X. Tian, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors,” Spectrosc. Spect. Anal. 30, 1171–1174 (2010).

Jacquot, B.

Jin, S. Q.

S. Q. Jin, C. Huang, G. Xia, M. Y. Hu, and Z. J. Liu, “Bandwidth correction in the spectral measurement of light-emitting diodes,” J. Opt. Soc. Am. 34(9), 1476–1480 (2017).
[Crossref]

Jones, T. J.

Kauppinen, J. K.

Kiik, M. J.

W. A. R. Franks, M. J. Kiik, and A. Nathan, “UV-responsive CCD image sensors with enhanced inorganic phosphor coatings,” IEEE Trans. Electron. Dev. 50(2), 352–358 (2003).
[Crossref]

Kolbe, W. F.

D. E. Groom, S. Haque, S. E. Holland, and W. F. Kolbe, “Quantum efficiency modeling for a thick back-illuminated astronomical CCD,” J. Appl. Phys. 122(5), 055301 (2017).
[Crossref]

Krüger, U.

S. Eichstädt, F. Schmähling, G. Wübbeler, K. Anhalt, L. Bünger, U. Krüger, and C. Elster, “Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction,” Metrologia 50(2), 107–118 (2013).
[Crossref]

Kurokawa, K.

Lee, K. S.

Levenberg, K.

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2(2), 164–168 (1944).
[Crossref]

Liu, Z. J.

S. Q. Jin, C. Huang, G. Xia, M. Y. Hu, and Z. J. Liu, “Bandwidth correction in the spectral measurement of light-emitting diodes,” J. Opt. Soc. Am. 34(9), 1476–1480 (2017).
[Crossref]

Lu, T. A.

P. Colomban, F. Ambrosi, A. T. Ngo, T. A. Lu, X. L. Feng, S. Chen, and C. Choi, “Comparative analysis of wucai, Chinese porcelains using mobile and fixed Raman micro spectrometers,” Ceram. Int. 43(16), 14244–14256 (2017).
[Crossref]

Luna, J. A.

J. A. Luna, I. Sánchez, G. A. Flores, C. F. Cinvestav, R. B. Urby, and N. C. Castro, “Microwave-assisted synthesis and characterization of Y2O3: Eu (III) – benzoate hybrid nanophosphors,” J. Nanophoton. 12(2), 026019 (2018).
[Crossref]

Makita, S.

Mantsch, H. H.

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
[Crossref]

Martin, C.

Martin, D. C.

Meng, Y. X.

Y. X. Meng, G. Y. Zhang, W. Yi-Hui, and P. Hao, “Process Optimization of CCD UV-Responsive Sensitivity Enhancement by Spin-Coating,” Spectrosc. Spect. Anal. (2017).

Miller, M. I.

C. S. Butler and M. I. Miller, “Maximum a posteriori estimation for SPECT using regularization techniques on massively parallel computers,” IEEE T. Med. Imaging 12(1), 84–89 (1993).
[Crossref]

Miura, M.

Moffatt, D. J.

Monacos, S.

Morrissey, P.

Muzzio, C. R.

C. R. Muzzio, N. Gabrielsimionato, and L. Daniela, “Determination of moisture content in lyophilized mannitol through intact glass vials using NIR micro-spectrometers,” Braz. J. Pharm. Sci. 47(2), 289–297 (2011).
[Crossref]

Nan, L. W.

Nathan, A.

W. A. R. Franks, M. J. Kiik, and A. Nathan, “UV-responsive CCD image sensors with enhanced inorganic phosphor coatings,” IEEE Trans. Electron. Dev. 50(2), 352–358 (2003).
[Crossref]

Ngo, A. T.

P. Colomban, F. Ambrosi, A. T. Ngo, T. A. Lu, X. L. Feng, S. Chen, and C. Choi, “Comparative analysis of wucai, Chinese porcelains using mobile and fixed Raman micro spectrometers,” Ceram. Int. 43(16), 14244–14256 (2017).
[Crossref]

Ni, Z. J.

D. W. Zhang, X. Tian, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors,” Spectrosc. Spect. Anal. 30, 1171–1174 (2010).

Nikzad, S.

O’Leary, D. P.

G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov Regularization and Total Least Squares,” Siam. J. Matrix. Anal. A. 21(1), 185–194 (1999).
[Crossref]

Ohno, Y.

Y. Ohno, “A flexible bandpass correction method for spectrometers,” in AIC Color Conference (2005), pp. 697–700.

Otto, C.

C. Otto, C. J. D. Grauw, J. J. Duindam, N. M. Sijtsema, and J. Greve, “Applications of Micro-Raman Imaging in Biomedical Research,” J. Raman Spectrosc. 28(2–3), 143–150 (1997).
[Crossref]

Pike, E. R.

A. M. Brinicombe, D. A. Fish, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson–Lucy algorithm,” J. Opt. Soc. Am. 12(1), 58–65 (1995).
[Crossref]

Protopopov, V.

Rolland, J. P.

Sánchez, I.

J. A. Luna, I. Sánchez, G. A. Flores, C. F. Cinvestav, R. B. Urby, and N. C. Castro, “Microwave-assisted synthesis and characterization of Y2O3: Eu (III) – benzoate hybrid nanophosphors,” J. Nanophoton. 12(2), 026019 (2018).
[Crossref]

Schiminovich, D.

Schmähling, F.

S. Eichstädt, F. Schmähling, G. Wübbeler, K. Anhalt, L. Bünger, U. Krüger, and C. Elster, “Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction,” Metrologia 50(2), 107–118 (2013).
[Crossref]

Sijtsema, N. M.

C. Otto, C. J. D. Grauw, J. J. Duindam, N. M. Sijtsema, and J. Greve, “Applications of Micro-Raman Imaging in Biomedical Research,” J. Raman Spectrosc. 28(2–3), 143–150 (1997).
[Crossref]

Song, H.

Stearns, E. I.

E. I. Stearns and R. E. Stearns, “An example of a method for correcting radiance data for Bandpass error,” Color Res. Appl. 13(4), 257–259 (1988).
[Crossref]

Stearns, R. E.

E. I. Stearns and R. E. Stearns, “An example of a method for correcting radiance data for Bandpass error,” Color Res. Appl. 13(4), 257–259 (1988).
[Crossref]

Thompson, K. P.

Tian, X.

D. W. Zhang, X. Tian, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors,” Spectrosc. Spect. Anal. 30, 1171–1174 (2010).

Urby, R. B.

J. A. Luna, I. Sánchez, G. A. Flores, C. F. Cinvestav, R. B. Urby, and N. C. Castro, “Microwave-assisted synthesis and characterization of Y2O3: Eu (III) – benzoate hybrid nanophosphors,” J. Nanophoton. 12(2), 026019 (2018).
[Crossref]

Walker, J. G.

A. M. Brinicombe, D. A. Fish, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson–Lucy algorithm,” J. Opt. Soc. Am. 12(1), 58–65 (1995).
[Crossref]

Wang, H. Z.

Westphal, J. A.

Woolliams, E. R.

E. R. Woolliams, R. Baribeau, A. Bialek, and M. G. Cox, “Spectrometer bandwidth correction for generalized bandpass functions,” Metrologia 48(3), 164–172 (2011).
[Crossref]

Wu, Y. Q.

Wübbeler, G.

S. Eichstädt, F. Schmähling, G. Wübbeler, K. Anhalt, L. Bünger, U. Krüger, and C. Elster, “Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction,” Metrologia 50(2), 107–118 (2013).
[Crossref]

Xia, G.

S. Q. Jin, C. Huang, G. Xia, M. Y. Hu, and Z. J. Liu, “Bandwidth correction in the spectral measurement of light-emitting diodes,” J. Opt. Soc. Am. 34(9), 1476–1480 (2017).
[Crossref]

Yan, T. T.

Yang, P.

Yasuno, Y.

Yi-Hui, W.

Y. X. Meng, G. Y. Zhang, W. Yi-Hui, and P. Hao, “Process Optimization of CCD UV-Responsive Sensitivity Enhancement by Spin-Coating,” Spectrosc. Spect. Anal. (2017).

Yuan, J.

Yuan, Z. L.

Zhang, D. W.

D. W. Zhang, X. Tian, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors,” Spectrosc. Spect. Anal. 30, 1171–1174 (2010).

Zhang, G. Y.

Y. X. Meng, G. Y. Zhang, W. Yi-Hui, and P. Hao, “Process Optimization of CCD UV-Responsive Sensitivity Enhancement by Spin-Coating,” Spectrosc. Spect. Anal. (2017).

Zheng, L.

Zhuang, S. L.

D. W. Zhang, X. Tian, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors,” Spectrosc. Spect. Anal. 30, 1171–1174 (2010).

Appl. Opt. (5)

Appl. Spectrosc. (3)

Astron. Astrophys. (1)

T. J. Cornwell, “A simple maximum entropy deconvolution algorithm,” Astron. Astrophys. 143, 77–83 (1985).

Biomed. Opt. Express (1)

Braz. J. Pharm. Sci. (1)

C. R. Muzzio, N. Gabrielsimionato, and L. Daniela, “Determination of moisture content in lyophilized mannitol through intact glass vials using NIR micro-spectrometers,” Braz. J. Pharm. Sci. 47(2), 289–297 (2011).
[Crossref]

Ceram. Int. (1)

P. Colomban, F. Ambrosi, A. T. Ngo, T. A. Lu, X. L. Feng, S. Chen, and C. Choi, “Comparative analysis of wucai, Chinese porcelains using mobile and fixed Raman micro spectrometers,” Ceram. Int. 43(16), 14244–14256 (2017).
[Crossref]

Chin. Opt. Lett. (1)

Color Res. Appl. (1)

E. I. Stearns and R. E. Stearns, “An example of a method for correcting radiance data for Bandpass error,” Color Res. Appl. 13(4), 257–259 (1988).
[Crossref]

IEEE T. Med. Imaging (1)

C. S. Butler and M. I. Miller, “Maximum a posteriori estimation for SPECT using regularization techniques on massively parallel computers,” IEEE T. Med. Imaging 12(1), 84–89 (1993).
[Crossref]

IEEE Trans. Electron. Dev. (1)

W. A. R. Franks, M. J. Kiik, and A. Nathan, “UV-responsive CCD image sensors with enhanced inorganic phosphor coatings,” IEEE Trans. Electron. Dev. 50(2), 352–358 (2003).
[Crossref]

J. Appl. Phys. (1)

D. E. Groom, S. Haque, S. E. Holland, and W. F. Kolbe, “Quantum efficiency modeling for a thick back-illuminated astronomical CCD,” J. Appl. Phys. 122(5), 055301 (2017).
[Crossref]

J. Nanophoton. (1)

J. A. Luna, I. Sánchez, G. A. Flores, C. F. Cinvestav, R. B. Urby, and N. C. Castro, “Microwave-assisted synthesis and characterization of Y2O3: Eu (III) – benzoate hybrid nanophosphors,” J. Nanophoton. 12(2), 026019 (2018).
[Crossref]

J. Opt. Soc. Am. (2)

S. Q. Jin, C. Huang, G. Xia, M. Y. Hu, and Z. J. Liu, “Bandwidth correction in the spectral measurement of light-emitting diodes,” J. Opt. Soc. Am. 34(9), 1476–1480 (2017).
[Crossref]

A. M. Brinicombe, D. A. Fish, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson–Lucy algorithm,” J. Opt. Soc. Am. 12(1), 58–65 (1995).
[Crossref]

J. Raman Spectrosc. (1)

C. Otto, C. J. D. Grauw, J. J. Duindam, N. M. Sijtsema, and J. Greve, “Applications of Micro-Raman Imaging in Biomedical Research,” J. Raman Spectrosc. 28(2–3), 143–150 (1997).
[Crossref]

J. Soc. Ind. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
[Crossref]

Metrologia (2)

E. R. Woolliams, R. Baribeau, A. Bialek, and M. G. Cox, “Spectrometer bandwidth correction for generalized bandpass functions,” Metrologia 48(3), 164–172 (2011).
[Crossref]

S. Eichstädt, F. Schmähling, G. Wübbeler, K. Anhalt, L. Bünger, U. Krüger, and C. Elster, “Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction,” Metrologia 50(2), 107–118 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Q. Appl. Math. (1)

K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math. 2(2), 164–168 (1944).
[Crossref]

Siam. J. Matrix. Anal. A. (1)

G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov Regularization and Total Least Squares,” Siam. J. Matrix. Anal. A. 21(1), 185–194 (1999).
[Crossref]

Spectrosc. Spect. Anal. (1)

D. W. Zhang, X. Tian, Y. S. Huang, Z. J. Ni, and S. L. Zhuang, “Preparation and spectral characterization of Lumogen coatings for UV-responsive CCD image sensors,” Spectrosc. Spect. Anal. 30, 1171–1174 (2010).

Other (2)

Y. X. Meng, G. Y. Zhang, W. Yi-Hui, and P. Hao, “Process Optimization of CCD UV-Responsive Sensitivity Enhancement by Spin-Coating,” Spectrosc. Spect. Anal. (2017).

Y. Ohno, “A flexible bandpass correction method for spectrometers,” in AIC Color Conference (2005), pp. 697–700.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Micro-spectrometer structure and UV phosphor coating schematic diagram.
Fig. 2.
Fig. 2. Approximate simulation of the revision of solid angle.
Fig. 3.
Fig. 3. (a) The measured spectra by the CCD coated on the glass and the CCD uncoated, (b) The measured spectrum by the CCD coated on the glass, the simulated spectrum and the error between them.
Fig. 4.
Fig. 4. The prototype of portable UV-VIS spectrometer.
Fig. 5.
Fig. 5. The original spectrum, measured spectrum, corrected spectra and broadening function when H = 0.08 mm.
Fig. 6.
Fig. 6. The original spectrum, measured spectrum, corrected spectra and broadening function when H = 0.12 mm.
Fig. 7.
Fig. 7. The original spectrum, measured spectrum, corrected spectra and broadening function when H = 0.18 mm.
Fig. 8.
Fig. 8. The original spectrum, measured spectrum, corrected spectra and broadening function when H = 0.23 mm.
Fig. 9.
Fig. 9. The normalized original spectrum, measured spectrum, corrected spectra and broadening function when H = 0.88 mm.

Tables (2)

Tables Icon

Table 1. Parameters of the independently designed UV-VIS micro-spectrometer

Tables Icon

Table 2. Parameters of six different types of coated CCDs

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

I a b s  =  I e α a b s t
I s c a  =  I e α s c a t
θ j = { 2 tan 1 ( l p 2 h ) , j = 1 tan 1 ( ( 2 j 1 ) l p 2 h ) tan 1 ( ( 2 j 3 ) l p 2 h ) , j  = 2,3 k
S o u t p u t 1 = n = 1 N ( 1 e α a b s 1 t e α s c a 1 t ) S e m i t _ n b 1
t = [ l 2 , l 1 , l 0 , l 1 , l 2 ]
S e m i t _ n  =  S n e α a b s 2 T N Q E
S n = { S n = 1 S n 1 ( 1 e α a b s 2 T N e α s c a 2 T N ) n = 2 , 3 N
b 1 = B | h = T ( 1 n 1 N ) j = 3 , n = 1 , 2 , 3 N
S o u t p u t 2 = S o u t p u t 1 b 2
b 2 = B | h = H
M = A S F b
M ( λ ) = f ( λ ) F b ( λ ) + N e ( λ )
f = arg  max  p ( f | M )
f = arg  max  p ( M | f ) p ( f ) p ( M )
f arg  max  p ( M | f ) p ( f )
f arg  max  { log p ( M | f ) + log p ( f ) }
p ( M | f ) = p ( N e ) = i N e ( 0 , σ i ) = i 1 2 π σ i exp ( ( N e i 0 ) 2 2 σ i 2 )
p ( M | f )  =  C 1 exp ( 1 2 σ 2 | | f F b M | | 2 )
p ( f ) = C 2 exp ( α ρ ( f ) )
ρ ( t ) = {   t 2 | t | < μ 2 μ | t | μ 2 | t | μ
E ( f ) = 1 2 | | f F b M | | 2 + α ρ ( f )
E ( f ) = [ 1 2 ( f F b M ) 2 + α ρ ( f ) ] d λ
δ E δ f = ( Q f d d λ ( Q f ) )
Q f = ( f F b M ) × ( f F b M ) f  =  f ( λ ) F b ( λ ) M ( λ ) ) F b ( λ )
d d λ ( Q f )  =  { 2 α f | f | < μ 0 | f | μ
δ E δ f  =  { ( f F b M ) F b ( λ ) 2 α f | f | < μ ( f F b M ) F b ( λ ) | f | μ
f x + 1 = f x + t x ( δ E δ f x )
t x = ( E ( f x ) ) T E ( f x ) ( E ( f x ) ) T ( 2 E ( f x ) ) E ( f x )

Metrics