Abstract

A highly sensitive temperature sensor based on a long period grating (LPG) written metal clad ridge waveguide (MCRW) with poly-dimethylsiloxane (PDMS) surrounding is proposed and theoretically analyzed. We have exploited the coupling between the fundamental and a higher order quasi-TE mode via the long period grating written in the core of the MCRW. It is shown that owing to the differential enhancement of the two participating modes' evanescent fields in the PDMS surroundings due to the metal under cladding and the high thermo-optic coefficient of PDMS, the thermal dependence of the higher order mode is significantly enhanced as compared to the fundamental mode. In addition, a dispersion turn around behavior in the phase matching graph of the LPG is observed due to the metal under cladding. As a result, a temperature sensitivity as high as ∼100 nm/°C can be achieved by using the dual resonance near the dispersion turning point. Further, due to the highly lossy nature of the quasi-TM modes, no inline polarizer is required to be used with the proposed structure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition

Mateusz Śmietana, Marcin Koba, Predrag Mikulic, and Wojtek J. Bock
Opt. Express 24(11) 11897-11904 (2016)

Hybrid silica/polymer long period gratings for wavelength filtering and power distribution

Jia Jiang, Claire L. Callender, Julian P. Noad, and Jianfu Ding
Appl. Opt. 48(26) 4866-4873 (2009)

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22(9), 648–650 (1997).
    [Crossref]
  2. S. W. James, S. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Express 22(7), 8012–8023 (2014).
    [Crossref]
  3. S. A. Bandyopadhya, P. Biswas, F. Chiavaioli, T. K. Dey, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, F. Baldini, and S. Bandyopadhyay, “Long-period fiber grating: a specific design for biosensing applications,” Appl. Opt. 56(35), 9846–9853 (2017).
    [Crossref]
  4. R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sens. Actuators B 176, 1121–1127 (2013).
    [Crossref]
  5. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref]
  6. C. C. Ye, S. W. James, and R. P. Tatam, “Simultaneous temperature and bend sensing with long-period fiber gratings,” Opt. Lett. 25(14), 1007–1009 (2000).
    [Crossref]
  7. X. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period grating,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  8. W. Ecke, K. Schröder, A. Andreev, and R. Willsch, “Thermally stable optical fibre Bragg grating wavelength reference,” Opt. Commun. 284(6), 1557–1560 (2011).
    [Crossref]
  9. S. Daud, M. S. Abd Aziz, K. T. Chaudhary, M. Bahadoran, and J. Ali, “Sensitiivty Measurment of Fiber Bragg Grating sensor,” Jurnal Teknologi. 78(3), 277–280 (2016).
    [Crossref]
  10. A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35(1), 81–82 (1999).
    [Crossref]
  11. X. Dong, Z. Xie, C. Zhou, K. Yin, Z. Luo, and J. Duan, “Temperature sensitivity enhancement of platinum-nanoparticle-coated long period fiber gratings fabricated by femtosecond laser,” Appl. Opt. 56(23), 6549–6553 (2017).
    [Crossref]
  12. F. Zou, Y. Liu, S. Zhu, C. Deng, Y. Dong, and T. Wang, “Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings,” IEEE Sen. J. 16(8), 2460–2465 (2016).
    [Crossref]
  13. Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
    [Crossref]
  14. S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, “Highly sensitive miniaturized refractive index sensor based on Au-Ag surface gratings on a planar optical waveguide,” J. Lightwave Technol. 28(17), 2469–2476 (2010).
    [Crossref]
  15. S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
    [Crossref]
  16. S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. T. V. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
    [Crossref]
  17. R. Garg and K. Thyagarajan, “Polarization-based refractive index sensor using dual asymmetric long-period gratings in ridge waveguides,” Appl. Opt. 52(10), 2086–2092 (2013).
    [Crossref]
  18. K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett. 15(8), 1094–1096 (2003).
    [Crossref]
  19. S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
    [Crossref]
  20. D. Bischof, F. Kehl, and M. Michler, “Design method for a distributed Bragg resonator based evanescent field sensor,” Opt. Commun. 380, 273–279 (2016).
    [Crossref]
  21. N. Saha, A. Kumar, and A. Mukherjee, “Enhancement of Refractive Index Sensitivity of Bragg-Gratings based Optical Waveguide sensors using a Metal Under-Cladding,” Opt. Commun. 396, 83–87 (2017).
    [Crossref]
  22. N. Saha and A. Kumar, “Towards 100 Micrometer per Refractive Index Unit Sensitive Sensor using a Compact Long Period Grating Inscribed Metal Clad Ridge Waveguide,” J. Lightwave Technol. 36(10), 2024–2030 (2018).
    [Crossref]
  23. L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
    [Crossref]
  24. Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
    [Crossref]
  25. B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators, B 186, 495–505 (2013).
    [Crossref]
  26. W. Snyder Allan, Optical Waveguide Theory (Chapman and Hall, 1983).
  27. Comsol Multiphysics by COMSOL ©, ver. 4.3 2012.
  28. R. Kashyap, Fiber Bragg Gratings, (Academic Press, 2010).
  29. T. Geng, S. Zhang, F. Peng, W. Yang, C. Sun, X. Chen, Y. Zhou, Q. Hu, and L. Yuan, “A Temperature-Insensitive Refractive Index Sensor Based on No-Core Fiber Embedded Long Period Grating,” J. Lightwave Technol. 35(24), 5391–5396 (2017).
    [Crossref]
  30. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009).
    [Crossref]
  31. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics. (Cambridge Univ. Press, 1998).
  32. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151(2), 95–99 (2009).
    [Crossref]
  33. Jitender, A. Kumar, R. K. Varshney, and M. Kumar, “Calculation of propagation characteristics of surface plasmons in gold/silver nanowires,” Appl. Opt. 54(12), 3715–3719 (2015).
    [Crossref]
  34. Y. Xuan, J. Huang, and Q. Li, “Tunable negative refractive index metamaterials based on thermochromic oxides,” J. Heat Transfer 135(9), 091502 (2013).
    [Crossref]
  35. A. K. Sharma and B. D. Gupta, “Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor,” Appl. Opt. 45(1), 151–161 (2006).
    [Crossref]
  36. T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized Expression for the Growth of Long Period Gratings,” IEEE Photon. Technol. Lett. 10(10), 1449–1451 (1998).
    [Crossref]
  37. S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sens. Actuators B 243, 1109–1114 (2017).
    [Crossref]
  38. K. Furukawa and K. Ohsuye, “Effect of culture temperature on a recombinant CHO cell line producing a Cterminal α-amidating enzyme,” Cytotechnology 26(2), 153–164 (1998).
    [Crossref]
  39. T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
    [Crossref]
  40. E. C. Riveraa, C. K. Yamakawaa, M. B. W. Saada, D. I. P. Atalac, W. B. Ambrosioc, A. Bonomia, J. N. Juniora, and C. E. V. Rossella, “Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions,” Biochem. Eng. J. 119, 42–51 (2017).
    [Crossref]
  41. R. Kashyap and G. Nemova, “Surface Plasmon Resonance-Based Fiber and PlanarWaveguide Sensors,” J. Sens. 2009, 1–9 (2009).
    [Crossref]
  42. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
    [Crossref]
  43. T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add–Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006).
    [Crossref]
  44. R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt. 53(21), 4669–4674 (2014).
    [Crossref]
  45. J. S. Velázquez-González, D. Monzón-Hernández, F. M. Piñón, D. A. May-Arrioja, and I. Hernández-Romano, “Surface Plasmon Resonance-Based Optical Fiber Embedded in PDMS for Temperature Sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 126–131 (2017).
    [Crossref]
  46. T. Barwicz and H. A. Haus, “Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness in Microphotonic Waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
    [Crossref]
  47. C.-T. Wang, C.-Y. Wang, J.-H. Yu, I.-T. Kuo, C.-W. Tseng, H.-C. Jau, Y.-J. Chen, and T.-H. Lin, “Highly sensitive optical temperature sensor based on a SiN micro-ring resonator with liquid crystal cladding,” Opt. Express 24(2), 1002–1007 (2016).
    [Crossref]

2018 (2)

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. T. V. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

N. Saha and A. Kumar, “Towards 100 Micrometer per Refractive Index Unit Sensitive Sensor using a Compact Long Period Grating Inscribed Metal Clad Ridge Waveguide,” J. Lightwave Technol. 36(10), 2024–2030 (2018).
[Crossref]

2017 (8)

S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
[Crossref]

N. Saha, A. Kumar, and A. Mukherjee, “Enhancement of Refractive Index Sensitivity of Bragg-Gratings based Optical Waveguide sensors using a Metal Under-Cladding,” Opt. Commun. 396, 83–87 (2017).
[Crossref]

T. Geng, S. Zhang, F. Peng, W. Yang, C. Sun, X. Chen, Y. Zhou, Q. Hu, and L. Yuan, “A Temperature-Insensitive Refractive Index Sensor Based on No-Core Fiber Embedded Long Period Grating,” J. Lightwave Technol. 35(24), 5391–5396 (2017).
[Crossref]

E. C. Riveraa, C. K. Yamakawaa, M. B. W. Saada, D. I. P. Atalac, W. B. Ambrosioc, A. Bonomia, J. N. Juniora, and C. E. V. Rossella, “Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions,” Biochem. Eng. J. 119, 42–51 (2017).
[Crossref]

X. Dong, Z. Xie, C. Zhou, K. Yin, Z. Luo, and J. Duan, “Temperature sensitivity enhancement of platinum-nanoparticle-coated long period fiber gratings fabricated by femtosecond laser,” Appl. Opt. 56(23), 6549–6553 (2017).
[Crossref]

S. A. Bandyopadhya, P. Biswas, F. Chiavaioli, T. K. Dey, N. Basumallick, C. Trono, A. Giannetti, S. Tombelli, F. Baldini, and S. Bandyopadhyay, “Long-period fiber grating: a specific design for biosensing applications,” Appl. Opt. 56(35), 9846–9853 (2017).
[Crossref]

S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sens. Actuators B 243, 1109–1114 (2017).
[Crossref]

J. S. Velázquez-González, D. Monzón-Hernández, F. M. Piñón, D. A. May-Arrioja, and I. Hernández-Romano, “Surface Plasmon Resonance-Based Optical Fiber Embedded in PDMS for Temperature Sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 126–131 (2017).
[Crossref]

2016 (6)

C.-T. Wang, C.-Y. Wang, J.-H. Yu, I.-T. Kuo, C.-W. Tseng, H.-C. Jau, Y.-J. Chen, and T.-H. Lin, “Highly sensitive optical temperature sensor based on a SiN micro-ring resonator with liquid crystal cladding,” Opt. Express 24(2), 1002–1007 (2016).
[Crossref]

S. Daud, M. S. Abd Aziz, K. T. Chaudhary, M. Bahadoran, and J. Ali, “Sensitiivty Measurment of Fiber Bragg Grating sensor,” Jurnal Teknologi. 78(3), 277–280 (2016).
[Crossref]

F. Zou, Y. Liu, S. Zhu, C. Deng, Y. Dong, and T. Wang, “Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings,” IEEE Sen. J. 16(8), 2460–2465 (2016).
[Crossref]

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

D. Bischof, F. Kehl, and M. Michler, “Design method for a distributed Bragg resonator based evanescent field sensor,” Opt. Commun. 380, 273–279 (2016).
[Crossref]

L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (4)

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sens. Actuators B 176, 1121–1127 (2013).
[Crossref]

R. Garg and K. Thyagarajan, “Polarization-based refractive index sensor using dual asymmetric long-period gratings in ridge waveguides,” Appl. Opt. 52(10), 2086–2092 (2013).
[Crossref]

Y. Xuan, J. Huang, and Q. Li, “Tunable negative refractive index metamaterials based on thermochromic oxides,” J. Heat Transfer 135(9), 091502 (2013).
[Crossref]

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators, B 186, 495–505 (2013).
[Crossref]

2012 (1)

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[Crossref]

2011 (1)

W. Ecke, K. Schröder, A. Andreev, and R. Willsch, “Thermally stable optical fibre Bragg grating wavelength reference,” Opt. Commun. 284(6), 1557–1560 (2011).
[Crossref]

2010 (1)

2009 (3)

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009).
[Crossref]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151(2), 95–99 (2009).
[Crossref]

R. Kashyap and G. Nemova, “Surface Plasmon Resonance-Based Fiber and PlanarWaveguide Sensors,” J. Sens. 2009, 1–9 (2009).
[Crossref]

2007 (1)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

2006 (2)

2005 (2)

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

T. Barwicz and H. A. Haus, “Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness in Microphotonic Waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
[Crossref]

2003 (1)

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

2002 (2)

X. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period grating,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
[Crossref]

2000 (1)

1999 (1)

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35(1), 81–82 (1999).
[Crossref]

1998 (2)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized Expression for the Growth of Long Period Gratings,” IEEE Photon. Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

K. Furukawa and K. Ohsuye, “Effect of culture temperature on a recombinant CHO cell line producing a Cterminal α-amidating enzyme,” Cytotechnology 26(2), 153–164 (1998).
[Crossref]

1997 (1)

1996 (1)

Abd Aziz, M. S.

S. Daud, M. S. Abd Aziz, K. T. Chaudhary, M. Bahadoran, and J. Ali, “Sensitiivty Measurment of Fiber Bragg Grating sensor,” Jurnal Teknologi. 78(3), 277–280 (2016).
[Crossref]

Abe, K.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
[Crossref]

Abramov, A. A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35(1), 81–82 (1999).
[Crossref]

Akutsu, T.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
[Crossref]

Ali, J.

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. T. V. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
[Crossref]

S. Daud, M. S. Abd Aziz, K. T. Chaudhary, M. Bahadoran, and J. Ali, “Sensitiivty Measurment of Fiber Bragg Grating sensor,” Jurnal Teknologi. 78(3), 277–280 (2016).
[Crossref]

Ambrosioc, W. B.

E. C. Riveraa, C. K. Yamakawaa, M. B. W. Saada, D. I. P. Atalac, W. B. Ambrosioc, A. Bonomia, J. N. Juniora, and C. E. V. Rossella, “Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions,” Biochem. Eng. J. 119, 42–51 (2017).
[Crossref]

Andreev, A.

W. Ecke, K. Schröder, A. Andreev, and R. Willsch, “Thermally stable optical fibre Bragg grating wavelength reference,” Opt. Commun. 284(6), 1557–1560 (2011).
[Crossref]

Atalac, D. I. P.

E. C. Riveraa, C. K. Yamakawaa, M. B. W. Saada, D. I. P. Atalac, W. B. Ambrosioc, A. Bonomia, J. N. Juniora, and C. E. V. Rossella, “Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions,” Biochem. Eng. J. 119, 42–51 (2017).
[Crossref]

Bahadoran, M.

S. Daud, M. S. Abd Aziz, K. T. Chaudhary, M. Bahadoran, and J. Ali, “Sensitiivty Measurment of Fiber Bragg Grating sensor,” Jurnal Teknologi. 78(3), 277–280 (2016).
[Crossref]

Baldini, F.

Bandyopadhya, S. A.

Bandyopadhyay, S.

Barwicz, T.

Basumallick, N.

Bennion, I.

Bhatia, V.

Bischof, D.

D. Bischof, F. Kehl, and M. Michler, “Design method for a distributed Bragg resonator based evanescent field sensor,” Opt. Commun. 380, 273–279 (2016).
[Crossref]

Biswas, P.

Bock, W. J.

S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sens. Actuators B 243, 1109–1114 (2017).
[Crossref]

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sens. Actuators B 176, 1121–1127 (2013).
[Crossref]

Bonomia, A.

E. C. Riveraa, C. K. Yamakawaa, M. B. W. Saada, D. I. P. Atalac, W. B. Ambrosioc, A. Bonomia, J. N. Juniora, and C. E. V. Rossella, “Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions,” Biochem. Eng. J. 119, 42–51 (2017).
[Crossref]

Bozhevolnyi, S. I.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

Campbell, D.

Chan, H. P.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Chaudhary, K. T.

S. Daud, M. S. Abd Aziz, K. T. Chaudhary, M. Bahadoran, and J. Ali, “Sensitiivty Measurment of Fiber Bragg Grating sensor,” Jurnal Teknologi. 78(3), 277–280 (2016).
[Crossref]

Chehura, E.

Chen, C.

L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

Chen, X.

Chen, Y.-J.

Chiang, K. S.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Chiavaioli, F.

Chow, C. K.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Chu, Y. M.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Claus, R. O.

Cui, K.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators, B 186, 495–505 (2013).
[Crossref]

Daud, S.

S. Daud, M. S. Abd Aziz, K. T. Chaudhary, M. Bahadoran, and J. Ali, “Sensitiivty Measurment of Fiber Bragg Grating sensor,” Jurnal Teknologi. 78(3), 277–280 (2016).
[Crossref]

de Ridder, R. M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[Crossref]

Deng, C.

F. Zou, Y. Liu, S. Zhu, C. Deng, Y. Dong, and T. Wang, “Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings,” IEEE Sen. J. 16(8), 2460–2465 (2016).
[Crossref]

Dey, T. K.

Dijkstra, M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[Crossref]

Dong, X.

Dong, Y.

F. Zou, Y. Liu, S. Zhu, C. Deng, Y. Dong, and T. Wang, “Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings,” IEEE Sen. J. 16(8), 2460–2465 (2016).
[Crossref]

Draheim, J.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151(2), 95–99 (2009).
[Crossref]

Du, C.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

Duan, J.

Ecke, W.

W. Ecke, K. Schröder, A. Andreev, and R. Willsch, “Thermally stable optical fibre Bragg grating wavelength reference,” Opt. Commun. 284(6), 1557–1560 (2011).
[Crossref]

Fan, B.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators, B 186, 495–505 (2013).
[Crossref]

Feng, X.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators, B 186, 495–505 (2013).
[Crossref]

Furukawa, K.

K. Furukawa and K. Ohsuye, “Effect of culture temperature on a recombinant CHO cell line producing a Cterminal α-amidating enzyme,” Cytotechnology 26(2), 153–164 (1998).
[Crossref]

Garg, R.

R. Garg and K. Thyagarajan, “Polarization-based refractive index sensor using dual asymmetric long-period gratings in ridge waveguides,” Appl. Opt. 52(10), 2086–2092 (2013).
[Crossref]

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sens. Actuators B 176, 1121–1127 (2013).
[Crossref]

Geng, T.

Ghatak, A. K.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics. (Cambridge Univ. Press, 1998).

Giannetti, A.

Grattan, K. T. V.

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. T. V. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

Gupta, B. D.

Haggans, C. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized Expression for the Growth of Long Period Gratings,” IEEE Photon. Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

Hale, A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35(1), 81–82 (1999).
[Crossref]

Haus, H. A.

He, G.

L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

Hernández-Romano, I.

J. S. Velázquez-González, D. Monzón-Hernández, F. M. Piñón, D. A. May-Arrioja, and I. Hernández-Romano, “Surface Plasmon Resonance-Based Optical Fiber Embedded in PDMS for Temperature Sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 126–131 (2017).
[Crossref]

Hoekstra, H. J. W. M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[Crossref]

Hollink, A. J. F.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[Crossref]

Holmgaard, T.

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

Hu, Q.

Huang, J.

Y. Xuan, J. Huang, and Q. Li, “Tunable negative refractive index metamaterials based on thermochromic oxides,” J. Heat Transfer 135(9), 091502 (2013).
[Crossref]

Huang, Y.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators, B 186, 495–505 (2013).
[Crossref]

Ippen, E. P.

Isoi, Y.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
[Crossref]

Jackson, M. A.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized Expression for the Growth of Long Period Gratings,” IEEE Photon. Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

James, S. W.

Jau, H.-C.

Ji, L.

L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

Jitender,

Juniora, J. N.

E. C. Riveraa, C. K. Yamakawaa, M. B. W. Saada, D. I. P. Atalac, W. B. Ambrosioc, A. Bonomia, J. N. Juniora, and C. E. V. Rossella, “Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions,” Biochem. Eng. J. 119, 42–51 (2017).
[Crossref]

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151(2), 95–99 (2009).
[Crossref]

Kashyap, R.

R. Kashyap and G. Nemova, “Surface Plasmon Resonance-Based Fiber and PlanarWaveguide Sensors,” J. Sens. 2009, 1–9 (2009).
[Crossref]

R. Kashyap, Fiber Bragg Gratings, (Academic Press, 2010).

Kauppinen, L. J.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[Crossref]

Kehl, F.

D. Bischof, F. Kehl, and M. Michler, “Design method for a distributed Bragg resonator based evanescent field sensor,” Opt. Commun. 380, 273–279 (2016).
[Crossref]

Kikuchi, A.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
[Crossref]

Korposh, S.

Kumar, A.

Kumar, M.

Kumar, Y. B. P.

Kuo, I.-T.

Lambeck, P. V.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[Crossref]

Lee, S.-W.

Li, Q.

Y. Xuan, J. Huang, and Q. Li, “Tunable negative refractive index metamaterials based on thermochromic oxides,” J. Heat Transfer 135(9), 091502 (2013).
[Crossref]

Li, Y.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators, B 186, 495–505 (2013).
[Crossref]

Lin, T.-H.

Liu, F.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators, B 186, 495–505 (2013).
[Crossref]

Liu, Q.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

Liu, T.

L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

Liu, Y.

F. Zou, Y. Liu, S. Zhu, C. Deng, Y. Dong, and T. Wang, “Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings,” IEEE Sen. J. 16(8), 2460–2465 (2016).
[Crossref]

Lor, K. P.

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Luo, Z.

Lv, R.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

MacDougall, T. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized Expression for the Growth of Long Period Gratings,” IEEE Photon. Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

Marin, E.

May-Arrioja, D. A.

J. S. Velázquez-González, D. Monzón-Hernández, F. M. Piñón, D. A. May-Arrioja, and I. Hernández-Romano, “Surface Plasmon Resonance-Based Optical Fiber Embedded in PDMS for Temperature Sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 126–131 (2017).
[Crossref]

Meunier, J. P.

Meunier, J.-P.

Michler, M.

D. Bischof, F. Kehl, and M. Michler, “Design method for a distributed Bragg resonator based evanescent field sensor,” Opt. Commun. 380, 273–279 (2016).
[Crossref]

Mikulic, P.

S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sens. Actuators B 243, 1109–1114 (2017).
[Crossref]

Monzón-Hernández, D.

J. S. Velázquez-González, D. Monzón-Hernández, F. M. Piñón, D. A. May-Arrioja, and I. Hernández-Romano, “Surface Plasmon Resonance-Based Optical Fiber Embedded in PDMS for Temperature Sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 126–131 (2017).
[Crossref]

Mukherjee, A.

N. Saha, A. Kumar, and A. Mukherjee, “Enhancement of Refractive Index Sensitivity of Bragg-Gratings based Optical Waveguide sensors using a Metal Under-Cladding,” Opt. Commun. 396, 83–87 (2017).
[Crossref]

Nemova, G.

R. Kashyap and G. Nemova, “Surface Plasmon Resonance-Based Fiber and PlanarWaveguide Sensors,” J. Sens. 2009, 1–9 (2009).
[Crossref]

Ohsuye, K.

K. Furukawa and K. Ohsuye, “Effect of culture temperature on a recombinant CHO cell line producing a Cterminal α-amidating enzyme,” Cytotechnology 26(2), 153–164 (1998).
[Crossref]

Okano, T.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
[Crossref]

Peng, F.

Pham, S. V.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[Crossref]

Pilevar, S.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized Expression for the Growth of Long Period Gratings,” IEEE Photon. Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

Piñón, F. M.

J. S. Velázquez-González, D. Monzón-Hernández, F. M. Piñón, D. A. May-Arrioja, and I. Hernández-Romano, “Surface Plasmon Resonance-Based Optical Fiber Embedded in PDMS for Temperature Sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 126–131 (2017).
[Crossref]

Pollnau, M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[Crossref]

Popovic, M. A.

Rakich, P. T.

Rastogi, V.

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

Riveraa, E. C.

E. C. Riveraa, C. K. Yamakawaa, M. B. W. Saada, D. I. P. Atalac, W. B. Ambrosioc, A. Bonomia, J. N. Juniora, and C. E. V. Rossella, “Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions,” Biochem. Eng. J. 119, 42–51 (2017).
[Crossref]

Rossella, C. E. V.

E. C. Riveraa, C. K. Yamakawaa, M. B. W. Saada, D. I. P. Atalac, W. B. Ambrosioc, A. Bonomia, J. N. Juniora, and C. E. V. Rossella, “Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions,” Biochem. Eng. J. 119, 42–51 (2017).
[Crossref]

Saada, M. B. W.

E. C. Riveraa, C. K. Yamakawaa, M. B. W. Saada, D. I. P. Atalac, W. B. Ambrosioc, A. Bonomia, J. N. Juniora, and C. E. V. Rossella, “Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions,” Biochem. Eng. J. 119, 42–51 (2017).
[Crossref]

Saha, N.

N. Saha and A. Kumar, “Towards 100 Micrometer per Refractive Index Unit Sensitive Sensor using a Compact Long Period Grating Inscribed Metal Clad Ridge Waveguide,” J. Lightwave Technol. 36(10), 2024–2030 (2018).
[Crossref]

N. Saha, A. Kumar, and A. Mukherjee, “Enhancement of Refractive Index Sensitivity of Bragg-Gratings based Optical Waveguide sensors using a Metal Under-Cladding,” Opt. Commun. 396, 83–87 (2017).
[Crossref]

Sahu, S.

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. T. V. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
[Crossref]

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151(2), 95–99 (2009).
[Crossref]

Schröder, K.

W. Ecke, K. Schröder, A. Andreev, and R. Willsch, “Thermally stable optical fibre Bragg grating wavelength reference,” Opt. Commun. 284(6), 1557–1560 (2011).
[Crossref]

Setomaru, T.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
[Crossref]

Sharma, A. K.

Shimizu, T.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
[Crossref]

Shu, X.

Singh, G.

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. T. V. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
[Crossref]

Smith, H. I.

Snyder Allan, W.

W. Snyder Allan, Optical Waveguide Theory (Chapman and Hall, 1983).

Staines, S. E.

Strasser, T. A.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35(1), 81–82 (1999).
[Crossref]

Sun, C.

Sun, X.

L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

Tatam, R. P.

Thyagarajan, K.

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sens. Actuators B 176, 1121–1127 (2013).
[Crossref]

R. Garg and K. Thyagarajan, “Polarization-based refractive index sensor using dual asymmetric long-period gratings in ridge waveguides,” Appl. Opt. 52(10), 2086–2092 (2013).
[Crossref]

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics. (Cambridge Univ. Press, 1998).

Tombelli, S.

Tripathi, S. M.

S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sens. Actuators B 243, 1109–1114 (2017).
[Crossref]

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sens. Actuators B 176, 1121–1127 (2013).
[Crossref]

S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, “Highly sensitive miniaturized refractive index sensor based on Au-Ag surface gratings on a planar optical waveguide,” J. Lightwave Technol. 28(17), 2469–2476 (2010).
[Crossref]

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009).
[Crossref]

Trono, C.

Tseng, C.-W.

Umezu, M.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
[Crossref]

Varshney, R. K.

Velázquez-González, J. S.

J. S. Velázquez-González, D. Monzón-Hernández, F. M. Piñón, D. A. May-Arrioja, and I. Hernández-Romano, “Surface Plasmon Resonance-Based Optical Fiber Embedded in PDMS for Temperature Sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 126–131 (2017).
[Crossref]

Vengsarkar, A. M.

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151(2), 95–99 (2009).
[Crossref]

Wang, C.-T.

Wang, C.-Y.

Wang, F.

L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

Wang, Q.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

Wang, T.

F. Zou, Y. Liu, S. Zhu, C. Deng, Y. Dong, and T. Wang, “Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings,” IEEE Sen. J. 16(8), 2460–2465 (2016).
[Crossref]

Wang, X.

L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators, B 186, 495–505 (2013).
[Crossref]

Watts, M. R.

Willsch, R.

W. Ecke, K. Schröder, A. Andreev, and R. Willsch, “Thermally stable optical fibre Bragg grating wavelength reference,” Opt. Commun. 284(6), 1557–1560 (2011).
[Crossref]

Windeler, R. S.

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35(1), 81–82 (1999).
[Crossref]

Wong, R. Y. N.

Xie, Z.

Xuan, Y.

Y. Xuan, J. Huang, and Q. Li, “Tunable negative refractive index metamaterials based on thermochromic oxides,” J. Heat Transfer 135(9), 091502 (2013).
[Crossref]

Yamakawaa, C. K.

E. C. Riveraa, C. K. Yamakawaa, M. B. W. Saada, D. I. P. Atalac, W. B. Ambrosioc, A. Bonomia, J. N. Juniora, and C. E. V. Rossella, “Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions,” Biochem. Eng. J. 119, 42–51 (2017).
[Crossref]

Yamato, M.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
[Crossref]

Yang, W.

Ye, C. C.

Yi, Y.

L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

Yin, K.

Yu, J.-H.

Yuan, L.

Yupapin, P. P.

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. T. V. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

Zhang, D.

L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

Zhang, J.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

Zhang, L.

Zhang, S.

Zhang, W.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators, B 186, 495–505 (2013).
[Crossref]

Zhao, Y.

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

Zhou, C.

Zhou, Y.

Zhu, S.

F. Zou, Y. Liu, S. Zhu, C. Deng, Y. Dong, and T. Wang, “Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings,” IEEE Sen. J. 16(8), 2460–2465 (2016).
[Crossref]

Zou, F.

F. Zou, Y. Liu, S. Zhu, C. Deng, Y. Dong, and T. Wang, “Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings,” IEEE Sen. J. 16(8), 2460–2465 (2016).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett. 86(24), 241115 (2005).
[Crossref]

Biochem. Eng. J. (1)

E. C. Riveraa, C. K. Yamakawaa, M. B. W. Saada, D. I. P. Atalac, W. B. Ambrosioc, A. Bonomia, J. N. Juniora, and C. E. V. Rossella, “Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions,” Biochem. Eng. J. 119, 42–51 (2017).
[Crossref]

Circ. Res. (1)

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40 (2002).
[Crossref]

Cytotechnology (1)

K. Furukawa and K. Ohsuye, “Effect of culture temperature on a recombinant CHO cell line producing a Cterminal α-amidating enzyme,” Cytotechnology 26(2), 153–164 (1998).
[Crossref]

Electron. Lett. (1)

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Widely tunable long-period fibre gratings,” Electron. Lett. 35(1), 81–82 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Velázquez-González, D. Monzón-Hernández, F. M. Piñón, D. A. May-Arrioja, and I. Hernández-Romano, “Surface Plasmon Resonance-Based Optical Fiber Embedded in PDMS for Temperature Sensing,” IEEE J. Sel. Top. Quantum Electron. 23(2), 126–131 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (3)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, “Generalized Expression for the Growth of Long Period Gratings,” IEEE Photon. Technol. Lett. 10(10), 1449–1451 (1998).
[Crossref]

K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett. 15(8), 1094–1096 (2003).
[Crossref]

L. Ji, T. Liu, G. He, X. Sun, X. Wang, Y. Yi, C. Chen, F. Wang, and D. Zhang, “UV-Written Long-Period Grating Based on Long-Range Surface Plasmon-Polariton Waveguide,” IEEE Photon. Technol. Lett. 28(6), 633–636 (2016).
[Crossref]

IEEE Sen. J. (1)

F. Zou, Y. Liu, S. Zhu, C. Deng, Y. Dong, and T. Wang, “Temperature sensitivity enhancement of the nano-film coated long-period fiber gratings,” IEEE Sen. J. 16(8), 2460–2465 (2016).
[Crossref]

J. Heat Transfer (1)

Y. Xuan, J. Huang, and Q. Li, “Tunable negative refractive index metamaterials based on thermochromic oxides,” J. Heat Transfer 135(9), 091502 (2013).
[Crossref]

J. Lightwave Technol. (7)

X. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period grating,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

T. Geng, S. Zhang, F. Peng, W. Yang, C. Sun, X. Chen, Y. Zhou, Q. Hu, and L. Yuan, “A Temperature-Insensitive Refractive Index Sensor Based on No-Core Fiber Embedded Long Period Grating,” J. Lightwave Technol. 35(24), 5391–5396 (2017).
[Crossref]

N. Saha and A. Kumar, “Towards 100 Micrometer per Refractive Index Unit Sensitive Sensor using a Compact Long Period Grating Inscribed Metal Clad Ridge Waveguide,” J. Lightwave Technol. 36(10), 2024–2030 (2018).
[Crossref]

T. Barwicz and H. A. Haus, “Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness in Microphotonic Waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
[Crossref]

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add–Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006).
[Crossref]

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009).
[Crossref]

S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, “Highly sensitive miniaturized refractive index sensor based on Au-Ag surface gratings on a planar optical waveguide,” J. Lightwave Technol. 28(17), 2469–2476 (2010).
[Crossref]

J. Sens. (1)

R. Kashyap and G. Nemova, “Surface Plasmon Resonance-Based Fiber and PlanarWaveguide Sensors,” J. Sens. 2009, 1–9 (2009).
[Crossref]

Jurnal Teknologi. (1)

S. Daud, M. S. Abd Aziz, K. T. Chaudhary, M. Bahadoran, and J. Ali, “Sensitiivty Measurment of Fiber Bragg Grating sensor,” Jurnal Teknologi. 78(3), 277–280 (2016).
[Crossref]

Opt. Commun. (5)

Q. Wang, C. Du, J. Zhang, R. Lv, and Y. Zhao, “Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating,” Opt. Commun. 377, 89–93 (2016).
[Crossref]

W. Ecke, K. Schröder, A. Andreev, and R. Willsch, “Thermally stable optical fibre Bragg grating wavelength reference,” Opt. Commun. 284(6), 1557–1560 (2011).
[Crossref]

S. Sahu, J. Ali, and G. Singh, “Refractive index biosensor using sidewall gratings in dual-slot waveguide,” Opt. Commun. 402, 408–412 (2017).
[Crossref]

D. Bischof, F. Kehl, and M. Michler, “Design method for a distributed Bragg resonator based evanescent field sensor,” Opt. Commun. 380, 273–279 (2016).
[Crossref]

N. Saha, A. Kumar, and A. Mukherjee, “Enhancement of Refractive Index Sensitivity of Bragg-Gratings based Optical Waveguide sensors using a Metal Under-Cladding,” Opt. Commun. 396, 83–87 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

S. Sahu, J. Ali, P. P. Yupapin, G. Singh, and K. T. V. Grattan, “High-Q and temperature stable photonic biosensor based on grating waveguides,” Opt. Quantum Electron. 50(8), 307 (2018).
[Crossref]

Phys. Rev. B (1)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007).
[Crossref]

Sens. Actuators A (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A 151(2), 95–99 (2009).
[Crossref]

Sens. Actuators B (3)

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[Crossref]

S. M. Tripathi, W. J. Bock, and P. Mikulic, “A wide-range temperature immune refractive-index sensor using concatenated long-period-fiber-gratings,” Sens. Actuators B 243, 1109–1114 (2017).
[Crossref]

R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sens. Actuators B 176, 1121–1127 (2013).
[Crossref]

Sens. Actuators, B (1)

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sens. Actuators, B 186, 495–505 (2013).
[Crossref]

Other (4)

W. Snyder Allan, Optical Waveguide Theory (Chapman and Hall, 1983).

Comsol Multiphysics by COMSOL ©, ver. 4.3 2012.

R. Kashyap, Fiber Bragg Gratings, (Academic Press, 2010).

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics. (Cambridge Univ. Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic of the proposed device.
Fig. 2.
Fig. 2. Fraction of modal power coupled (|amn|2) to the various modes of MCRW (3×4 µm) from SMRW (3×4.3 µm) at λ=1.55 µm.
Fig. 3.
Fig. 3. Modal field distributions of the two participating modes.
Fig. 4.
Fig. 4. FMP of the quasi-TE00 and TE01 mode in the PDMS region for MCRW and RW.
Fig. 5.
Fig. 5. Variation of ${{\partial ({\Delta {n_{eff}}} )} / {\partial T}}$ with the temperature for MCRW and RW.
Fig. 6.
Fig. 6. Phase matching graphs at different temperatures for MCRW.
Fig. 7.
Fig. 7. variation of the factor γ with the temperature for MCRW.
Fig. 8.
Fig. 8. Phase matching graphs for RW at different temperatures and different core dimensions.
Fig. 9.
Fig. 9. Output spectrum of the LPG written MCRW for different temperatures for grating period 60.6 µm.
Fig. 10.
Fig. 10. Variation of sensitivity associated with lower resonance wavelength (left dip) with temperature for Λ = 60.6 µm.
Fig. 11.
Fig. 11. Variation of overall sensitivity with temperatures up to which the dual resonance can occur for Λ = 60.6 µm.
Fig. 12.
Fig. 12. Phase matching graphs for three different widths of MCRW 3.015 (A) 3 (B) and 2.985 (C) µm.

Tables (1)

Tables Icon

Table 1. Comparison of temperature sensitivity of the proposed sensor with earlier reported sensors

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

a m , n = 1 2 ( E 0 , 0 S × H m , n M ) z ^ d A
T M C R W = | a 0 , 0 exp ( i σ L g ) { cos ( α L g ) i σ α sin ( α L g ) } | 2
λ R = Λ ( n 0 , 0 r n m , n r )
S e n = d λ R d T = Λ γ T ( Δ n e f f )
γ = [ 1 Λ λ ( Δ n e f f ) ] 1 = 1 Δ n e f f λ R Λ = Δ n e f f Δ n g
n 2 ( λ ) = 1 + B λ 2 / ( λ 2 C )
n r ( λ ) = 0.007038 Δ 3 + 0.03903 Δ 2 + 0.02900 Δ + 0.04272 n i ( λ ) = 0.007684 λ 0.58701

Metrics