Abstract

In this paper, we propose a novel approach to recognize modulation formats/bit rates. Firstly, the polarization multiplexed (pol-mux) signal is splitted by a polarization beam splitter (PBS) to generate asynchronous delay tap plots (ADTPs). The ADTP patterns are analyzed by principal component analysis (PCA), and the principal eigenvalues and the principal eigenvectors are evaluated. Afterwards, the ADTPs are converted into the weight vectors by projecting them onto the principal eigenvector directions. The weight vectors from the training signals are sent to train the artificial neural network (ANN) and the trained ANN can distinguish the modulation formats/bit rates of the detected signals by taking their weight vectors as the input. The proposed PCA + ANN method allows modulation format/bit rate recognition for 16 different types of data streams. 14 traditional modulate formats achieve 99% recognition accuracy with 20 dB OSNR, which is a significant improvement in comparison with the existing methods. 2 OFDM signals can also be distinguished with about 85% accuracy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

Junhe Zhou and Panpan Fan, "Modulation format/bit rate recognition based on principal component analysis (PCA) and artificial neural networks (ANNs): erratum," OSA Continuum 3, 88-88 (2020)
https://www.osapublishing.org/osac/abstract.cfm?uri=osac-3-1-88

OSA Recommended Articles
Simultaneous Optical Performance Monitoring and Modulation Format/Bit-Rate Identification Using Principal Component Analysis

Ming Chieng Tan, Faisal Nadeem Khan, Waled Hussein Al-Arashi, Yudi Zhou, and Alan Pak Tao Lau
J. Opt. Commun. Netw. 6(5) 441-448 (2014)

Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks

Faisal Nadeem Khan, Yudi Zhou, Alan Pak Tao Lau, and Chao Lu
Opt. Express 20(11) 12422-12431 (2012)

Experimental demonstration of joint OSNR monitoring and modulation format identification using asynchronous single channel sampling

Faisal Nadeem Khan, Yi Yu, Ming Chieng Tan, Waled Hussein Al-Arashi, Changyuan Yu, Alan Pak Tao Lau, and Chao Lu
Opt. Express 23(23) 30337-30346 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, “A Comparative Study of DPSK and OOK WDM Transmission Over Transoceanic Distances and Their Performance Degradations Due to Nonlinear Phase Noise,” J. Lightwave Technol. 21(9), 1933–1943 (2003).
    [Crossref]
  2. A. J. Stark, Y.-T. Hsueh, T. F. Detwiler, M. M. Filer, S. Tibuleac, and S. E. Ralph, “System Performance Prediction With the Gaussian Noise Model in 100G PDM-QPSK Coherent Optical Networks,” J. Lightwave Technol. 31(21), 3352–3360 (2013).
    [Crossref]
  3. Y. R. Zhou, K. Smith, R. Payne, A. Lord, L. Raddatz, M. Bertolini, T. Van De Velde, C. Colombo, E. Korkmaz, M. Fontana, and S. Evans, “1.4 Tb Real-Time Alien Superchannel Transport Demonstration Over 410 km Installed Fiber Link Using Software Reconfigurable DP-16 QAM/QPSK,” J. Lightwave Technol. 33(3), 639–644 (2015).
    [Crossref]
  4. N. Guerrero Gonzalez and et al., “Cognitive digital receiver for burst mode phase modulated radio over fiber links,” in 36th European Conference and Exhibition on Optical Communication (ECOC) 2010, Proc. ECOC’10, paper P6.11.
  5. M. Zaerin and B. Seyfe, “Multiuser modulation classification based on cumulants in additive white Gaussian noise channel,” IET Signal Process 6(9), 815–823 (2012).
    [Crossref]
  6. J. Liu, Z. Dong, K. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4D.3.
  7. S. M. Bilal, G. Bosco, Z. Dong, A. P. Tao Lau, and C. Lu, “Blind modulation format identification for digital coherent receivers,” Opt. Express 23(20), 26769–26778 (2015).
    [Crossref]
  8. R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical Modulation Format Recognition in Stokes Space for Digital Coherent Receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh3B.3.
  9. R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
    [Crossref]
  10. M. Xiang, Q. Zhuge, M. Qiu, X. Zhou, F. Zhang, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Modulation format identification aided hitless flexible coherent transceiver,” Opt. Express 24(14), 15642–15655 (2016).
    [Crossref]
  11. S. Fu, Z. Xu, J. Lu, H. Jiang, Q. Wu, Z. Hu, M. Tang, D. Liu, and C. C.-K. Chan, “Modulation format identification enabled by the digital frequency-offset loading technique for hitless coherent transceiver,” Opt. Express 26(6), 7288–7296 (2018).
    [Crossref]
  12. H. Zhou, M. Tang, X. Chen, Z. Feng, Q. Wu, S. Fu, and D. Liu, “Fractal dimension aided modulation formats identification based on support vector machines,” in 43th European Conference and Exhibition on Optical Communication (ECOC) 2017, Proc. ECOC’17, pp. 1–3.
  13. M. C. Tan, F. N. Khan, W. H. Al-Arashi, Y. Zhou, and A. P. Tao Lau, “Simultaneous Optical Performance Monitoring and Modulation Format/Bit-Rate Identification Using Principal Component Analysis,” J. Opt. Commun. Netw. 6(5), 441–448 (2014).
    [Crossref]
  14. F. N. Khan, Y. Yu, M. C. Tan, W. H. Al-Arashi, C. Yu, A. P. Tao Lau, and C. Lu, “Experimental demonstration of joint OSNR monitoring and modulation format identification using asynchronous single channel sampling,” Opt. Express 23(23), 30337–30346 (2015).
    [Crossref]
  15. F. N. Khan, Y. Zhou, A. P. Tao Lau, and C. Lu, “Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks,” Opt. Express 20(11), 12422–12431 (2012).
    [Crossref]
  16. L. Guesmi, A. M. Ragheb, H. Fathallah, and M. Menif, “Experimental Demonstration of Simultaneous Modulation Format/Symbol Rate Identification and Optical Performance Monitoring for Coherent Optical Systems,” J. Lightwave Technol. 36(11), 2230–2239 (2018).
    [Crossref]
  17. B. Kozicki, A. Maruta, and K.-i. Kitayama, “Transparent performance monitoring of RZ-DQPSK systems employing delay-tap sampling,” J. Opt. Netw. 6(11), 1257–1269 (2007).
    [Crossref]
  18. The MathWorks, Inc., Neural Network Toolbox User’s Guide version 4 (2004).
  19. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-Model of Fiber Non-Linear Propagation and its Applications,” J. Lightwave Technol. 32(4), 694–721 (2014).
    [Crossref]

2018 (2)

2016 (1)

2015 (4)

2014 (2)

2013 (1)

2012 (2)

M. Zaerin and B. Seyfe, “Multiuser modulation classification based on cumulants in additive white Gaussian noise channel,” IET Signal Process 6(9), 815–823 (2012).
[Crossref]

F. N. Khan, Y. Zhou, A. P. Tao Lau, and C. Lu, “Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks,” Opt. Express 20(11), 12422–12431 (2012).
[Crossref]

2007 (1)

2003 (1)

Abe, J.

Al-Arashi, W. H.

Arlunno, V.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical Modulation Format Recognition in Stokes Space for Digital Coherent Receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh3B.3.

Bertolini, M.

Bilal, S. M.

Boada, R.

Borkowski, R.

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical Modulation Format Recognition in Stokes Space for Digital Coherent Receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh3B.3.

Bosco, G.

Caballero, A.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical Modulation Format Recognition in Stokes Space for Digital Coherent Receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh3B.3.

Carena, A.

Chan, C. C.-K.

Chen, X.

H. Zhou, M. Tang, X. Chen, Z. Feng, Q. Wu, S. Fu, and D. Liu, “Fractal dimension aided modulation formats identification based on support vector machines,” in 43th European Conference and Exhibition on Optical Communication (ECOC) 2017, Proc. ECOC’17, pp. 1–3.

Colombo, C.

Curri, V.

Detwiler, T. F.

Dong, Z.

S. M. Bilal, G. Bosco, Z. Dong, A. P. Tao Lau, and C. Lu, “Blind modulation format identification for digital coherent receivers,” Opt. Express 23(20), 26769–26778 (2015).
[Crossref]

J. Liu, Z. Dong, K. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4D.3.

Evans, S.

Fathallah, H.

Feng, Z.

H. Zhou, M. Tang, X. Chen, Z. Feng, Q. Wu, S. Fu, and D. Liu, “Fractal dimension aided modulation formats identification based on support vector machines,” in 43th European Conference and Exhibition on Optical Communication (ECOC) 2017, Proc. ECOC’17, pp. 1–3.

Filer, M. M.

Fontana, M.

Forghieri, F.

Fu, S.

Guerrero Gonzalez, N.

N. Guerrero Gonzalez and et al., “Cognitive digital receiver for burst mode phase modulated radio over fiber links,” in 36th European Conference and Exhibition on Optical Communication (ECOC) 2010, Proc. ECOC’10, paper P6.11.

Guesmi, L.

Hsueh, Y.-T.

Hu, Z.

Ishida, K.

Jiang, H.

Jiang, Y.

Kasahara, K.

Khan, F. N.

Kinjo, K.

Kitayama, K.-i.

Kobayashi, T.

Korkmaz, E.

Kozicki, B.

Lau, A. P. T.

J. Liu, Z. Dong, K. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4D.3.

Liu, D.

Liu, J.

J. Liu, Z. Dong, K. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4D.3.

Lord, A.

Lu, C.

Lu, J.

Lu, Y.

J. Liu, Z. Dong, K. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4D.3.

Maruta, A.

Menif, M.

Mizuochi, T.

Monroy, I. T.

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical Modulation Format Recognition in Stokes Space for Digital Coherent Receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh3B.3.

Motoshima, K.

Payne, R.

Plant, D. V.

Poggiolini, P.

Qiu, M.

Raddatz, L.

Ragheb, A. M.

Ralph, S. E.

Seyfe, B.

M. Zaerin and B. Seyfe, “Multiuser modulation classification based on cumulants in additive white Gaussian noise channel,” IET Signal Process 6(9), 815–823 (2012).
[Crossref]

Smith, K.

Stark, A. J.

Tan, M. C.

Tang, M.

Tao Lau, A. P.

Tibuleac, S.

Van De Velde, T.

Wu, Q.

S. Fu, Z. Xu, J. Lu, H. Jiang, Q. Wu, Z. Hu, M. Tang, D. Liu, and C. C.-K. Chan, “Modulation format identification enabled by the digital frequency-offset loading technique for hitless coherent transceiver,” Opt. Express 26(6), 7288–7296 (2018).
[Crossref]

H. Zhou, M. Tang, X. Chen, Z. Feng, Q. Wu, S. Fu, and D. Liu, “Fractal dimension aided modulation formats identification based on support vector machines,” in 43th European Conference and Exhibition on Optical Communication (ECOC) 2017, Proc. ECOC’17, pp. 1–3.

Xiang, M.

Xu, Z.

Yu, C.

Yu, Y.

Zaerin, M.

M. Zaerin and B. Seyfe, “Multiuser modulation classification based on cumulants in additive white Gaussian noise channel,” IET Signal Process 6(9), 815–823 (2012).
[Crossref]

Zhang, F.

Zhong, K.

J. Liu, Z. Dong, K. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4D.3.

Zhou, H.

H. Zhou, M. Tang, X. Chen, Z. Feng, Q. Wu, S. Fu, and D. Liu, “Fractal dimension aided modulation formats identification based on support vector machines,” in 43th European Conference and Exhibition on Optical Communication (ECOC) 2017, Proc. ECOC’17, pp. 1–3.

Zhou, X.

Zhou, Y.

Zhou, Y. R.

Zhuge, Q.

Zibar, D.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical Modulation Format Recognition in Stokes Space for Digital Coherent Receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh3B.3.

IET Signal Process (1)

M. Zaerin and B. Seyfe, “Multiuser modulation classification based on cumulants in additive white Gaussian noise channel,” IET Signal Process 6(9), 815–823 (2012).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Opt. Express (6)

Other (5)

N. Guerrero Gonzalez and et al., “Cognitive digital receiver for burst mode phase modulated radio over fiber links,” in 36th European Conference and Exhibition on Optical Communication (ECOC) 2010, Proc. ECOC’10, paper P6.11.

J. Liu, Z. Dong, K. Zhong, A. P. T. Lau, C. Lu, and Y. Lu, “Modulation format identification based on received signal power distributions for digital coherent receivers,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4D.3.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Optical Modulation Format Recognition in Stokes Space for Digital Coherent Receivers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh3B.3.

H. Zhou, M. Tang, X. Chen, Z. Feng, Q. Wu, S. Fu, and D. Liu, “Fractal dimension aided modulation formats identification based on support vector machines,” in 43th European Conference and Exhibition on Optical Communication (ECOC) 2017, Proc. ECOC’17, pp. 1–3.

The MathWorks, Inc., Neural Network Toolbox User’s Guide version 4 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The generated ADTPs by the pair (cn, dn) with different modulation formats and data bit rates.
Fig. 2.
Fig. 2. The schematic of PCA & ANN-based recognition method.
Fig. 3.
Fig. 3. The schematic of the ANN structure used in this work
Fig. 4.
Fig. 4. Recognition accuracy for 16 modulation formats/bit rates with the proposed method with the residual CD as 0, 100, 200, 300, and 400 ps/nm.
Fig. 5.
Fig. 5. Recognition accuracy for 16 modulation formats/bit rates with the proposed method under the OSNRs of 10 dB, 15 dB and 20 dB.
Fig. 6.
Fig. 6. The optical schematic of the transmission link
Fig. 7.
Fig. 7. Recognition accuracy for 16 modulation formats/bit rates after transmission in a 1000 km long fiber link with the proposed method with the residual CD as 0, 100, 200, 300, and 400 ps/nm.
Fig. 8.
Fig. 8. Recognition accuracy for 16 modulation formats/bit rates after transmission in a 1000 km long fiber link with the proposed method under the OSNRs of 10 dB, 15 dB and 20 dB.

Tables (4)

Tables Icon

Table 1. Signal recognition performance by PCA with the OSNR of 20dB

Tables Icon

Table 2. Signal recognition performance by ANN with the OSNR of 20dB

Tables Icon

Table 3. Signal recognition performance by PCA+ANN with the OSNR of 20dB

Tables Icon

Table 4. Signal recognition performance for the signals after 1000km transmission by PCA+ANN with the OSNR of 20dB

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

anx=|Ex(nT)|2bnx=|Ex(nTΔT)|2any=|Ey(nT)|2bny=|Ey(nTΔT)|2cn=anx+anydn=bnx+bny
X=[x1,x2,,xM]
C=YYTY=[x1ψ,x2ψ,,xMψ]ψ=1Mi=1Mxi
wik=xiTvkk=1K
wi=(wi1,wi2wiK)
f(x)=exexex+exg(x)=x

Metrics