Abstract

Diffusion approximation (DA) of the radiative transport equation allows derivation of enclosed solutions for diffuse reflectance from multi-layer scattering structures, such as human skin. Although the DA is known to be inadequate near tissue boundaries and light sources, analytical tractability makes such solutions very attractive for use in noninvasive characterization of biological organs based on measured diffuse reflectance spectra (DRS). For the presented three-layer model of human skin, which enables a good match with DRS in visible spectral range measured with an integrating sphere, the DA solutions systematically overshoot numerically simulated DRS (using Monte Carlo approach) by 1–2 percentage points. However, using the former in inverse analysis of the latter can result in much larger artifacts, most notably overestimations of the melanin and blood contents by up to 15%, which must be considered when analyzing experimental DRS. Despite such systematic errors, the described approach allows simple and robust monitoring of physiological changes in human skin, as demonstrated in tests involving temporary obstruction of blood circulation and seasonal variations due to extensive sun exposure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Physiological and structural characterization of human skin in vivo using combined photothermal radiometry and diffuse reflectance spectroscopy

Nina Verdel, Ana Marin, Matija Milanič, and Boris Majaron
Biomed. Opt. Express 10(2) 944-960 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
    [Crossref]
  2. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [Crossref]
  3. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
    [Crossref]
  4. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
    [Crossref]
  5. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072–1078 (2006).
    [Crossref]
  6. M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
    [Crossref]
  7. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
    [Crossref]
  8. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
    [Crossref]
  9. T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophoton. 8(1–2), 9–24 (2015).
    [Crossref]
  10. N. Kollias, I. Seo, and P. R. Bargo, “Interpreting diffuse reflectance for in vivo skin reactions in terms of chromophores,” J. Biophoton. 3(1-2), 15–24 (2009).
    [Crossref]
  11. D. Yudovsky and L. Pilon, “Retrieving skin properties from in vivo spectral reflectance measurements,” J. Biophoton. 4(5), 305–314 (2011).
    [Crossref]
  12. I. V. Ermakov and W. Gellermann, “Dermal carotenoid measurements via pressure mediated reflection spectroscopy,” J. Biophoton. 5(7), 559–570 (2012).
    [Crossref]
  13. G. N. Stamatas and N. Kollias, “Blood stasis contributions to the perception of skin pigmentation,” J. Biomed. Opt. 9(2), 315–322 (2004).
    [Crossref]
  14. L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
    [Crossref]
  15. S.-H. Tseng, C.-K. Hsu, J. Y.-Y. Lee, S.-Y. Tzeng, W.-R. Chen, and Y.-K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 0770051 (2012).
    [Crossref]
  16. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 2.
  17. K. Furutsu, “Diffusion equation derived from space-time transport equation,” J. Opt. Soc. Am. 70(4), 360–366 (1980).
    [Crossref]
  18. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
    [Crossref]
  19. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
    [Crossref]
  20. R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
    [Crossref]
  21. M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40 (2014).
    [Crossref]
  22. Q. Wang, D. Le, J. Ramella-Roman, and J. Pfefer, “Broadband ultraviolet-visible optical property measurement in layered turbid media,” Biomed. Opt. Express 3(6), 1226 (2012).
    [Crossref]
  23. S.-Y. Tsui, C.-Y. Wang, T.-H. Huang, and K.-B. Sung, “Modelling spatially-resolved diffuse reflectance spectra of a multi-layered skin model by artificial neural networks trained with Monte Carlo simulations,” Biomed. Opt. Express 9(4), 1531 (2018).
    [Crossref]
  24. P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
    [Crossref]
  25. M. Milanic and B. Majaron, “Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions,” J. Biomed. Opt. 16(12), 128002 (2011).
    [Crossref]
  26. S. L. Jacques, “Skin Optics,” http://omlc.org/news/jan98/skinoptics.html , January 1998.
  27. W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).
  28. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
    [Crossref]
  29. S. L. Jacques, “Optical assessment of cutaneous blood volume depends on the vessel size distribution: a computer simulation study,” J. Biophoton. 3(1-2), 75–81 (2009).
    [Crossref]
  30. D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
    [Crossref]
  31. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Heal. Sci. 04(01), 9–38 (2011).
    [Crossref]
  32. P. Naglič, “Determination of structure of human skin using diffuse reflectance spectroscopy,” Master Thesis, University of Ljubljana (2013).
  33. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
    [Crossref]
  34. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  35. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22(16), 2456–2462 (1983).
    [Crossref]
  36. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. B 11(10), 2727–2741 (1994).
    [Crossref]
  37. L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Laser. Med. Sci. 10(1), 55–65 (1995).
    [Crossref]
  38. T. Spott and L. O. Svaasand, “Collimated light sources in the diffusion approximation,” Appl. Opt. 39(34), 6453–6465 (2000).
    [Crossref]
  39. L. L. Randeberg, A. Winnem, R. Haaverstad, and L. O. Svaasand, “Performance of diffusion theory vs Monte Carlo methods,” Proc. SPIE 5862, 58620O (2005).
    [Crossref]
  40. T. Spott, “Characterization of layered tissue structures with diffusely propagating photon-density waves,” Doctoral Thesis, Norwegian University of Science and Technology (1999).
  41. L. Vidovič and B. Majaron, “Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere,” J. Biomed. Opt 19(2), 027006 (2014).
    [Crossref]
  42. Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24(3-4), 183–189 (2002).
    [Crossref]
  43. G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14(19), 8661–8674 (2006).
    [Crossref]
  44. C. Donner and H. W. Jensen, “A spectral BSSRDF for shading human skin,” in Proceedings of the 17th Eurographics Conference on Rendering Techniques (Eurographics Association, 2006), pp. 409–417.
  45. T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
    [Crossref]
  46. N. Verdel, M. Milanič, and B. Majaron, “Physiological and structural characterization of human skin in vivo using combined photothermal radiometry and diffuse reflectance spectroscopy,” Biomed. Opt. Express 10(2), 944–960 (2019).
    [Crossref]

2019 (1)

2018 (1)

2017 (1)

T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
[Crossref]

2015 (1)

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophoton. 8(1–2), 9–24 (2015).
[Crossref]

2014 (2)

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40 (2014).
[Crossref]

L. Vidovič and B. Majaron, “Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere,” J. Biomed. Opt 19(2), 027006 (2014).
[Crossref]

2013 (2)

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

2012 (3)

Q. Wang, D. Le, J. Ramella-Roman, and J. Pfefer, “Broadband ultraviolet-visible optical property measurement in layered turbid media,” Biomed. Opt. Express 3(6), 1226 (2012).
[Crossref]

I. V. Ermakov and W. Gellermann, “Dermal carotenoid measurements via pressure mediated reflection spectroscopy,” J. Biophoton. 5(7), 559–570 (2012).
[Crossref]

S.-H. Tseng, C.-K. Hsu, J. Y.-Y. Lee, S.-Y. Tzeng, W.-R. Chen, and Y.-K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 0770051 (2012).
[Crossref]

2011 (3)

D. Yudovsky and L. Pilon, “Retrieving skin properties from in vivo spectral reflectance measurements,” J. Biophoton. 4(5), 305–314 (2011).
[Crossref]

M. Milanic and B. Majaron, “Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions,” J. Biomed. Opt. 16(12), 128002 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Heal. Sci. 04(01), 9–38 (2011).
[Crossref]

2010 (1)

2009 (2)

S. L. Jacques, “Optical assessment of cutaneous blood volume depends on the vessel size distribution: a computer simulation study,” J. Biophoton. 3(1-2), 75–81 (2009).
[Crossref]

N. Kollias, I. Seo, and P. R. Bargo, “Interpreting diffuse reflectance for in vivo skin reactions in terms of chromophores,” J. Biophoton. 3(1-2), 15–24 (2009).
[Crossref]

2008 (2)

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[Crossref]

2006 (4)

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072–1078 (2006).
[Crossref]

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[Crossref]

G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14(19), 8661–8674 (2006).
[Crossref]

2005 (3)

L. L. Randeberg, A. Winnem, R. Haaverstad, and L. O. Svaasand, “Performance of diffusion theory vs Monte Carlo methods,” Proc. SPIE 5862, 58620O (2005).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

2004 (1)

G. N. Stamatas and N. Kollias, “Blood stasis contributions to the perception of skin pigmentation,” J. Biomed. Opt. 9(2), 315–322 (2004).
[Crossref]

2002 (1)

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24(3-4), 183–189 (2002).
[Crossref]

2000 (3)

T. Spott and L. O. Svaasand, “Collimated light sources in the diffusion approximation,” Appl. Opt. 39(34), 6453–6465 (2000).
[Crossref]

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref]

1999 (2)

1998 (1)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref]

1995 (3)

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref]

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Laser. Med. Sci. 10(1), 55–65 (1995).
[Crossref]

1994 (1)

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. B 11(10), 2727–2741 (1994).
[Crossref]

1983 (1)

1980 (1)

Alerstam, E.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[Crossref]

Andersson-Engels, S.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[Crossref]

Backman, V.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref]

Badizadegan, K.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

Bargo, P. R.

N. Kollias, I. Seo, and P. R. Bargo, “Interpreting diffuse reflectance for in vivo skin reactions in terms of chromophores,” J. Biophoton. 3(1-2), 15–24 (2009).
[Crossref]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Heal. Sci. 04(01), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

Bassukas, I.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

Bergstrand, S.

T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
[Crossref]

Berns, M. W.

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Laser. Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Bevilacqua, F.

Bigio, I. J.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref]

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref]

Bown, S. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref]

Boyer, J.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref]

Breslin, T. M.

Briggs, G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref]

Buursma, A.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).

Bydlon, T. M.

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophoton. 8(1–2), 9–24 (2015).
[Crossref]

Chen, W.-R.

S.-H. Tseng, C.-K. Hsu, J. Y.-Y. Lee, S.-Y. Tzeng, W.-R. Chen, and Y.-K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 0770051 (2012).
[Crossref]

Conn, R. L.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref]

Crawford, J. M.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

Dasari, R. R.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

Depeursinge, C.

Dimou, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14(19), 8661–8674 (2006).
[Crossref]

Donner, C.

C. Donner and H. W. Jensen, “A spectral BSSRDF for shading human skin,” in Proceedings of the 17th Eurographics Conference on Rendering Techniques (Eurographics Association, 2006), pp. 409–417.

Ermakov, I. V.

I. V. Ermakov and W. Gellermann, “Dermal carotenoid measurements via pressure mediated reflection spectroscopy,” J. Biophoton. 5(7), 559–570 (2012).
[Crossref]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref]

Feld, M. S.

Feng, T.-C.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. B 11(10), 2727–2741 (1994).
[Crossref]

Ferwerda, H. A.

Fiskerstrand, E. J.

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Laser. Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Fitzmaurice, M.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref]

Furutsu, K.

Galaris, D.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

Gellermann, W.

I. V. Ermakov and W. Gellermann, “Dermal carotenoid measurements via pressure mediated reflection spectroscopy,” J. Biophoton. 5(7), 559–570 (2012).
[Crossref]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Heal. Sci. 04(01), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

Gilchrist, K. W.

Groenhuis, R. A. J.

Gross, J. D.

Haaverstad, R.

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[Crossref]

L. L. Randeberg, A. Winnem, R. Haaverstad, and L. O. Svaasand, “Performance of diffusion theory vs Monte Carlo methods,” Proc. SPIE 5862, 58620O (2005).
[Crossref]

Haskell, R. C.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. B 11(10), 2727–2741 (1994).
[Crossref]

Haugen, O. A.

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[Crossref]

Hendriks, B. H. W.

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophoton. 8(1–2), 9–24 (2015).
[Crossref]

Hennessy, R.

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40 (2014).
[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

Hsu, C.-K.

S.-H. Tseng, C.-K. Hsu, J. Y.-Y. Lee, S.-Y. Tzeng, W.-R. Chen, and Y.-K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 0770051 (2012).
[Crossref]

Huang, T.-H.

Hwang, K.

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24(3-4), 183–189 (2002).
[Crossref]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 2.

Itzkan, I.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Optical assessment of cutaneous blood volume depends on the vessel size distribution: a computer simulation study,” J. Biophoton. 3(1-2), 75–81 (2009).
[Crossref]

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

S. L. Jacques, “Skin Optics,” http://omlc.org/news/jan98/skinoptics.html , January 1998.

Jensen, H. W.

C. Donner and H. W. Jensen, “A spectral BSSRDF for shading human skin,” in Proceedings of the 17th Eurographics Conference on Rendering Techniques (Eurographics Association, 2006), pp. 409–417.

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Johnson, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref]

Kaxiras, E.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

Kelley, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref]

Kollias, N.

N. Kollias, I. Seo, and P. R. Bargo, “Interpreting diffuse reflectance for in vivo skin reactions in terms of chromophores,” J. Biophoton. 3(1-2), 15–24 (2009).
[Crossref]

G. N. Stamatas and N. Kollias, “Blood stasis contributions to the perception of skin pigmentation,” J. Biomed. Opt. 9(2), 315–322 (2004).
[Crossref]

Lakhani, S.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref]

Le, D.

Lee, J. Y.-Y.

S.-H. Tseng, C.-K. Hsu, J. Y.-Y. Lee, S.-Y. Tzeng, W.-R. Chen, and Y.-K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 0770051 (2012).
[Crossref]

Lee, Y.

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24(3-4), 183–189 (2002).
[Crossref]

Liaw, Y.-K.

S.-H. Tseng, C.-K. Hsu, J. Y.-Y. Lee, S.-Y. Tzeng, W.-R. Chen, and Y.-K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 0770051 (2012).
[Crossref]

Lim, S. L.

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

Majaron, B.

N. Verdel, M. Milanič, and B. Majaron, “Physiological and structural characterization of human skin in vivo using combined photothermal radiometry and diffuse reflectance spectroscopy,” Biomed. Opt. Express 10(2), 944–960 (2019).
[Crossref]

L. Vidovič and B. Majaron, “Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere,” J. Biomed. Opt 19(2), 027006 (2014).
[Crossref]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

M. Milanic and B. Majaron, “Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions,” J. Biomed. Opt. 16(12), 128002 (2011).
[Crossref]

Manoharan, R.

Markey, M. K.

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40 (2014).
[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

Marquet, P.

McAdams, M. S.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. B 11(10), 2727–2741 (1994).
[Crossref]

Milanic, M.

N. Verdel, M. Milanič, and B. Majaron, “Physiological and structural characterization of human skin in vivo using combined photothermal radiometry and diffuse reflectance spectroscopy,” Biomed. Opt. Express 10(2), 944–960 (2019).
[Crossref]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

M. Milanic and B. Majaron, “Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions,” J. Biomed. Opt. 16(12), 128002 (2011).
[Crossref]

Mourant, J. R.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref]

Nachabé, R.

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophoton. 8(1–2), 9–24 (2015).
[Crossref]

Naglic, P.

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

P. Naglič, “Determination of structure of human skin using diffuse reflectance spectroscopy,” Master Thesis, University of Ljubljana (2013).

Nelson, J. S.

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Laser. Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Norvang, L. T.

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Laser. Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Palmer, G. M.

Perelman, L. T.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref]

Pfefer, J.

Pickard, D.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref]

Piguet, D.

Pilon, L.

D. Yudovsky and L. Pilon, “Retrieving skin properties from in vivo spectral reflectance measurements,” J. Biophoton. 4(5), 305–314 (2011).
[Crossref]

D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
[Crossref]

Ramanujam, N.

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophoton. 8(1–2), 9–24 (2015).
[Crossref]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part II: Application to breast cancer diagnosis,” Appl. Opt. 45(5), 1072–1078 (2006).
[Crossref]

Ramella-Roman, J.

Randeberg, L. L.

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[Crossref]

L. L. Randeberg, A. Winnem, R. Haaverstad, and L. O. Svaasand, “Performance of diffusion theory vs Monte Carlo methods,” Proc. SPIE 5862, 58620O (2005).
[Crossref]

Ripley, P. M.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref]

Rose, I. G.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref]

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Saunders, C.

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref]

Seiler, M.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

Seo, I.

N. Kollias, I. Seo, and P. R. Bargo, “Interpreting diffuse reflectance for in vivo skin reactions in terms of chromophores,” J. Biophoton. 3(1-2), 15–24 (2009).
[Crossref]

Sharma, M.

Shields, S. J.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

Shimada, T.

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref]

Sjöberg, F.

T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
[Crossref]

Spott, T.

T. Spott and L. O. Svaasand, “Collimated light sources in the diffusion approximation,” Appl. Opt. 39(34), 6453–6465 (2000).
[Crossref]

T. Spott, “Characterization of layered tissue structures with diffusely propagating photon-density waves,” Doctoral Thesis, Norwegian University of Science and Technology (1999).

Stamatas, G. N.

G. N. Stamatas and N. Kollias, “Blood stasis contributions to the perception of skin pigmentation,” J. Biomed. Opt. 9(2), 315–322 (2004).
[Crossref]

Sterenborg, H. J. C. M.

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophoton. 8(1–2), 9–24 (2015).
[Crossref]

Stopps, E. K. S.

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Laser. Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Strömberg, T.

T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
[Crossref]

Sung, K.-B.

Svaasand, L. O.

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[Crossref]

L. L. Randeberg, A. Winnem, R. Haaverstad, and L. O. Svaasand, “Performance of diffusion theory vs Monte Carlo methods,” Proc. SPIE 5862, 58620O (2005).
[Crossref]

T. Spott and L. O. Svaasand, “Collimated light sources in the diffusion approximation,” Appl. Opt. 39(34), 6453–6465 (2000).
[Crossref]

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Laser. Med. Sci. 10(1), 55–65 (1995).
[Crossref]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. B 11(10), 2727–2741 (1994).
[Crossref]

Svensson, T.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[Crossref]

Ten Bosch, J. J.

Tromberg, B. J.

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
[Crossref]

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. B 11(10), 2727–2741 (1994).
[Crossref]

Tsay, T.-T.

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. B 11(10), 2727–2741 (1994).
[Crossref]

Tseng, S.-H.

S.-H. Tseng, C.-K. Hsu, J. Y.-Y. Lee, S.-Y. Tzeng, W.-R. Chen, and Y.-K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 0770051 (2012).
[Crossref]

Tsolakidis, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

Tsui, S.-Y.

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Heal. Sci. 04(01), 9–38 (2011).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

Tunnell, J. W.

M. Sharma, R. Hennessy, M. K. Markey, and J. W. Tunnell, “Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy,” Biomed. Opt. Express 5(1), 40 (2014).
[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

Tzeng, S.-Y.

S.-H. Tseng, C.-K. Hsu, J. Y.-Y. Lee, S.-Y. Tzeng, W.-R. Chen, and Y.-K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 0770051 (2012).
[Crossref]

van Assendelft, O. W.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).

Van Dam, J.

Verdel, N.

Vidovic, L.

L. Vidovič and B. Majaron, “Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere,” J. Biomed. Opt 19(2), 027006 (2014).
[Crossref]

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

Wallace, M. B.

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

Wang, C.-Y.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Wang, Q.

Winnem, A.

L. L. Randeberg, A. Winnem, R. Haaverstad, and L. O. Svaasand, “Performance of diffusion theory vs Monte Carlo methods,” Proc. SPIE 5862, 58620O (2005).
[Crossref]

Xu, F.

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

Yudovsky, D.

D. Yudovsky and L. Pilon, “Retrieving skin properties from in vivo spectral reflectance measurements,” J. Biophoton. 4(5), 305–314 (2011).
[Crossref]

D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
[Crossref]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Zhu, C.

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).

Zonios, G.

Appl. Opt. (6)

Biomed. Opt. Express (4)

Comput. Meth. Prog. Bio. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Gastroenterology (1)

M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, and et al., “Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy,” Gastroenterology 119(3), 677–682 (2000).
[Crossref]

J. Biomed. Opt (1)

L. Vidovič and B. Majaron, “Elimination of single-beam substitution error in diffuse reflectance measurements using an integrating sphere,” J. Biomed. Opt 19(2), 027006 (2014).
[Crossref]

J. Biomed. Opt. (8)

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref]

I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5(2), 221–228 (2000).
[Crossref]

G. N. Stamatas and N. Kollias, “Blood stasis contributions to the perception of skin pigmentation,” J. Biomed. Opt. 9(2), 315–322 (2004).
[Crossref]

S.-H. Tseng, C.-K. Hsu, J. Y.-Y. Lee, S.-Y. Tzeng, W.-R. Chen, and Y.-K. Liaw, “Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study,” J. Biomed. Opt. 17(7), 0770051 (2012).
[Crossref]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008).
[Crossref]

R. Hennessy, S. L. Lim, M. K. Markey, and J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[Crossref]

M. Milanic and B. Majaron, “Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions,” J. Biomed. Opt. 16(12), 128002 (2011).
[Crossref]

J. Biophoton. (5)

S. L. Jacques, “Optical assessment of cutaneous blood volume depends on the vessel size distribution: a computer simulation study,” J. Biophoton. 3(1-2), 75–81 (2009).
[Crossref]

T. M. Bydlon, R. Nachabé, N. Ramanujam, H. J. C. M. Sterenborg, and B. H. W. Hendriks, “Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption,” J. Biophoton. 8(1–2), 9–24 (2015).
[Crossref]

N. Kollias, I. Seo, and P. R. Bargo, “Interpreting diffuse reflectance for in vivo skin reactions in terms of chromophores,” J. Biophoton. 3(1-2), 15–24 (2009).
[Crossref]

D. Yudovsky and L. Pilon, “Retrieving skin properties from in vivo spectral reflectance measurements,” J. Biophoton. 4(5), 305–314 (2011).
[Crossref]

I. V. Ermakov and W. Gellermann, “Dermal carotenoid measurements via pressure mediated reflection spectroscopy,” J. Biophoton. 5(7), 559–570 (2012).
[Crossref]

J. Innov. Opt. Heal. Sci. (1)

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: A review,” J. Innov. Opt. Heal. Sci. 04(01), 9–38 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. B 11(10), 2727–2741 (1994).
[Crossref]

J. Phys. D: Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Laser. Med. Sci. (1)

L. O. Svaasand, L. T. Norvang, E. J. Fiskerstrand, E. K. S. Stopps, M. W. Berns, and J. S. Nelson, “Tissue parameters determining the visual appearance of normal skin and port-wine stains,” Laser. Med. Sci. 10(1), 55–65 (1995).
[Crossref]

Lasers Surg. Med. (2)

J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17(4), 350–357 (1995).
[Crossref]

L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006).
[Crossref]

Microvasc. Res. (1)

T. Strömberg, F. Sjöberg, and S. Bergstrand, “Temporal and spatiotemporal variability in comprehensive forearm skin microcirculation assessment during occlusion protocols,” Microvasc. Res. 113, 50–55 (2017).
[Crossref]

Opt. Express (1)

Opt. Spectrosc. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc. 99(5), 836–842 (2005).
[Crossref]

Phys. Med. Biol. (1)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref]

Proc. SPIE (2)

P. Naglič, L. Vidovič, M. Milanič, L. L. Randeberg, and B. Majaron, “Applicability of diffusion approximation in analysis of diffuse reflectance spectra from healthy human skin,” Proc. SPIE 9032, 90320N (2013).
[Crossref]

L. L. Randeberg, A. Winnem, R. Haaverstad, and L. O. Svaasand, “Performance of diffusion theory vs Monte Carlo methods,” Proc. SPIE 5862, 58620O (2005).
[Crossref]

Surg. Radiol. Anat. (1)

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24(3-4), 183–189 (2002).
[Crossref]

Other (6)

T. Spott, “Characterization of layered tissue structures with diffusely propagating photon-density waves,” Doctoral Thesis, Norwegian University of Science and Technology (1999).

C. Donner and H. W. Jensen, “A spectral BSSRDF for shading human skin,” in Proceedings of the 17th Eurographics Conference on Rendering Techniques (Eurographics Association, 2006), pp. 409–417.

S. L. Jacques, “Skin Optics,” http://omlc.org/news/jan98/skinoptics.html , January 1998.

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin: Determination and Application (VSP, 2000).

P. Naglič, “Determination of structure of human skin using diffuse reflectance spectroscopy,” Master Thesis, University of Ljubljana (2013).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Reduced scattering coefficient spectra of subcutaneous fatty tissue from different authors: (a) Salomatina [7], (b) Bashkatov [33], (c) Bashkatov [34], and (d) Simpson [28]. Dashed lines represent our model function (Eq. (3)) for different values of amplitude A (see the labels).
Fig. 2.
Fig. 2. DRS as predicted by DA solutions with two different source functions (navy lines; see the legend and text for details) and MC simulations (red solid lines) for: (a) semi-infinite dermal layer (with bder = 1.0%, S = 75%); and (b) two-layer skin model imitating the epidermis (depi = 100 μm, m = 1.5%, bepi = 0.2%) and dermis with the same properties as in (a).
Fig. 3.
Fig. 3. DRS as predicted by three-layer DA solutions with two different source functions (navy lines; see the legend) and MC simulations (red solid line). The epidermal melanin content is m = 0.5% (a) and 1.5% (b). The dermal thickness is dder = 1.0 mm and subcutis scattering amplitude A = 1.5; the remaining parameter values are the same as in Fig. 2(b).
Fig. 4.
Fig. 4. Numerically simulated DRS, taking into account the finite diameter of the IS sample opening (orange line) vs. the hypothetical case of infinitely large opening (red).
Fig. 5.
Fig. 5. Numerically computed DRS for a finite IS aperture (orange solid lines) and best fitting analytical predictions (DA; dashed) for a two-layer skin model with (a) m = 0.5%, (b) m = 1.5%. Fitting was performed in the interval λ = 400−600 nm.
Fig. 6.
Fig. 6. Numerically predicted DRS for a three-layer skin model (orange solid lines) and best DA fits (dashed). Fitting was performed in the interval λ = 400−600 nm. The epidermal melanin content is (a) 0.5%, (b) 1.5%.
Fig. 7.
Fig. 7. DRS as measured in a healthy subject with fair skin (orange solid lines) and best fitting two-layer DA solutions (dashed): (a) before, and (b) after sun tanning. Fitting was performed in the interval λ = 400−600 nm.
Fig. 8.
Fig. 8. DRS as measured in a healthy subject before sun tanning (orange solid lines) and best fitting two-layer DA solutions (dashed navy lines): (a) with epidermal thickness set to depi = 65 μm; and (b) with the pheomelanin-to-eumelanin ratio of 0.50.
Fig. 9.
Fig. 9. DRS as measured in a healthy subject with fair skin (orange solid lines) and best fitting three-layer DA solutions (dashed): (a) before, and (b) after sun tanning. Fitting was performed in the interval λ = 400−600 nm.
Fig. 10.
Fig. 10. The same experimental DRS as in Fig. 9 (orange solid lines) fitted with three-layer DA solutions (dashed navy lines). Fitting was performed with the modified spectral sampling (see the text) and the parameters dder and A linked to the same values for both cases.
Fig. 11.
Fig. 11. Residual norm (ɛ) as a function of the dermal thickness and subcutis scattering amplitude (A): (a) and (b) - when fitting the DRS in Figs. 9(a) and (b) independently; (c) when fitting both datasets simultaneously with linked values for dder and A (see text for details).
Fig. 12.
Fig. 12. (a) Dermal blood contents, (b) oxygen saturation levels, and (c) melanin contents as obtained by fitting three-layer DA solutions to DRS acquired before and after the application of the blood–pressure cuff in three healthy subjects (denoted A, B and C).
Fig. 13.
Fig. 13. Seasonal changes of (a) melanin content, and (b) dermal blood content (red solid dots) and oxygen saturation (blue open dots) as assessed by our analysis of DRS acquired from dorsal side of the forearm in a healthy volunteer (LV).

Tables (6)

Tables Icon

Table 1. Analysis of the skin parameter values as assessed by fitting numerically simulated DRS for a two-layer skin model with the corresponding DA solutions (see Fig. 5).

Tables Icon

Table 2. Skin parameter values assessed by fitting numerically simulated DRS for a two-layer skin model with the corresponding DA solutions with four free parameters.

Tables Icon

Table 3. Skin parameter values as assessed by fitting numerically simulated DRS for a three-layer skin model with the corresponding DA solutions.

Tables Icon

Table 4. Skin parameter values as assessed by fitting two-layer DA solutions to DRS acquired from human skin before (left column) and after sun tanning (right). ɛ marks the quadratic norm of the residuum.

Tables Icon

Table 5. Skin parameter values as assessed by fitting three-layer DA solutions to DRS acquired from human skin before (left column) and after sun tanning (right). ɛ marks the quadratic norm of the residuum.

Tables Icon

Table 6. Skin parameter values as assessed from the same experimental DRS as in Table 5 but using the augmented fitting approach (see text for details).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

μ a, base =   0.0244   m m 1 +   8.53  m m 1 exp ( λ 154 nm 66.2 nm ) ,
μ a, mel = 6.6 × 10 10 m m 1 ( λ nm ) 3.33 .
μ s,sub ( λ ) = A [ 16.43 c m 1 + 303.8 c m 1 exp ( λ 180.3 nm ) ] ,
R F = ( n 1 n + 1 ) 2 .
δ MC = M C f i t f i t .

Metrics