Abstract

A proper amount of 0.02wt.% multi-walled carbon nanotubes (MWCNTs) was added in the nematic liquid crystal (LC). Based on dipolar orientation polarization and space charge polarization conceptions, a simplified theoretical model of the charge transfer complex formed by LC and MWCNTs has been developed and utilized to analyze the dynamic behavior. The driven frequency range was 10Hz-10 KHz. Compared to the applied voltage driven method, focusing time has altered from 2.63 s to 0.096 s, and its response time has reduced to 0.4 s with frequency driven method. The doped LC lens under frequency driven has indicated a significant difference of the performances compared to the pure LC lens under applied voltage driven.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improvement in imaging contrast feature of liquid crystal lens with the dopant of multi-walled carbon nanotubes

Hui Li, Fan Pan, Yuntao Wu, Yanduo Zhang, and Xiaolin Xie
Appl. Opt. 56(23) 6655-6662 (2017)

Nematic liquid crystal reorientation around multi-walled carbon nanotubes mapped via Raman microscopy

T. Cacace, A. García-García, G. Zito, V. Tkachenko, G. Rusciano, M. A. Geday, J.M. Otón, A. Marino, and A. Sasso
Opt. Express 24(14) 15954-15964 (2016)

Depth map sensor based on optical doped lens with multi-walled carbon nanotubes of liquid crystal

Li Hui, Pan Fan, Wu Yuntao, Zhang Yanduo, and Xie Xiaolin
Appl. Opt. 55(1) 140-147 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [Crossref]
  2. H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref]
  3. H. Ren, S. Xu, Y.-J. Lin, and S.-T. Wu, “Adaptive-Focus Lenses,” Opt. Photon. News 19(10), 42–47 (2008).
    [Crossref]
  4. S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S.-T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
    [Crossref]
  5. S.-Y. Lu and L.-C. Chien, “Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties,” Opt. Express 16(17), 12777–12785 (2008).
    [Crossref]
  6. W. Lee and C. Chiu, “Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes,” Opt. Lett. 26(8), 521–523 (2001).
    [Crossref]
  7. W. Lee, H.-Y. Chen, and S.-L. Yeh, “Surface-sustained permanent gratings in nematic liquid crystals doped with carbon nanotubes,” Opt. Express 10(11), 482–487 (2002).
    [Crossref]
  8. P.-C. Wu, L. N. Lisetski, and W. Lee, “Suppressed ionic effect and low-frequency texture transitions in a cholesteric liquid crystal doped with graphene nanoplatelets,” Opt. Express 23(9), 11195–11204 (2015).
    [Crossref]
  9. S. K. Shriyan and A. K. Fontecchio, “Analysis of effects of oxidized multiwalled carbon nanotubes on electro-optic polymer/liquid crystal thin film gratings,” Opt. Express 18(24), 24842–24852 (2010).
    [Crossref]
  10. H. Li, F. Pan, Y. Wu, Y. Zhang, and X. Xie, “Fast-Response Liquid Crystal Lens Doped with Multi-Walled Carbon Nanotubes,” Mater. Sci. 22(2), 193–196 (2016).
    [Crossref]
  11. M. D. Lynch and D. L. Patrick, “Organizing Carbon Nanotubes with Liquid Crystals,” Nano Lett. 2(11), 1197–1201 (2002).
    [Crossref]
  12. I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals,” Adv. Mater. 16(11), 865–869 (2004).
    [Crossref]
  13. I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phys. 97(4), 044309 (2005).
    [Crossref]
  14. P. G. de Gennes, The Physics of Liquid Crystals (Oxford University Press, 1974).

2016 (1)

H. Li, F. Pan, Y. Wu, Y. Zhang, and X. Xie, “Fast-Response Liquid Crystal Lens Doped with Multi-Walled Carbon Nanotubes,” Mater. Sci. 22(2), 193–196 (2016).
[Crossref]

2015 (1)

2014 (1)

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S.-T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

2010 (1)

2008 (2)

2007 (1)

2005 (1)

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phys. 97(4), 044309 (2005).
[Crossref]

2004 (1)

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals,” Adv. Mater. 16(11), 865–869 (2004).
[Crossref]

2002 (2)

2001 (1)

1998 (1)

Chen, H.-Y.

Chien, L.-C.

Chiu, C.

de Gennes, P. G.

P. G. de Gennes, The Physics of Liquid Crystals (Oxford University Press, 1974).

Dierking, I.

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phys. 97(4), 044309 (2005).
[Crossref]

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals,” Adv. Mater. 16(11), 865–869 (2004).
[Crossref]

Fontecchio, A. K.

Fox, D. W.

Guralnik, I. R.

LeClere, D.

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals,” Adv. Mater. 16(11), 865–869 (2004).
[Crossref]

Lee, W.

Li, H.

H. Li, F. Pan, Y. Wu, Y. Zhang, and X. Xie, “Fast-Response Liquid Crystal Lens Doped with Multi-Walled Carbon Nanotubes,” Mater. Sci. 22(2), 193–196 (2016).
[Crossref]

Li, Y.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S.-T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

Lin, Y.-J.

H. Ren, S. Xu, Y.-J. Lin, and S.-T. Wu, “Adaptive-Focus Lenses,” Opt. Photon. News 19(10), 42–47 (2008).
[Crossref]

Lisetski, L. N.

Liu, Y.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S.-T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

Loktev, M. Yu.

Lu, S.-Y.

Lynch, M. D.

M. D. Lynch and D. L. Patrick, “Organizing Carbon Nanotubes with Liquid Crystals,” Nano Lett. 2(11), 1197–1201 (2002).
[Crossref]

Morales, P.

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phys. 97(4), 044309 (2005).
[Crossref]

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals,” Adv. Mater. 16(11), 865–869 (2004).
[Crossref]

Naumov, A. F.

Pan, F.

H. Li, F. Pan, Y. Wu, Y. Zhang, and X. Xie, “Fast-Response Liquid Crystal Lens Doped with Multi-Walled Carbon Nanotubes,” Mater. Sci. 22(2), 193–196 (2016).
[Crossref]

Patrick, D. L.

M. D. Lynch and D. L. Patrick, “Organizing Carbon Nanotubes with Liquid Crystals,” Nano Lett. 2(11), 1197–1201 (2002).
[Crossref]

Ren, H.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S.-T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

H. Ren, S. Xu, Y.-J. Lin, and S.-T. Wu, “Adaptive-Focus Lenses,” Opt. Photon. News 19(10), 42–47 (2008).
[Crossref]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

Scalia, G.

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phys. 97(4), 044309 (2005).
[Crossref]

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals,” Adv. Mater. 16(11), 865–869 (2004).
[Crossref]

Shriyan, S. K.

Sun, J.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S.-T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

Vdovin, G.

Wu, B.

Wu, P.-C.

Wu, S.-T.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S.-T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

H. Ren, S. Xu, Y.-J. Lin, and S.-T. Wu, “Adaptive-Focus Lenses,” Opt. Photon. News 19(10), 42–47 (2008).
[Crossref]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

Wu, Y.

H. Li, F. Pan, Y. Wu, Y. Zhang, and X. Xie, “Fast-Response Liquid Crystal Lens Doped with Multi-Walled Carbon Nanotubes,” Mater. Sci. 22(2), 193–196 (2016).
[Crossref]

Xie, X.

H. Li, F. Pan, Y. Wu, Y. Zhang, and X. Xie, “Fast-Response Liquid Crystal Lens Doped with Multi-Walled Carbon Nanotubes,” Mater. Sci. 22(2), 193–196 (2016).
[Crossref]

Xu, S.

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S.-T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

H. Ren, S. Xu, Y.-J. Lin, and S.-T. Wu, “Adaptive-Focus Lenses,” Opt. Photon. News 19(10), 42–47 (2008).
[Crossref]

Yeh, S.-L.

Zhang, Y.

H. Li, F. Pan, Y. Wu, Y. Zhang, and X. Xie, “Fast-Response Liquid Crystal Lens Doped with Multi-Walled Carbon Nanotubes,” Mater. Sci. 22(2), 193–196 (2016).
[Crossref]

Adv. Mater. (1)

I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals,” Adv. Mater. 16(11), 865–869 (2004).
[Crossref]

J. Appl. Phys. (1)

I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” J. Appl. Phys. 97(4), 044309 (2005).
[Crossref]

Mater. Sci. (1)

H. Li, F. Pan, Y. Wu, Y. Zhang, and X. Xie, “Fast-Response Liquid Crystal Lens Doped with Multi-Walled Carbon Nanotubes,” Mater. Sci. 22(2), 193–196 (2016).
[Crossref]

Micromachines (1)

S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, and S.-T. Wu, “Fast-Response Liquid Crystal Microlens,” Micromachines 5(2), 300–324 (2014).
[Crossref]

Nano Lett. (1)

M. D. Lynch and D. L. Patrick, “Organizing Carbon Nanotubes with Liquid Crystals,” Nano Lett. 2(11), 1197–1201 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Photon. News (1)

H. Ren, S. Xu, Y.-J. Lin, and S.-T. Wu, “Adaptive-Focus Lenses,” Opt. Photon. News 19(10), 42–47 (2008).
[Crossref]

Other (1)

P. G. de Gennes, The Physics of Liquid Crystals (Oxford University Press, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The LC lens doped with MWCNTs. (a) is schematic diagram of structure; (b) is optical image of the LC lens, optical image of the LC doped with MWCNTs after 3 days, and SEM of the LC doped with MWCNTs.
Fig. 2.
Fig. 2. Schematic model of charge transfer complex, which is composed by nematic LC molecules and MWCNTs. CNTs are several orders of magnitude longer than LC molecules. (a) is a geometric schematic structure between LC and MWCNTs at initial state; (b) is a schematic principle of a gradient refractive index distribution in the LC lens doped with MWCNTs under the frequency driven. Real line means the last moment, and the dotted line represents the next moment.
Fig. 3.
Fig. 3. Experimental setup.
Fig. 4.
Fig. 4. The frequency, the voltage and the focal length function relationship of the LC lens doped with MWCNTs. Black dots have meant the frequency of 10 Hz, red dots have presented the frequency of 100 Hz, blue dots have been the frequency of 1KHz and the green dots have donated the frequency of 10KHz. Focal length has been measured several times. Built-in diagram is about the relationship between frequency of the external electric field and focal length of LC lens, and the voltage of the external electric field is at 2.9Vrms.
Fig. 5.
Fig. 5. Point spread functions (PSFs) of the fabricated LC lens with different frequencies of the external electric field have been measured at focal length places. The condition of the external electric field was at 2.9Vrms with different frequency from 10 Hz to 10KHz. (a) is 10 Hz at focal length of 60 mm; (b) is 100 Hz at focal length of 75 mm; (c) is 1KHz at focal length of 173 mm; (d) is 10KHz at focal length of 257 mm.
Fig. 6.
Fig. 6. Electro-optical response of the LC lens by applying a 2.9Vrms with alternate frequency of 1KHz and 10KHz.
Fig. 7.
Fig. 7. The optical results of CCD at three positions under the condition of different frequencies. During the whole measurement, the distance between the object scene and the LC lens was fixed.

Tables (1)

Tables Icon

Table 1. Comparison results among three samples.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f(r)=f0+fd(r)+fe(r)+fs(r).
neff(r)=neno[ne2sin2θ(r)+ne2cos2θ(r)]1/2.
εxy=εδxy+Δεnxny.
f=r22ΔndLC.

Metrics