Abstract

Raman spectroscopy probes the chemical composition of biological samples with sub-micron resolution, rendering it a powerful tool in the diagnosis of several diseases and the study unstained biological samples. However, the weak Raman signal leads to long acquisition times, unsuited to study dynamical processes or large samples. Quantitative phase microscopy can speed up the diagnosis, provide complementary data, and potentially link the Raman fingerprint of the sample with corresponding refractive indices. Here we demonstrate a 4$\pi$ microscope that records both the Raman and quantitative phase information from the same sample spot.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

Zahid Yaqoob, Wonshik Choi, Seungeun Oh, Niyom Lue, Yongkeun Park, Christopher Fang-Yen, Ramachandra R. Dasari, Kamran Badizadegan, and Michael S. Feld
Opt. Express 17(13) 10681-10687 (2009)

Accessible quantitative phase imaging in confocal microscopy with sinusoidal-phase synthetic optical holography

Arturo Canales-Benavides, Yue Zhuo, Andrea M. Amitrano, Minsoo Kim, Raul I. Hernandez-Aranda, P. Scott Carney, and Martin Schnell
Appl. Opt. 58(5) A55-A64 (2019)

Portable optofluidic absorption flow analyzer for quantitative malaria diagnosis from whole blood

Earu Banoth, Vamshi Krishna Kasula, and Sai Siva Gorthi
Appl. Opt. 55(30) 8637-8643 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
    [Crossref]
  2. S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77(2), 247–256 (2017).
    [Crossref]
  3. R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with raman spectroscopy,” Acc. Chem. Res. 50(2), 264–272 (2017).
    [Crossref]
  4. R. J. Swain, S. J. Kemp, P. Goldstraw, T. D. Tetley, and M. M. Stevens, “Assessment of cell line models of primary human cells by raman spectral phenotyping,” Biophys. J. 98(8), 1703–1711 (2010).
    [Crossref]
  5. P. Wang, R. Bista, R. Bhargava, R. E. Brand, and Y. Liu, “Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis,” Opt. Lett. 35(17), 2840–2842 (2010).
    [Crossref]
  6. A. Yashchenok, A. Masic, D. Gorin, B. S. Shim, N. A. Kotov, P. Fratzl, H. Möhwald, and A. Skirtach, “Nanoengineered colloidal probes for raman-based detection of biomolecules inside living cells,” Small 9(3), 351–356 (2013).
    [Crossref]
  7. B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. D. Depeursinge, V. Simanis, P. J. Magistretti, and P. P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
    [Crossref]
  8. K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. 4(3), 280–284 (2012).
    [Crossref]
  9. L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry, Part A 91(5), 470–481 (2017).
    [Crossref]
  10. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
    [Crossref]
  11. H.-J. van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Single-cell raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes,” Proc. Natl. Acad. Sci. USA 102(29), 10159–10164 (2005).
    [Crossref]
  12. C. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16(1), 011007 (2011).
    [Crossref]
  13. J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2(9), 2484–2492 (2011).
    [Crossref]
  14. J. Klossa, B. Wattelier, T. Happillon, D. Toubas, L. de Laulanie, V. Untereiner, P. Bon, and M. Manfait, “Quantitative phase imaging and raman micro-spectroscopy applied to malaria,” Diagn. Pathol. 8(S1), S42 (2013).
    [Crossref]
  15. S. Singh, S. Kang, J. W. Kang, P. T. So, R. R. Dasari, Z. Yaqoob, and I. Barman, “Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with raman spectroscopy and quantitative phase microscopy,” Sci. Rep. 7(1), 10829 (2017).
    [Crossref]
  16. N. Pavillon, A. J. Hobro, and N. I. Smith, “Cell optical density and molecular composition revealed by simultaneous multimodal label-free imaging,” Biophys. J. 105(5), 1123–1132 (2013).
    [Crossref]
  17. N. Pavillon and N. I. Smith, “Implementation of simultaneous quantitative phase with raman imaging,” EPJ Tech. Instrum. 2(1), 5 (2015).
    [Crossref]
  18. A. D. Tormo, D. Khalenkow, K. Saurav, A. G. Skirtach, and N. Le Thomas, “Superresolution 4$\pi$π raman microscopy,” Opt. Lett. 42(21), 4410–4413 (2017).
    [Crossref]
  19. A. D. Tormo, D. Khalenkow, A. G. Skirtach, and N. Le Thomas, “4$\pi$π microscopy immune to sample-induced dephasing,” in 2018 IEEE Photonics Conference (IPC), (IEEE, 2018), pp. 1–2.
  20. R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal phase noise measurements in optical fiber interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
    [Crossref]
  21. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
    [Crossref]
  22. D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41(10), 2354–2357 (2016).
    [Crossref]

2017 (5)

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77(2), 247–256 (2017).
[Crossref]

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with raman spectroscopy,” Acc. Chem. Res. 50(2), 264–272 (2017).
[Crossref]

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry, Part A 91(5), 470–481 (2017).
[Crossref]

S. Singh, S. Kang, J. W. Kang, P. T. So, R. R. Dasari, Z. Yaqoob, and I. Barman, “Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with raman spectroscopy and quantitative phase microscopy,” Sci. Rep. 7(1), 10829 (2017).
[Crossref]

A. D. Tormo, D. Khalenkow, K. Saurav, A. G. Skirtach, and N. Le Thomas, “Superresolution 4$\pi$π raman microscopy,” Opt. Lett. 42(21), 4410–4413 (2017).
[Crossref]

2016 (2)

2015 (1)

N. Pavillon and N. I. Smith, “Implementation of simultaneous quantitative phase with raman imaging,” EPJ Tech. Instrum. 2(1), 5 (2015).
[Crossref]

2013 (4)

J. Klossa, B. Wattelier, T. Happillon, D. Toubas, L. de Laulanie, V. Untereiner, P. Bon, and M. Manfait, “Quantitative phase imaging and raman micro-spectroscopy applied to malaria,” Diagn. Pathol. 8(S1), S42 (2013).
[Crossref]

N. Pavillon, A. J. Hobro, and N. I. Smith, “Cell optical density and molecular composition revealed by simultaneous multimodal label-free imaging,” Biophys. J. 105(5), 1123–1132 (2013).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

A. Yashchenok, A. Masic, D. Gorin, B. S. Shim, N. A. Kotov, P. Fratzl, H. Möhwald, and A. Skirtach, “Nanoengineered colloidal probes for raman-based detection of biomolecules inside living cells,” Small 9(3), 351–356 (2013).
[Crossref]

2012 (3)

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. 4(3), 280–284 (2012).
[Crossref]

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal phase noise measurements in optical fiber interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref]

2011 (2)

C. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16(1), 011007 (2011).
[Crossref]

J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2(9), 2484–2492 (2011).
[Crossref]

2010 (2)

R. J. Swain, S. J. Kemp, P. Goldstraw, T. D. Tetley, and M. M. Stevens, “Assessment of cell line models of primary human cells by raman spectral phenotyping,” Biophys. J. 98(8), 1703–1711 (2010).
[Crossref]

P. Wang, R. Bista, R. Bhargava, R. E. Brand, and Y. Liu, “Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis,” Opt. Lett. 35(17), 2840–2842 (2010).
[Crossref]

2009 (1)

B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. D. Depeursinge, V. Simanis, P. J. Magistretti, and P. P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref]

2005 (1)

H.-J. van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Single-cell raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes,” Proc. Natl. Acad. Sci. USA 102(29), 10159–10164 (2005).
[Crossref]

Austin, L. A.

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

Barman, I.

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77(2), 247–256 (2017).
[Crossref]

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with raman spectroscopy,” Acc. Chem. Res. 50(2), 264–272 (2017).
[Crossref]

S. Singh, S. Kang, J. W. Kang, P. T. So, R. R. Dasari, Z. Yaqoob, and I. Barman, “Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with raman spectroscopy and quantitative phase microscopy,” Sci. Rep. 7(1), 10829 (2017).
[Crossref]

J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2(9), 2484–2492 (2011).
[Crossref]

Bartolo, R. E.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal phase noise measurements in optical fiber interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

Bhaduri, B.

Bhargava, R.

Bista, R.

Bon, P.

J. Klossa, B. Wattelier, T. Happillon, D. Toubas, L. de Laulanie, V. Untereiner, P. Bon, and M. Manfait, “Quantitative phase imaging and raman micro-spectroscopy applied to malaria,” Diagn. Pathol. 8(S1), S42 (2013).
[Crossref]

Brand, R. E.

Cano, E.

B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. D. Depeursinge, V. Simanis, P. J. Magistretti, and P. P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref]

Chalut, K. J.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. 4(3), 280–284 (2012).
[Crossref]

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Cheng, M.

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77(2), 247–256 (2017).
[Crossref]

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Clegg, W. L.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. 4(3), 280–284 (2012).
[Crossref]

Colomb, T.

B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. D. Depeursinge, V. Simanis, P. J. Magistretti, and P. P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref]

Dandridge, A.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal phase noise measurements in optical fiber interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

Dasari, R. R.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with raman spectroscopy,” Acc. Chem. Res. 50(2), 264–272 (2017).
[Crossref]

S. Singh, S. Kang, J. W. Kang, P. T. So, R. R. Dasari, Z. Yaqoob, and I. Barman, “Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with raman spectroscopy and quantitative phase microscopy,” Sci. Rep. 7(1), 10829 (2017).
[Crossref]

J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2(9), 2484–2492 (2011).
[Crossref]

de Laulanie, L.

J. Klossa, B. Wattelier, T. Happillon, D. Toubas, L. de Laulanie, V. Untereiner, P. Bon, and M. Manfait, “Quantitative phase imaging and raman micro-spectroscopy applied to malaria,” Diagn. Pathol. 8(S1), S42 (2013).
[Crossref]

Depeursinge, C. D.

B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. D. Depeursinge, V. Simanis, P. J. Magistretti, and P. P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref]

Dingari, N. C.

Dirksen, D.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry, Part A 91(5), 470–481 (2017).
[Crossref]

Ekpenyong, A. E.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. 4(3), 280–284 (2012).
[Crossref]

Evans, C. L.

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

Faber, D. J.

C. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16(1), 011007 (2011).
[Crossref]

Feld, M. S.

Fratzl, P.

A. Yashchenok, A. Masic, D. Gorin, B. S. Shim, N. A. Kotov, P. Fratzl, H. Möhwald, and A. Skirtach, “Nanoengineered colloidal probes for raman-based detection of biomolecules inside living cells,” Small 9(3), 351–356 (2013).
[Crossref]

Glunde, K.

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77(2), 247–256 (2017).
[Crossref]

Goldfless, S. J.

Goldstraw, P.

R. J. Swain, S. J. Kemp, P. Goldstraw, T. D. Tetley, and M. M. Stevens, “Assessment of cell line models of primary human cells by raman spectral phenotyping,” Biophys. J. 98(8), 1703–1711 (2010).
[Crossref]

Gorin, D.

A. Yashchenok, A. Masic, D. Gorin, B. S. Shim, N. A. Kotov, P. Fratzl, H. Möhwald, and A. Skirtach, “Nanoengineered colloidal probes for raman-based detection of biomolecules inside living cells,” Small 9(3), 351–356 (2013).
[Crossref]

Guck, J.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. 4(3), 280–284 (2012).
[Crossref]

Happillon, T.

J. Klossa, B. Wattelier, T. Happillon, D. Toubas, L. de Laulanie, V. Untereiner, P. Bon, and M. Manfait, “Quantitative phase imaging and raman micro-spectroscopy applied to malaria,” Diagn. Pathol. 8(S1), S42 (2013).
[Crossref]

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Hobro, A. J.

N. Pavillon, A. J. Hobro, and N. I. Smith, “Cell optical density and molecular composition revealed by simultaneous multimodal label-free imaging,” Biophys. J. 105(5), 1123–1132 (2013).
[Crossref]

Isbach, M.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry, Part A 91(5), 470–481 (2017).
[Crossref]

Javidi, B.

Jo, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Jung, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Kalkman, J.

C. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16(1), 011007 (2011).
[Crossref]

Kang, J. W.

S. Singh, S. Kang, J. W. Kang, P. T. So, R. R. Dasari, Z. Yaqoob, and I. Barman, “Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with raman spectroscopy and quantitative phase microscopy,” Sci. Rep. 7(1), 10829 (2017).
[Crossref]

J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2(9), 2484–2492 (2011).
[Crossref]

Kang, S.

S. Singh, S. Kang, J. W. Kang, P. T. So, R. R. Dasari, Z. Yaqoob, and I. Barman, “Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with raman spectroscopy and quantitative phase microscopy,” Sci. Rep. 7(1), 10829 (2017).
[Crossref]

Kastl, L.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry, Part A 91(5), 470–481 (2017).
[Crossref]

Kemp, S. J.

R. J. Swain, S. J. Kemp, P. Goldstraw, T. D. Tetley, and M. M. Stevens, “Assessment of cell line models of primary human cells by raman spectral phenotyping,” Biophys. J. 98(8), 1703–1711 (2010).
[Crossref]

Kemper, B.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry, Part A 91(5), 470–481 (2017).
[Crossref]

Khalenkow, D.

A. D. Tormo, D. Khalenkow, K. Saurav, A. G. Skirtach, and N. Le Thomas, “Superresolution 4$\pi$π raman microscopy,” Opt. Lett. 42(21), 4410–4413 (2017).
[Crossref]

A. D. Tormo, D. Khalenkow, A. G. Skirtach, and N. Le Thomas, “4$\pi$π microscopy immune to sample-induced dephasing,” in 2018 IEEE Photonics Conference (IPC), (IEEE, 2018), pp. 1–2.

Kim, K.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Klossa, J.

J. Klossa, B. Wattelier, T. Happillon, D. Toubas, L. de Laulanie, V. Untereiner, P. Bon, and M. Manfait, “Quantitative phase imaging and raman micro-spectroscopy applied to malaria,” Diagn. Pathol. 8(S1), S42 (2013).
[Crossref]

Kong, C.-R.

Kotov, N. A.

A. Yashchenok, A. Masic, D. Gorin, B. S. Shim, N. A. Kotov, P. Fratzl, H. Möhwald, and A. Skirtach, “Nanoengineered colloidal probes for raman-based detection of biomolecules inside living cells,” Small 9(3), 351–356 (2013).
[Crossref]

Kraan, Y. M.

H.-J. van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Single-cell raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes,” Proc. Natl. Acad. Sci. USA 102(29), 10159–10164 (2005).
[Crossref]

Kuhn, J.

B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. D. Depeursinge, V. Simanis, P. J. Magistretti, and P. P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref]

Le Thomas, N.

A. D. Tormo, D. Khalenkow, K. Saurav, A. G. Skirtach, and N. Le Thomas, “Superresolution 4$\pi$π raman microscopy,” Opt. Lett. 42(21), 4410–4413 (2017).
[Crossref]

A. D. Tormo, D. Khalenkow, A. G. Skirtach, and N. Le Thomas, “4$\pi$π microscopy immune to sample-induced dephasing,” in 2018 IEEE Photonics Conference (IPC), (IEEE, 2018), pp. 1–2.

Lee, K.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Lee, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Liu, Y.

Lue, N.

Magistretti, P. J.

B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. D. Depeursinge, V. Simanis, P. J. Magistretti, and P. P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref]

Mahadevan-Jansen, A.

C. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16(1), 011007 (2011).
[Crossref]

Manfait, M.

J. Klossa, B. Wattelier, T. Happillon, D. Toubas, L. de Laulanie, V. Untereiner, P. Bon, and M. Manfait, “Quantitative phase imaging and raman micro-spectroscopy applied to malaria,” Diagn. Pathol. 8(S1), S42 (2013).
[Crossref]

Marquet, P. P.

B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. D. Depeursinge, V. Simanis, P. J. Magistretti, and P. P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref]

Masic, A.

A. Yashchenok, A. Masic, D. Gorin, B. S. Shim, N. A. Kotov, P. Fratzl, H. Möhwald, and A. Skirtach, “Nanoengineered colloidal probes for raman-based detection of biomolecules inside living cells,” Small 9(3), 351–356 (2013).
[Crossref]

Melhuish, I. C.

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. 4(3), 280–284 (2012).
[Crossref]

Mir, M.

Möhwald, H.

A. Yashchenok, A. Masic, D. Gorin, B. S. Shim, N. A. Kotov, P. Fratzl, H. Möhwald, and A. Skirtach, “Nanoengineered colloidal probes for raman-based detection of biomolecules inside living cells,” Small 9(3), 351–356 (2013).
[Crossref]

Niles, J. C.

Nyman, J. S.

C. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16(1), 011007 (2011).
[Crossref]

Osseiran, S.

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

Otto, C.

H.-J. van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Single-cell raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes,” Proc. Natl. Acad. Sci. USA 102(29), 10159–10164 (2005).
[Crossref]

Paidi, S. K.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with raman spectroscopy,” Acc. Chem. Res. 50(2), 264–272 (2017).
[Crossref]

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77(2), 247–256 (2017).
[Crossref]

Pandey, R.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with raman spectroscopy,” Acc. Chem. Res. 50(2), 264–272 (2017).
[Crossref]

Park, H.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Park, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Patil, C.

C. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16(1), 011007 (2011).
[Crossref]

Pavillon, N.

N. Pavillon and N. I. Smith, “Implementation of simultaneous quantitative phase with raman imaging,” EPJ Tech. Instrum. 2(1), 5 (2015).
[Crossref]

N. Pavillon, A. J. Hobro, and N. I. Smith, “Cell optical density and molecular composition revealed by simultaneous multimodal label-free imaging,” Biophys. J. 105(5), 1123–1132 (2013).
[Crossref]

Pham, H.

Popescu, G.

Rappaz, B.

B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. D. Depeursinge, V. Simanis, P. J. Magistretti, and P. P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref]

Rizwan, A.

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77(2), 247–256 (2017).
[Crossref]

Roitshtain, D.

Roos, D.

H.-J. van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Single-cell raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes,” Proc. Natl. Acad. Sci. USA 102(29), 10159–10164 (2005).
[Crossref]

Saurav, K.

Schnekenburger, J.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry, Part A 91(5), 470–481 (2017).
[Crossref]

Shaked, N. T.

Shim, B. S.

A. Yashchenok, A. Masic, D. Gorin, B. S. Shim, N. A. Kotov, P. Fratzl, H. Möhwald, and A. Skirtach, “Nanoengineered colloidal probes for raman-based detection of biomolecules inside living cells,” Small 9(3), 351–356 (2013).
[Crossref]

Simanis, V.

B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. D. Depeursinge, V. Simanis, P. J. Magistretti, and P. P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref]

Singh, S.

S. Singh, S. Kang, J. W. Kang, P. T. So, R. R. Dasari, Z. Yaqoob, and I. Barman, “Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with raman spectroscopy and quantitative phase microscopy,” Sci. Rep. 7(1), 10829 (2017).
[Crossref]

Skirtach, A.

A. Yashchenok, A. Masic, D. Gorin, B. S. Shim, N. A. Kotov, P. Fratzl, H. Möhwald, and A. Skirtach, “Nanoengineered colloidal probes for raman-based detection of biomolecules inside living cells,” Small 9(3), 351–356 (2013).
[Crossref]

Skirtach, A. G.

A. D. Tormo, D. Khalenkow, K. Saurav, A. G. Skirtach, and N. Le Thomas, “Superresolution 4$\pi$π raman microscopy,” Opt. Lett. 42(21), 4410–4413 (2017).
[Crossref]

A. D. Tormo, D. Khalenkow, A. G. Skirtach, and N. Le Thomas, “4$\pi$π microscopy immune to sample-induced dephasing,” in 2018 IEEE Photonics Conference (IPC), (IEEE, 2018), pp. 1–2.

Smith, N. I.

N. Pavillon and N. I. Smith, “Implementation of simultaneous quantitative phase with raman imaging,” EPJ Tech. Instrum. 2(1), 5 (2015).
[Crossref]

N. Pavillon, A. J. Hobro, and N. I. Smith, “Cell optical density and molecular composition revealed by simultaneous multimodal label-free imaging,” Biophys. J. 105(5), 1123–1132 (2013).
[Crossref]

So, P. T.

S. Singh, S. Kang, J. W. Kang, P. T. So, R. R. Dasari, Z. Yaqoob, and I. Barman, “Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with raman spectroscopy and quantitative phase microscopy,” Sci. Rep. 7(1), 10829 (2017).
[Crossref]

Spegazzini, N.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with raman spectroscopy,” Acc. Chem. Res. 50(2), 264–272 (2017).
[Crossref]

Stevens, M. M.

R. J. Swain, S. J. Kemp, P. Goldstraw, T. D. Tetley, and M. M. Stevens, “Assessment of cell line models of primary human cells by raman spectral phenotyping,” Biophys. J. 98(8), 1703–1711 (2010).
[Crossref]

Swain, R. J.

R. J. Swain, S. J. Kemp, P. Goldstraw, T. D. Tetley, and M. M. Stevens, “Assessment of cell line models of primary human cells by raman spectral phenotyping,” Biophys. J. 98(8), 1703–1711 (2010).
[Crossref]

Tetley, T. D.

R. J. Swain, S. J. Kemp, P. Goldstraw, T. D. Tetley, and M. M. Stevens, “Assessment of cell line models of primary human cells by raman spectral phenotyping,” Biophys. J. 98(8), 1703–1711 (2010).
[Crossref]

Tormo, A. D.

A. D. Tormo, D. Khalenkow, K. Saurav, A. G. Skirtach, and N. Le Thomas, “Superresolution 4$\pi$π raman microscopy,” Opt. Lett. 42(21), 4410–4413 (2017).
[Crossref]

A. D. Tormo, D. Khalenkow, A. G. Skirtach, and N. Le Thomas, “4$\pi$π microscopy immune to sample-induced dephasing,” in 2018 IEEE Photonics Conference (IPC), (IEEE, 2018), pp. 1–2.

Toubas, D.

J. Klossa, B. Wattelier, T. Happillon, D. Toubas, L. de Laulanie, V. Untereiner, P. Bon, and M. Manfait, “Quantitative phase imaging and raman micro-spectroscopy applied to malaria,” Diagn. Pathol. 8(S1), S42 (2013).
[Crossref]

Turko, N. A.

Tveten, A. B.

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal phase noise measurements in optical fiber interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

Untereiner, V.

J. Klossa, B. Wattelier, T. Happillon, D. Toubas, L. de Laulanie, V. Untereiner, P. Bon, and M. Manfait, “Quantitative phase imaging and raman micro-spectroscopy applied to malaria,” Diagn. Pathol. 8(S1), S42 (2013).
[Crossref]

Valdez, T. A.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with raman spectroscopy,” Acc. Chem. Res. 50(2), 264–272 (2017).
[Crossref]

van Leeuwen, T. G.

C. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16(1), 011007 (2011).
[Crossref]

van Manen, H.-J.

H.-J. van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Single-cell raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes,” Proc. Natl. Acad. Sci. USA 102(29), 10159–10164 (2005).
[Crossref]

Wang, P.

Wattelier, B.

J. Klossa, B. Wattelier, T. Happillon, D. Toubas, L. de Laulanie, V. Untereiner, P. Bon, and M. Manfait, “Quantitative phase imaging and raman micro-spectroscopy applied to malaria,” Diagn. Pathol. 8(S1), S42 (2013).
[Crossref]

Yaqoob, Z.

S. Singh, S. Kang, J. W. Kang, P. T. So, R. R. Dasari, Z. Yaqoob, and I. Barman, “Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with raman spectroscopy and quantitative phase microscopy,” Sci. Rep. 7(1), 10829 (2017).
[Crossref]

Yashchenok, A.

A. Yashchenok, A. Masic, D. Gorin, B. S. Shim, N. A. Kotov, P. Fratzl, H. Möhwald, and A. Skirtach, “Nanoengineered colloidal probes for raman-based detection of biomolecules inside living cells,” Small 9(3), 351–356 (2013).
[Crossref]

Zhang, C.

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with raman spectroscopy,” Acc. Chem. Res. 50(2), 264–272 (2017).
[Crossref]

Zheng, C.

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77(2), 247–256 (2017).
[Crossref]

Acc. Chem. Res. (1)

R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, and I. Barman, “Noninvasive monitoring of blood glucose with raman spectroscopy,” Acc. Chem. Res. 50(2), 264–272 (2017).
[Crossref]

Analyst (1)

L. A. Austin, S. Osseiran, and C. L. Evans, “Raman technologies in cancer diagnostics,” Analyst 141(2), 476–503 (2016).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (2)

R. J. Swain, S. J. Kemp, P. Goldstraw, T. D. Tetley, and M. M. Stevens, “Assessment of cell line models of primary human cells by raman spectral phenotyping,” Biophys. J. 98(8), 1703–1711 (2010).
[Crossref]

N. Pavillon, A. J. Hobro, and N. I. Smith, “Cell optical density and molecular composition revealed by simultaneous multimodal label-free imaging,” Biophys. J. 105(5), 1123–1132 (2013).
[Crossref]

Cancer Res. (1)

S. K. Paidi, A. Rizwan, C. Zheng, M. Cheng, K. Glunde, and I. Barman, “Label-free raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer,” Cancer Res. 77(2), 247–256 (2017).
[Crossref]

Cytometry, Part A (1)

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytometry, Part A 91(5), 470–481 (2017).
[Crossref]

Diagn. Pathol. (1)

J. Klossa, B. Wattelier, T. Happillon, D. Toubas, L. de Laulanie, V. Untereiner, P. Bon, and M. Manfait, “Quantitative phase imaging and raman micro-spectroscopy applied to malaria,” Diagn. Pathol. 8(S1), S42 (2013).
[Crossref]

EPJ Tech. Instrum. (1)

N. Pavillon and N. I. Smith, “Implementation of simultaneous quantitative phase with raman imaging,” EPJ Tech. Instrum. 2(1), 5 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

R. E. Bartolo, A. B. Tveten, and A. Dandridge, “Thermal phase noise measurements in optical fiber interferometers,” IEEE J. Quantum Electron. 48(5), 720–727 (2012).
[Crossref]

Integr. Biol. (1)

K. J. Chalut, A. E. Ekpenyong, W. L. Clegg, I. C. Melhuish, and J. Guck, “Quantifying cellular differentiation by physical phenotype using digital holographic microscopy,” Integr. Biol. 4(3), 280–284 (2012).
[Crossref]

J. Biomed. Opt. (2)

B. Rappaz, E. Cano, T. Colomb, J. Kuhn, C. D. Depeursinge, V. Simanis, P. J. Magistretti, and P. P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref]

C. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16(1), 011007 (2011).
[Crossref]

Opt. Lett. (4)

Proc. Natl. Acad. Sci. USA (1)

H.-J. van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Single-cell raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes,” Proc. Natl. Acad. Sci. USA 102(29), 10159–10164 (2005).
[Crossref]

Sci. Rep. (1)

S. Singh, S. Kang, J. W. Kang, P. T. So, R. R. Dasari, Z. Yaqoob, and I. Barman, “Label-free characterization of ultra violet-radiation-induced changes in skin fibroblasts with raman spectroscopy and quantitative phase microscopy,” Sci. Rep. 7(1), 10829 (2017).
[Crossref]

Sensors (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13(4), 4170–4191 (2013).
[Crossref]

Small (1)

A. Yashchenok, A. Masic, D. Gorin, B. S. Shim, N. A. Kotov, P. Fratzl, H. Möhwald, and A. Skirtach, “Nanoengineered colloidal probes for raman-based detection of biomolecules inside living cells,” Small 9(3), 351–356 (2013).
[Crossref]

Other (1)

A. D. Tormo, D. Khalenkow, A. G. Skirtach, and N. Le Thomas, “4$\pi$π microscopy immune to sample-induced dephasing,” in 2018 IEEE Photonics Conference (IPC), (IEEE, 2018), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Schematic of the Raman and quantitative phase microscope. The optical path length of the transmitted beam and the partially reflected beam from the partial reflector are indicated a $\phi _{\textrm {T}}$ and $\phi _{\textrm {R}}$, respectively. The red solid arrows indicate the beams that will interfere at the detector to produce the signal $V=O_{\textrm {f}}$+$A\cdot \cos {(\phi _{\textrm {T}}+\phi _{\textrm {sample}}-\phi _{\textrm {R}} - \phi _{\textrm {f}})}$ that depends on the phase shift between transmitted and reflected pump beams, including the influence of the sample $\phi _{\textrm {sample}}$ and phase shifter $\phi _{\textrm {f}}$. The Raman spectra are obtained by the spectrometer and the quantitative phase by the detector connected to a feedback loop.
Fig. 2.
Fig. 2. Phase calibration experiment using an ARP nanolayer on top of a 120 $\mu$m CaF2 substrate. Part of the ARP was lithographically removed to access the CaF2 directly. a) Visible image. b) Nanolayer height obtained with a profilometer and PID output voltage, which is proportional to the phase shift induced by the sample. These data are obtained from the part of the sample indicated in a) with a black line.
Fig. 3.
Fig. 3. Raman and quantitative phase scans of a fixed HeLa cell. On the left, bright-field image and a Raman spectrum of the cell where the peak of interest at 784 cm$^{-1}$ is indicated with a cross. On the right, Raman and quantitative phase scans of three different spots of the sample indicated with dashed lines on the visible image. The presence of a small particle in the fist scan a is highlighted with an arrow. The evolution of the Raman fingerprint in the horizontal direction $x$, namely the peak at 784 cm$^{-1}$, is plotted in black. The corresponding Raman counts per second are indicated on the left vertical axis. The quantitative phase of the respective scans is indicated with dashed red curves and are linked to the vertical axis on the right.

Metrics