Abstract

The development of LEDs is growing very fast, frequently producing highly efficient and powerful light sources. This encourages optical designers to frequently change the design of secondary optical systems to be suited for newly developed light sources. One of the most critical differences between the current developed LEDs is their luminous intensity distribution, which is used as an input light source model in design procedures of secondary optical systems. Therefore, using a functional concept for the light source independent beam-shaping of LEDs is the main objective of this work. This functional concept can be considered to design secondary optical systems to generate the required luminous intensity distribution independently from the input light source intensity distribution. This leads to more freedom using the developed LEDs without changing secondary optical systems. In this paper, state of the art functional concepts have been discussed. The optical functional evaluation is performed by simulating a secondary refractive lens-array. Simulation results show the degree of the independency relation between the light source intensity distribution and the created luminous intensity distributions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Luminance spreading freeform lens arrays with accurate intensity control

Karel Desnijder, Wouter Ryckaert, Peter Hanselaer, and Youri Meuret
Opt. Express 27(23) 32994-33004 (2019)

Flexible design method for freeform lenses with an arbitrary lens contour

Karel Desnijder, Peter Hanselaer, and Youri Meuret
Opt. Lett. 42(24) 5238-5241 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Winston, J. C. Miñano, P. Benítez, and W. T. Welford, Nonimaging optics (Elsevier Academic Press, 2005).
  2. T. Q. Khanh, P. Bodrogi, Q. Trinh, and H. Winkler, LED lighting Technology and perception (Wiley-VCH, 2015).
  3. W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. R. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39(7), 1830 (2000).
    [Crossref]
  4. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19(3), 590–595 (2002).
    [Crossref]
  5. Y. Ding, X. Liu, Z.-R. Zheng, and P.-F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [Crossref]
  6. Z. Zhenrong, H. Xiang, and L. Xu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48(35), 6627–6634 (2009).
    [Crossref]
  7. M. Essameldin, F. Fleischmann, T. Henning, and W. Lang, “Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation,” Y. G. Soskind and C. Olson, eds. (SPIE, 2017), p. 1011006.
  8. T. Talpur and A. Herkommer, “TIR collimator designs based on point source and extended source methods,” in SPIE Optical Systems Design, T. E. Kidger and S. David, eds. (SPIE, 2015), p. 962906.
  9. X. Mao, H. Li, Y. Han, and Y. Luo, “Polar-grids based source-target mapping construction method for designing freeform illumination system for a lighting target with arbitrary shape,” Opt. Express 23(4), 4313–4328 (2015).
    [Crossref]
  10. J.-J. Chen, Z.-Y. Huang, T.-S. Liu, M.-D. Tsai, and K.-L. Huang, “Freeform lens design for light-emitting diode uniform illumination by using a method of source-target luminous intensity mapping,” Appl. Opt. 54(28), E146–E152 (2015).
    [Crossref]
  11. K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A: Pure Appl. Opt. 11(10), 105501 (2009).
    [Crossref]
  12. L. Wang, K. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46(18), 3716–3723 (2007).
    [Crossref]
  13. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
    [Crossref]
  14. P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” in Optics & Photonics 2005, R. Winston and R. J. Koshel, eds. (SPIE, 2005), 59420K.
  15. E. V. Byzov, M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design method for automotive high-beam LED optics,” in SPIE Optical Systems Design, T. E. Kidger and S. David, eds. (SPIE, 2015), 96290I.
  16. E. Aslanov, L. L. Doskolovich, and M. A. Moiseev, “Thin LED collimator with free-form lens array for illumination applications,” Appl. Opt. 51(30), 7200 (2012).
    [Crossref]
  17. S. R. David, T. Walker, and W. J. Cassarly, “Faceted reflector design for uniform illumination,” in International Optical Design Conference 1998, L. R. Gardner and K. P. Thompson, eds. (SPIE, 1998), p. 437.
  18. L. Wang, J. M. Sasián, P. Su, and R. J. Koshel, “Generation of uniform illumination using faceted reflectors,” in Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI, R. Winston and J. M. Gordon, eds. (SPIE, 2009), 74230Y.
  19. C. Li, P. Schreiber, D. Michaelis, C. Wächter, S. Fischer, and U. Zeitner, “Etendue conserving light shaping using microlens arrays with irregular lenslets,” in D. Kidger, (ed.) 2018 – Illumination Optics V, p. 3.
  20. M. Essameldin, F. Fleischmann, and T. Henning, “Problems of using the PMA adaptive mesh method in lens-array design for LED signal lighting,” in D. Kidger, (ed.) 2018 – Illuminaton Optics V, p. 25.
  21. M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the Monge–Ampère equation,” Applied Numerical Mathematics 61(3), 298–307 (2011).
    [Crossref]
  22. A. Mikš and P. Novák, “Determination of unit normal vectors of aspherical surfaces given unit directional vectors of incoming and outgoing rays: comment,” J. Opt. Soc. Am. A 29(7), 1356 (2012); discussion 1358.
    [Crossref]
  23. “Zemax-LLC, $\backslash$∖Zemax Opticstudio,” http://www.zemax.com/os/opticstudio .

2015 (2)

2012 (2)

2011 (1)

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the Monge–Ampère equation,” Applied Numerical Mathematics 61(3), 298–307 (2011).
[Crossref]

2010 (1)

2009 (2)

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A: Pure Appl. Opt. 11(10), 105501 (2009).
[Crossref]

Z. Zhenrong, H. Xiang, and L. Xu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48(35), 6627–6634 (2009).
[Crossref]

2008 (1)

2007 (1)

2002 (1)

2000 (1)

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. R. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39(7), 1830 (2000).
[Crossref]

Aslanov, E.

Benítez, P.

R. Winston, J. C. Miñano, P. Benítez, and W. T. Welford, Nonimaging optics (Elsevier Academic Press, 2005).

Bodrogi, P.

T. Q. Khanh, P. Bodrogi, Q. Trinh, and H. Winkler, LED lighting Technology and perception (Wiley-VCH, 2015).

Byzov, E. V.

E. V. Byzov, M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design method for automotive high-beam LED optics,” in SPIE Optical Systems Design, T. E. Kidger and S. David, eds. (SPIE, 2015), 96290I.

Cassarly, W. J.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,” Opt. Express 18(5), 5295–5304 (2010).
[Crossref]

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. R. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39(7), 1830 (2000).
[Crossref]

S. R. David, T. Walker, and W. J. Cassarly, “Faceted reflector design for uniform illumination,” in International Optical Design Conference 1998, L. R. Gardner and K. P. Thompson, eds. (SPIE, 1998), p. 437.

Chen, F.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A: Pure Appl. Opt. 11(10), 105501 (2009).
[Crossref]

Chen, J.-J.

Dannberg, P.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” in Optics & Photonics 2005, R. Winston and R. J. Koshel, eds. (SPIE, 2005), 59420K.

Davenport, T. L. R.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. R. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39(7), 1830 (2000).
[Crossref]

David, S. R.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. R. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39(7), 1830 (2000).
[Crossref]

S. R. David, T. Walker, and W. J. Cassarly, “Faceted reflector design for uniform illumination,” in International Optical Design Conference 1998, L. R. Gardner and K. P. Thompson, eds. (SPIE, 1998), p. 437.

Ding, Y.

Doskolovich, L. L.

E. Aslanov, L. L. Doskolovich, and M. A. Moiseev, “Thin LED collimator with free-form lens array for illumination applications,” Appl. Opt. 51(30), 7200 (2012).
[Crossref]

E. V. Byzov, M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design method for automotive high-beam LED optics,” in SPIE Optical Systems Design, T. E. Kidger and S. David, eds. (SPIE, 2015), 96290I.

Essameldin, M.

M. Essameldin, F. Fleischmann, T. Henning, and W. Lang, “Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation,” Y. G. Soskind and C. Olson, eds. (SPIE, 2017), p. 1011006.

M. Essameldin, F. Fleischmann, and T. Henning, “Problems of using the PMA adaptive mesh method in lens-array design for LED signal lighting,” in D. Kidger, (ed.) 2018 – Illuminaton Optics V, p. 25.

Fischer, S.

C. Li, P. Schreiber, D. Michaelis, C. Wächter, S. Fischer, and U. Zeitner, “Etendue conserving light shaping using microlens arrays with irregular lenslets,” in D. Kidger, (ed.) 2018 – Illumination Optics V, p. 3.

Fleischmann, F.

M. Essameldin, F. Fleischmann, and T. Henning, “Problems of using the PMA adaptive mesh method in lens-array design for LED signal lighting,” in D. Kidger, (ed.) 2018 – Illuminaton Optics V, p. 25.

M. Essameldin, F. Fleischmann, T. Henning, and W. Lang, “Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation,” Y. G. Soskind and C. Olson, eds. (SPIE, 2017), p. 1011006.

Fournier, F. R.

Gu, P.-F.

Han, Y.

Henning, T.

M. Essameldin, F. Fleischmann, T. Henning, and W. Lang, “Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation,” Y. G. Soskind and C. Olson, eds. (SPIE, 2017), p. 1011006.

M. Essameldin, F. Fleischmann, and T. Henning, “Problems of using the PMA adaptive mesh method in lens-array design for LED signal lighting,” in D. Kidger, (ed.) 2018 – Illuminaton Optics V, p. 25.

Herkommer, A.

T. Talpur and A. Herkommer, “TIR collimator designs based on point source and extended source methods,” in SPIE Optical Systems Design, T. E. Kidger and S. David, eds. (SPIE, 2015), p. 962906.

Huang, K.-L.

Huang, Z.-Y.

Jenkins, D. G.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. R. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39(7), 1830 (2000).
[Crossref]

Kazanskiy, N. L.

E. V. Byzov, M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design method for automotive high-beam LED optics,” in SPIE Optical Systems Design, T. E. Kidger and S. David, eds. (SPIE, 2015), 96290I.

Khanh, T. Q.

T. Q. Khanh, P. Bodrogi, Q. Trinh, and H. Winkler, LED lighting Technology and perception (Wiley-VCH, 2015).

Koshel, R. J.

L. Wang, J. M. Sasián, P. Su, and R. J. Koshel, “Generation of uniform illumination using faceted reflectors,” in Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI, R. Winston and J. M. Gordon, eds. (SPIE, 2009), 74230Y.

Kudaev, S.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” in Optics & Photonics 2005, R. Winston and R. J. Koshel, eds. (SPIE, 2005), 59420K.

Lang, W.

M. Essameldin, F. Fleischmann, T. Henning, and W. Lang, “Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation,” Y. G. Soskind and C. Olson, eds. (SPIE, 2017), p. 1011006.

Li, C.

C. Li, P. Schreiber, D. Michaelis, C. Wächter, S. Fischer, and U. Zeitner, “Etendue conserving light shaping using microlens arrays with irregular lenslets,” in D. Kidger, (ed.) 2018 – Illumination Optics V, p. 3.

Li, H.

Liu, S.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A: Pure Appl. Opt. 11(10), 105501 (2009).
[Crossref]

Liu, T.-S.

Liu, X.

Liu, Z.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A: Pure Appl. Opt. 11(10), 105501 (2009).
[Crossref]

Luo, X.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A: Pure Appl. Opt. 11(10), 105501 (2009).
[Crossref]

Luo, Y.

Mao, X.

Michaelis, D.

C. Li, P. Schreiber, D. Michaelis, C. Wächter, S. Fischer, and U. Zeitner, “Etendue conserving light shaping using microlens arrays with irregular lenslets,” in D. Kidger, (ed.) 2018 – Illumination Optics V, p. 3.

Mikš, A.

Miñano, J. C.

R. Winston, J. C. Miñano, P. Benítez, and W. T. Welford, Nonimaging optics (Elsevier Academic Press, 2005).

Moiseev, M. A.

E. Aslanov, L. L. Doskolovich, and M. A. Moiseev, “Thin LED collimator with free-form lens array for illumination applications,” Appl. Opt. 51(30), 7200 (2012).
[Crossref]

E. V. Byzov, M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design method for automotive high-beam LED optics,” in SPIE Optical Systems Design, T. E. Kidger and S. David, eds. (SPIE, 2015), 96290I.

Muschaweck, J.

Novák, P.

Qian, K.

Qin, Z.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A: Pure Appl. Opt. 11(10), 105501 (2009).
[Crossref]

Ries, H.

Riser, A. P.

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. R. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39(7), 1830 (2000).
[Crossref]

Rolland, J. P.

Russell, R. D.

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the Monge–Ampère equation,” Applied Numerical Mathematics 61(3), 298–307 (2011).
[Crossref]

Sasián, J. M.

L. Wang, J. M. Sasián, P. Su, and R. J. Koshel, “Generation of uniform illumination using faceted reflectors,” in Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI, R. Winston and J. M. Gordon, eds. (SPIE, 2009), 74230Y.

Schreiber, P.

C. Li, P. Schreiber, D. Michaelis, C. Wächter, S. Fischer, and U. Zeitner, “Etendue conserving light shaping using microlens arrays with irregular lenslets,” in D. Kidger, (ed.) 2018 – Illumination Optics V, p. 3.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” in Optics & Photonics 2005, R. Winston and R. J. Koshel, eds. (SPIE, 2005), 59420K.

Su, P.

L. Wang, J. M. Sasián, P. Su, and R. J. Koshel, “Generation of uniform illumination using faceted reflectors,” in Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI, R. Winston and J. M. Gordon, eds. (SPIE, 2009), 74230Y.

Sulman, M. M.

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the Monge–Ampère equation,” Applied Numerical Mathematics 61(3), 298–307 (2011).
[Crossref]

Talpur, T.

T. Talpur and A. Herkommer, “TIR collimator designs based on point source and extended source methods,” in SPIE Optical Systems Design, T. E. Kidger and S. David, eds. (SPIE, 2015), p. 962906.

Trinh, Q.

T. Q. Khanh, P. Bodrogi, Q. Trinh, and H. Winkler, LED lighting Technology and perception (Wiley-VCH, 2015).

Tsai, M.-D.

Wächter, C.

C. Li, P. Schreiber, D. Michaelis, C. Wächter, S. Fischer, and U. Zeitner, “Etendue conserving light shaping using microlens arrays with irregular lenslets,” in D. Kidger, (ed.) 2018 – Illumination Optics V, p. 3.

Walker, T.

S. R. David, T. Walker, and W. J. Cassarly, “Faceted reflector design for uniform illumination,” in International Optical Design Conference 1998, L. R. Gardner and K. P. Thompson, eds. (SPIE, 1998), p. 437.

Wang, K.

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A: Pure Appl. Opt. 11(10), 105501 (2009).
[Crossref]

Wang, L.

L. Wang, K. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46(18), 3716–3723 (2007).
[Crossref]

L. Wang, J. M. Sasián, P. Su, and R. J. Koshel, “Generation of uniform illumination using faceted reflectors,” in Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI, R. Winston and J. M. Gordon, eds. (SPIE, 2009), 74230Y.

Welford, W. T.

R. Winston, J. C. Miñano, P. Benítez, and W. T. Welford, Nonimaging optics (Elsevier Academic Press, 2005).

Williams, J. F.

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the Monge–Ampère equation,” Applied Numerical Mathematics 61(3), 298–307 (2011).
[Crossref]

Winkler, H.

T. Q. Khanh, P. Bodrogi, Q. Trinh, and H. Winkler, LED lighting Technology and perception (Wiley-VCH, 2015).

Winston, R.

R. Winston, J. C. Miñano, P. Benítez, and W. T. Welford, Nonimaging optics (Elsevier Academic Press, 2005).

Xiang, H.

Xu, L.

Zeitner, U.

C. Li, P. Schreiber, D. Michaelis, C. Wächter, S. Fischer, and U. Zeitner, “Etendue conserving light shaping using microlens arrays with irregular lenslets,” in D. Kidger, (ed.) 2018 – Illumination Optics V, p. 3.

Zeitner, U. D.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” in Optics & Photonics 2005, R. Winston and R. J. Koshel, eds. (SPIE, 2005), 59420K.

Zheng, Z.-R.

Zhenrong, Z.

Appl. Opt. (4)

Applied Numerical Mathematics (1)

M. M. Sulman, J. F. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the Monge–Ampère equation,” Applied Numerical Mathematics 61(3), 298–307 (2011).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

K. Wang, S. Liu, F. Chen, Z. Qin, Z. Liu, and X. Luo, “Freeform LED lens for rectangularly prescribed illumination,” J. Opt. A: Pure Appl. Opt. 11(10), 105501 (2009).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

W. J. Cassarly, S. R. David, D. G. Jenkins, A. P. Riser, and T. L. R. Davenport, “Automated design of a uniform distribution using faceted reflectors,” Opt. Eng. 39(7), 1830 (2000).
[Crossref]

Opt. Express (3)

Other (11)

“Zemax-LLC, $\backslash$∖Zemax Opticstudio,” http://www.zemax.com/os/opticstudio .

M. Essameldin, F. Fleischmann, T. Henning, and W. Lang, “Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation,” Y. G. Soskind and C. Olson, eds. (SPIE, 2017), p. 1011006.

T. Talpur and A. Herkommer, “TIR collimator designs based on point source and extended source methods,” in SPIE Optical Systems Design, T. E. Kidger and S. David, eds. (SPIE, 2015), p. 962906.

R. Winston, J. C. Miñano, P. Benítez, and W. T. Welford, Nonimaging optics (Elsevier Academic Press, 2005).

T. Q. Khanh, P. Bodrogi, Q. Trinh, and H. Winkler, LED lighting Technology and perception (Wiley-VCH, 2015).

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” in Optics & Photonics 2005, R. Winston and R. J. Koshel, eds. (SPIE, 2005), 59420K.

E. V. Byzov, M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design method for automotive high-beam LED optics,” in SPIE Optical Systems Design, T. E. Kidger and S. David, eds. (SPIE, 2015), 96290I.

S. R. David, T. Walker, and W. J. Cassarly, “Faceted reflector design for uniform illumination,” in International Optical Design Conference 1998, L. R. Gardner and K. P. Thompson, eds. (SPIE, 1998), p. 437.

L. Wang, J. M. Sasián, P. Su, and R. J. Koshel, “Generation of uniform illumination using faceted reflectors,” in Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI, R. Winston and J. M. Gordon, eds. (SPIE, 2009), 74230Y.

C. Li, P. Schreiber, D. Michaelis, C. Wächter, S. Fischer, and U. Zeitner, “Etendue conserving light shaping using microlens arrays with irregular lenslets,” in D. Kidger, (ed.) 2018 – Illumination Optics V, p. 3.

M. Essameldin, F. Fleischmann, and T. Henning, “Problems of using the PMA adaptive mesh method in lens-array design for LED signal lighting,” in D. Kidger, (ed.) 2018 – Illuminaton Optics V, p. 25.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Beam-shaping using a refractive freeform lens considering the one-to-one mapping concept and (b) Beam-shaping using lens-array considering the many-to-one mapping concept.
Fig. 2.
Fig. 2. (a) The idea of dividing the light source energy into parts then redistributing the luminous intensity using each lens-let of the lens-array over the angular domain and (b) Light superimposing over the angular domain for generating an asymmetric luminous intensity distribution.
Fig. 3.
Fig. 3. Required target luminous intensity distribution, image of the Town Musicians of City Bremen (normalized dimensions).
Fig. 4.
Fig. 4. Simulation setup including the collimated rays and a detector used for the slope analysis to determine the luminous intensity distribution, (a) One-to-one mapping freeform lens used for redistributing the collimated rays over the angular domain representing the symbol of the Town Musicians of City Bremen and (b) Lens-array consists of 10×10 freeform lens-lets used for redistributing the collimated rays over the angular domain representing the same symbol.
Fig. 5.
Fig. 5. Dependency relation between the output luminous intensity distribution and the intensity distribution of the light source (Simulation results), (a) Light source intensity distribution (Perfectly collimated light beams based on a point source), (b) The influence of changing the light source intensity distribution on the created luminous intensity distribution using one-to-one mapping and (c) The independency relation in case we use a lens array of freeform lens-lets.
Fig. 6.
Fig. 6. Dependency relation between the output luminous intensity distribution and the intensity distribution of the light source (Simulation results), (a) Light source intensity distribution (Based on an extended light source), (b) The influence of changing the light source intensity distribution on the created luminous intensity distribution using one-to-one mapping and (c) The independency relation in case we use a lens array of freeform lens-lets.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x = | L I r e f L I | .
ST D x = i = 1 n ( x i x ¯ ) 2 n 1 ,

Metrics