Abstract

In this work, we examine gradual cross polarization conversion using two coupled circular split ring resonators (SRRs) in the terahertz (THz) frequency regime. In the proposed geometry, a metamolecule (unit cell) is comprised of two circular split ring resonators having a single split gap. One resonator is rotated with respect to the other from 0° to 180° in the steps of 15° and thereby, co- and cross-polarization components of the transmitted terahertz are investigated. The cross polarization component is observed to be maximum when resonator split gaps are orthogonal to each other; however, in the co polarization resonance, a strong split is observed. Based upon the angle of rotation between the resonators, the study reveals that the cross polarization conversion can be tuned from minimum to maximum and then back to the minimum. We have employed a semi-analytical model to understand the polarization conversion arising from the coupling between the resonators and found that it corroborates numerical findings. The ability to control linear polarization conversions can be significant in the development of THz polarimetric devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs

Chenyu Li, Chun-Chieh Chang, Qingli Zhou, Cunlin Zhang, and Hou-Tong Chen
Opt. Express 25(21) 25842-25852 (2017)

Asymmetric planar terahertz metamaterials

Ranjan Singh, Ibraheem A. I. Al-Naib, Martin Koch, and Weili Zhang
Opt. Express 18(12) 13044-13050 (2010)

Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study

Jan Wallauer, Andreas Bitzer, Stefan Waselikowski, and Markus Walther
Opt. Express 19(18) 17283-17292 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and $\mu$μ,” Sov. physics uspekhi 10(4), 509–514 (1968).
    [Crossref]
  4. T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [Crossref]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref]
  6. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
    [Crossref]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  9. D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
    [Crossref]
  10. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [Crossref]
  11. M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
    [Crossref]
  12. D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104(10), 101105 (2014).
    [Crossref]
  13. S. J. M. Rao, G. Kumar, A. K. Azad, and D. R. Chowdhury, “Ultrafast relaxation of charge carriers induced switching in terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 39(12), 1211–1220 (2018).
    [Crossref]
  14. W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
    [Crossref]
  15. K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
    [Crossref]
  16. L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active thz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light: Sci. Appl. 7(1), 28 (2018).
    [Crossref]
  17. X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
    [Crossref]
  18. S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Probing the near-field inductive coupling in broadside coupled terahertz metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017).
    [Crossref]
  19. R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antennas Propag. 51(10), 2572–2581 (2003).
    [Crossref]
  20. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
    [Crossref]
  21. S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Modulating the near field coupling through resonator displacement in planar terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 38(1), 124–134 (2017).
    [Crossref]
  22. R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
    [Crossref]
  23. D. Roy Chowdhury, R. Singh, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
    [Crossref]
  24. D. R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A. J. Taylor, and J. F. O’Hara, “Tailored resonator coupling for modifying the terahertz metamaterial response,” Opt. Express 19(11), 10679–10685 (2011).
    [Crossref]
  25. S. J. M. Rao, Y. K. Srivastava, G. Kumar, and D. R. Chowdhury, “Modulating fundamental resonance in capacitive coupled asymmetric terahertz metamaterials,” Sci. Rep. 8(1), 16773 (2018).
    [Crossref]
  26. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref]
  27. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).
  28. J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
    [Crossref]
  29. Y. Cheng, Y. Nie, Z. Cheng, and R. Z. Gong, “Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial,” Prog. Electromagn. Res. 145, 263–272 (2014).
    [Crossref]
  30. J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
    [Crossref]
  31. Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
    [Crossref]
  32. Y. Cheng, J.-C. Zhao, X. Mao, and R. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
    [Crossref]
  33. Y. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
    [Crossref]
  34. J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B: Lasers Opt. 122(10), 255 (2016).
    [Crossref]
  35. C. Li, C.-C. Chang, Q. Zhou, C. Zhang, and H.-T. Chen, “Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs,” Opt. Express 25(21), 25842–25852 (2017).
    [Crossref]
  36. L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108(1), 011110 (2016).
    [Crossref]
  37. L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).
    [Crossref]
  38. L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
    [Crossref]
  39. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref]
  40. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
    [Crossref]
  41. Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
    [Crossref]
  42. X. Wen and J. Zheng, “Broadband thz reflective polarization rotator by multiple plasmon resonances,” Opt. Express 22(23), 28292–28300 (2014).
    [Crossref]
  43. R. Xia, X. Jing, H. Zhu, W. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
    [Crossref]
  44. H. Sun, Y. Zhang, K. Wang, Y. Zhao, W. Kou, S. Liang, J. Han, and Z. Yang, “Linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces,” Chin. Opt. Lett. 16(8), 081601 (2018).
    [Crossref]
  45. X. Yang, B. Zhang, and J. Shen, “An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial,” Opt. Quantum Electron. 50(8), 315 (2018).
    [Crossref]
  46. D. R. Chowdhury, A. K. Azad, W. Zhang, and R. Singh, “Near field coupling in passive and active terahertz metamaterial devices,” IEEE Trans. Terahertz Sci. Technol. 3(6), 783–790 (2013).
    [Crossref]
  47. X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
    [Crossref]
  48. J. F. O’Hara, E. Smirnova, A. K. Azad, H.-T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 1–10 (2007).
    [Crossref]

2018 (8)

S. J. M. Rao, G. Kumar, A. K. Azad, and D. R. Chowdhury, “Ultrafast relaxation of charge carriers induced switching in terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 39(12), 1211–1220 (2018).
[Crossref]

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active thz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light: Sci. Appl. 7(1), 28 (2018).
[Crossref]

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

S. J. M. Rao, Y. K. Srivastava, G. Kumar, and D. R. Chowdhury, “Modulating fundamental resonance in capacitive coupled asymmetric terahertz metamaterials,” Sci. Rep. 8(1), 16773 (2018).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

H. Sun, Y. Zhang, K. Wang, Y. Zhao, W. Kou, S. Liang, J. Han, and Z. Yang, “Linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces,” Chin. Opt. Lett. 16(8), 081601 (2018).
[Crossref]

X. Yang, B. Zhang, and J. Shen, “An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial,” Opt. Quantum Electron. 50(8), 315 (2018).
[Crossref]

2017 (8)

Y. Cheng, J.-C. Zhao, X. Mao, and R. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Y. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

R. Xia, X. Jing, H. Zhu, W. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

C. Li, C.-C. Chang, Q. Zhou, C. Zhang, and H.-T. Chen, “Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs,” Opt. Express 25(21), 25842–25852 (2017).
[Crossref]

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref]

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Modulating the near field coupling through resonator displacement in planar terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 38(1), 124–134 (2017).
[Crossref]

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Probing the near-field inductive coupling in broadside coupled terahertz metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017).
[Crossref]

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

2016 (5)

L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108(1), 011110 (2016).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).
[Crossref]

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B: Lasers Opt. 122(10), 255 (2016).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

2015 (1)

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

2014 (5)

Y. Cheng, Y. Nie, Z. Cheng, and R. Z. Gong, “Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial,” Prog. Electromagn. Res. 145, 263–272 (2014).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104(10), 101105 (2014).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

X. Wen and J. Zheng, “Broadband thz reflective polarization rotator by multiple plasmon resonances,” Opt. Express 22(23), 28292–28300 (2014).
[Crossref]

2013 (5)

D. R. Chowdhury, A. K. Azad, W. Zhang, and R. Singh, “Near field coupling in passive and active terahertz metamaterial devices,” IEEE Trans. Terahertz Sci. Technol. 3(6), 783–790 (2013).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

2011 (3)

D. R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A. J. Taylor, and J. F. O’Hara, “Tailored resonator coupling for modifying the terahertz metamaterial response,” Opt. Express 19(11), 10679–10685 (2011).
[Crossref]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

J. F. O’Hara, E. Smirnova, A. K. Azad, H.-T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 1–10 (2007).
[Crossref]

2006 (1)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

2004 (1)

T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

2003 (1)

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antennas Propag. 51(10), 2572–2581 (2003).
[Crossref]

2002 (2)

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[Crossref]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and $\mu$μ,” Sov. physics uspekhi 10(4), 509–514 (1968).
[Crossref]

Abbott, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Al-Naib, I.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Averitt, R. D.

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Azad, A. K.

S. J. M. Rao, G. Kumar, A. K. Azad, and D. R. Chowdhury, “Ultrafast relaxation of charge carriers induced switching in terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 39(12), 1211–1220 (2018).
[Crossref]

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104(10), 101105 (2014).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. R. Chowdhury, A. K. Azad, W. Zhang, and R. Singh, “Near field coupling in passive and active terahertz metamaterial devices,” IEEE Trans. Terahertz Sci. Technol. 3(6), 783–790 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

J. F. O’Hara, E. Smirnova, A. K. Azad, H.-T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 1–10 (2007).
[Crossref]

Basov, D.

T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Bhaskaran, M.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Cao, W.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Chan, C.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Chang, C.-C.

Chen, H.-T.

C. Li, C.-C. Chang, Q. Zhou, C. Zhang, and H.-T. Chen, “Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs,” Opt. Express 25(21), 25842–25852 (2017).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

J. F. O’Hara, E. Smirnova, A. K. Azad, H.-T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 1–10 (2007).
[Crossref]

Chen, X.

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Cheng, Y.

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Y. Cheng, J.-C. Zhao, X. Mao, and R. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Y. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B: Lasers Opt. 122(10), 255 (2016).
[Crossref]

Y. Cheng, Y. Nie, Z. Cheng, and R. Z. Gong, “Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial,” Prog. Electromagn. Res. 145, 263–272 (2014).
[Crossref]

Cheng, Y. Z.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Cheng, Z.

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Y. Cheng, Y. Nie, Z. Cheng, and R. Z. Gong, “Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial,” Prog. Electromagn. Res. 145, 263–272 (2014).
[Crossref]

Chowdhury, D. R.

S. J. M. Rao, Y. K. Srivastava, G. Kumar, and D. R. Chowdhury, “Modulating fundamental resonance in capacitive coupled asymmetric terahertz metamaterials,” Sci. Rep. 8(1), 16773 (2018).
[Crossref]

S. J. M. Rao, G. Kumar, A. K. Azad, and D. R. Chowdhury, “Ultrafast relaxation of charge carriers induced switching in terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 39(12), 1211–1220 (2018).
[Crossref]

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref]

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Modulating the near field coupling through resonator displacement in planar terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 38(1), 124–134 (2017).
[Crossref]

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Probing the near-field inductive coupling in broadside coupled terahertz metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104(10), 101105 (2014).
[Crossref]

D. R. Chowdhury, A. K. Azad, W. Zhang, and R. Singh, “Near field coupling in passive and active terahertz metamaterial devices,” IEEE Trans. Terahertz Sci. Technol. 3(6), 783–790 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

D. R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A. J. Taylor, and J. F. O’Hara, “Tailored resonator coupling for modifying the terahertz metamaterial response,” Opt. Express 19(11), 10679–10685 (2011).
[Crossref]

Cong, L.

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active thz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light: Sci. Appl. 7(1), 28 (2018).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108(1), 011110 (2016).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).
[Crossref]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Dalvit, D. A.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Devi, K. M.

Duan, G.

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Fan, K.

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Fang, N.

T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Ghosh, S.

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

Gong, R.

Y. Cheng, J.-C. Zhao, X. Mao, and R. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Y. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Gong, R. Z.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Y. Cheng, Y. Nie, Z. Cheng, and R. Z. Gong, “Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial,” Prog. Electromagn. Res. 145, 263–272 (2014).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Gu, J.

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Han, J.

H. Sun, Y. Zhang, K. Wang, Y. Zhao, W. Kou, S. Liang, J. Han, and Z. Yang, “Linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces,” Chin. Opt. Lett. 16(8), 081601 (2018).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active thz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light: Sci. Appl. 7(1), 28 (2018).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Headland, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Hong, Z.

R. Xia, X. Jing, H. Zhu, W. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Islam, M.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Jing, X.

R. Xia, X. Jing, H. Zhu, W. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Keiser, G. R.

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Kou, W.

Kumar, D.

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Probing the near-field inductive coupling in broadside coupled terahertz metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017).
[Crossref]

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Modulating the near field coupling through resonator displacement in planar terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 38(1), 124–134 (2017).
[Crossref]

Kumar, G.

S. J. M. Rao, Y. K. Srivastava, G. Kumar, and D. R. Chowdhury, “Modulating fundamental resonance in capacitive coupled asymmetric terahertz metamaterials,” Sci. Rep. 8(1), 16773 (2018).
[Crossref]

S. J. M. Rao, G. Kumar, A. K. Azad, and D. R. Chowdhury, “Ultrafast relaxation of charge carriers induced switching in terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 39(12), 1211–1220 (2018).
[Crossref]

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref]

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Modulating the near field coupling through resonator displacement in planar terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 38(1), 124–134 (2017).
[Crossref]

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Probing the near-field inductive coupling in broadside coupled terahertz metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017).
[Crossref]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Li, C.

Li, Y.

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Liang, S.

Liu, L.

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

Luo, Y.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Mao, X.

Y. Cheng, J.-C. Zhao, X. Mao, and R. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Mao, X. S.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Marqués, R.

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antennas Propag. 51(10), 2572–2581 (2003).
[Crossref]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[Crossref]

Martel, J.

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antennas Propag. 51(10), 2572–2581 (2003).
[Crossref]

Medina, F.

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antennas Propag. 51(10), 2572–2581 (2003).
[Crossref]

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[Crossref]

Mesa, F.

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antennas Propag. 51(10), 2572–2581 (2003).
[Crossref]

Nie, Y.

Y. Cheng, Y. Nie, Z. Cheng, and R. Z. Gong, “Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial,” Prog. Electromagn. Res. 145, 263–272 (2014).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

O’Hara, J. F.

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104(10), 101105 (2014).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

D. R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A. J. Taylor, and J. F. O’Hara, “Tailored resonator coupling for modifying the terahertz metamaterial response,” Opt. Express 19(11), 10679–10685 (2011).
[Crossref]

J. F. O’Hara, E. Smirnova, A. K. Azad, H.-T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 1–10 (2007).
[Crossref]

Ouyang, C.

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

Padilla, W.

T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Padilla, W. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Pal, B. P.

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

Pendry, J.

T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Rafii-El-Idrissi, R.

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Rao, S. J. M.

S. J. M. Rao, Y. K. Srivastava, G. Kumar, and D. R. Chowdhury, “Modulating fundamental resonance in capacitive coupled asymmetric terahertz metamaterials,” Sci. Rep. 8(1), 16773 (2018).
[Crossref]

S. J. M. Rao, G. Kumar, A. K. Azad, and D. R. Chowdhury, “Ultrafast relaxation of charge carriers induced switching in terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 39(12), 1211–1220 (2018).
[Crossref]

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Modulating the near field coupling through resonator displacement in planar terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 38(1), 124–134 (2017).
[Crossref]

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Probing the near-field inductive coupling in broadside coupled terahertz metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017).
[Crossref]

Reiten, M.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Rockstuhl, C.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Roy Chowdhury, D.

D. Roy Chowdhury, R. Singh, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

Sarma, A. K.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

Shen, J.

X. Yang, B. Zhang, and J. Shen, “An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial,” Opt. Quantum Electron. 50(8), 315 (2018).
[Crossref]

Singh, R.

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active thz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light: Sci. Appl. 7(1), 28 (2018).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108(1), 011110 (2016).
[Crossref]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

D. R. Chowdhury, A. K. Azad, W. Zhang, and R. Singh, “Near field coupling in passive and active terahertz metamaterial devices,” IEEE Trans. Terahertz Sci. Technol. 3(6), 783–790 (2013).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

D. R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A. J. Taylor, and J. F. O’Hara, “Tailored resonator coupling for modifying the terahertz metamaterial response,” Opt. Express 19(11), 10679–10685 (2011).
[Crossref]

Smirnova, E.

J. F. O’Hara, E. Smirnova, A. K. Azad, H.-T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 1–10 (2007).
[Crossref]

Smith, D.

T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

Sriram, S.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Srivastava, Y. K.

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active thz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light: Sci. Appl. 7(1), 28 (2018).
[Crossref]

S. J. M. Rao, Y. K. Srivastava, G. Kumar, and D. R. Chowdhury, “Modulating fundamental resonance in capacitive coupled asymmetric terahertz metamaterials,” Sci. Rep. 8(1), 16773 (2018).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108(1), 011110 (2016).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).
[Crossref]

Stewart, W.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Sun, H.

Taylor, A. J.

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104(10), 101105 (2014).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

D. R. Chowdhury, R. Singh, M. Reiten, J. Zhou, A. J. Taylor, and J. F. O’Hara, “Tailored resonator coupling for modifying the terahertz metamaterial response,” Opt. Express 19(11), 10679–10685 (2011).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

J. F. O’Hara, E. Smirnova, A. K. Azad, H.-T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 1–10 (2007).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

Tian, C.

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Tian, Y.

R. Xia, X. Jing, H. Zhu, W. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Tian, Z.

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Tonouchi, M.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Upadhyay, A.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and $\mu$μ,” Sov. physics uspekhi 10(4), 509–514 (1968).
[Crossref]

Vier, D.

T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Wang, K.

Wang, Q.

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Wang, W.

R. Xia, X. Jing, H. Zhu, W. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Wen, X.

Withayachumnankul, W.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Wu, L.

Y. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Xia, R.

R. Xia, X. Jing, H. Zhu, W. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Xu, N.

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

Xu, Q.

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

Yang, X.

X. Yang, B. Zhang, and J. Shen, “An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial,” Opt. Quantum Electron. 50(8), 315 (2018).
[Crossref]

Yang, Y. L.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Yang, Z.

Yen, T.-J.

T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Zhang, B.

X. Yang, B. Zhang, and J. Shen, “An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial,” Opt. Quantum Electron. 50(8), 315 (2018).
[Crossref]

Zhang, C.

C. Li, C.-C. Chang, Q. Zhou, C. Zhang, and H.-T. Chen, “Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs,” Opt. Express 25(21), 25842–25852 (2017).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Zhang, H.

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active thz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light: Sci. Appl. 7(1), 28 (2018).
[Crossref]

Zhang, J.

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Zhang, S.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Zhang, W.

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

D. R. Chowdhury, A. K. Azad, W. Zhang, and R. Singh, “Near field coupling in passive and active terahertz metamaterial devices,” IEEE Trans. Terahertz Sci. Technol. 3(6), 783–790 (2013).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, X.

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active thz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light: Sci. Appl. 7(1), 28 (2018).
[Crossref]

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Zhang, Y.

Zhang, Z.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Zhao, J.

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B: Lasers Opt. 122(10), 255 (2016).
[Crossref]

Zhao, J.-C.

Y. Cheng, J.-C. Zhao, X. Mao, and R. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Zhao, X.

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Zhao, Y.

Zheng, J.

Zhou, J.

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Zhou, Q.

Zhou, Y. J.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Zhu, H.

R. Xia, X. Jing, H. Zhu, W. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Zi, J.

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

Act. Passive Electron. Compon. (1)

J. F. O’Hara, E. Smirnova, A. K. Azad, H.-T. Chen, and A. J. Taylor, “Effects of microstructure variations on macroscopic terahertz metafilm properties,” Act. Passive Electron. Compon. 2007, 1–10 (2007).
[Crossref]

Adv. Opt. Mater. (2)

L. Cong, Y. K. Srivastava, and R. Singh, “Near-field inductive coupling induced polarization control in metasurfaces,” Adv. Opt. Mater. 4(6), 848–852 (2016).
[Crossref]

L. Cong, N. Xu, W. Zhang, and R. Singh, “Polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Adv. Opt. Mater. 3(9), 1176–1183 (2015).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

J. Zhao and Y. Cheng, “A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial,” Appl. Phys. B: Lasers Opt. 122(10), 255 (2016).
[Crossref]

Appl. Phys. Lett. (10)

L. Cong, Y. K. Srivastava, and R. Singh, “Inter and intra-metamolecular interaction enabled broadband high-efficiency polarization control in metasurfaces,” Appl. Phys. Lett. 108(1), 011110 (2016).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband reflective polarization convertor for terahertz waves,” Appl. Phys. Lett. 105(18), 181111 (2014).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

D. Roy Chowdhury, R. Singh, A. J. Taylor, H.-T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102(1), 011122 (2013).
[Crossref]

J. Zi, Q. Xu, Q. Wang, C. Tian, Y. Li, X. Zhang, J. Han, and W. Zhang, “Antireflection-assisted all-dielectric terahertz metamaterial polarization converter,” Appl. Phys. Lett. 113(10), 101104 (2018).
[Crossref]

D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011).
[Crossref]

D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, and A. K. Azad, “Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials,” Appl. Phys. Lett. 104(10), 101105 (2014).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

X. Chen, S. Ghosh, Q. Xu, C. Ouyang, Y. Li, X. Zhang, Z. Tian, J. Gu, L. Liu, A. K. Azad, and et al., “Active control of polarization-dependent near-field coupling in hybrid metasurfaces,” Appl. Phys. Lett. 113(6), 061111 (2018).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Probing the near-field inductive coupling in broadside coupled terahertz metamaterials,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017).
[Crossref]

IEEE Photonics J. (1)

J. Zhao, Y. Cheng, and Z. Cheng, “Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for terahertz waves,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

IEEE Trans. Antennas Propag. (1)

R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antennas Propag. 51(10), 2572–2581 (2003).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

D. R. Chowdhury, A. K. Azad, W. Zhang, and R. Singh, “Near field coupling in passive and active terahertz metamaterial devices,” IEEE Trans. Terahertz Sci. Technol. 3(6), 783–790 (2013).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (2)

S. J. M. Rao, D. Kumar, G. Kumar, and D. R. Chowdhury, “Modulating the near field coupling through resonator displacement in planar terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 38(1), 124–134 (2017).
[Crossref]

S. J. M. Rao, G. Kumar, A. K. Azad, and D. R. Chowdhury, “Ultrafast relaxation of charge carriers induced switching in terahertz metamaterials,” J. Infrared, Millimeter, Terahertz Waves 39(12), 1211–1220 (2018).
[Crossref]

J. Mod. Opt. (1)

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Light: Sci. Appl. (1)

L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, “All-optical active thz metasurfaces for ultrafast polarization switching and dynamic beam splitting,” Light: Sci. Appl. 7(1), 28 (2018).
[Crossref]

Microsyst. Nanoeng. (1)

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Nat. Commun. (1)

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Commun. (1)

R. Xia, X. Jing, H. Zhu, W. Wang, Y. Tian, and Z. Hong, “Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region,” Opt. Commun. 383, 310–315 (2017).
[Crossref]

Opt. Express (4)

Opt. Quantum Electron. (1)

X. Yang, B. Zhang, and J. Shen, “An ultra-broadband and highly-efficient tunable terahertz polarization converter based on composite metamaterial,” Opt. Quantum Electron. 50(8), 315 (2018).
[Crossref]

Phys. Rev. B (1)

R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65(14), 144440 (2002).
[Crossref]

Phys. Rev. Lett. (3)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Plasmonics (1)

Y. Cheng, R. Gong, and L. Wu, “Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves,” Plasmonics 12(4), 1113–1120 (2017).
[Crossref]

Prog. Electromagn. Res. (2)

Y. Cheng, Y. Nie, Z. Cheng, and R. Z. Gong, “Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial,” Prog. Electromagn. Res. 145, 263–272 (2014).
[Crossref]

Y. Cheng, J.-C. Zhao, X. Mao, and R. Gong, “Ultrabroadband diode-like asymmetric transmission and high-efficiency cross-polarization conversion based on composite chiral metamaterial,” Prog. Electromagn. Res. 160, 89–101 (2017).
[Crossref]

Sci. Rep. (2)

S. J. M. Rao, Y. K. Srivastava, G. Kumar, and D. R. Chowdhury, “Modulating fundamental resonance in capacitive coupled asymmetric terahertz metamaterials,” Sci. Rep. 8(1), 16773 (2018).
[Crossref]

M. Islam, S. J. M. Rao, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Role of resonance modes on terahertz metamaterials based thin film sensors,” Sci. Rep. 7(1), 7355 (2017).
[Crossref]

Science (3)

T.-J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Sov. physics uspekhi (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and $\mu$μ,” Sov. physics uspekhi 10(4), 509–514 (1968).
[Crossref]

Other (1)

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of a planar THz metamaterial geometry consisting of SRRs on silicon substrate. A single unit cell consists of two circular split ring resonators of gold metal. The yellow regions represent the metallic gold areas while gray region represents silicon substrate. Each of circular resonators has outer radius of 20 $\mu m$ and inner radius r=16 $\mu m$. The w = 4 $\mu m$ and g = 4 $\mu m$ in the schematic stand for the line width and split gap of the resonators respectively. S (Separation between two resonators) = 1 $\mu m$ and the parameter $\theta$ represents rotation angle, which can be varied from 0° to 180°. Fig 1(a) Schematic view of THz transmission through metamaterial sample. Fig 1(b) represents unit cell of metamaterial with varying rotation angles.
Fig. 2.
Fig. 2. Numerically simulated transmission of the metamaterials. (a) Co polarization amplitude transmission for left SRR rotation from 0° to 180° (b) Cross polarization amplitude transmission results for left SRR rotation from 0° to 180°.
Fig. 3.
Fig. 3. Comprehensive numerical simulation transmission amplitudes for $\theta$ varying from 0° to 180°. (a) Contour plot for co polarization amplitude transmission for left SRR rotation from 0° to 180° (b) Contour plot for cross polarization amplitude transmission results for left SRR rotation from 0° to 180°.
Fig. 4.
Fig. 4. (a) Rotation angle vs resonance frequency plot for co polarization amplitude transmission. Left SRR rotation from 0° to 180° (b) Rotation angle vs cross polarization conversion amplitude plot. Left SRR rotation from 0° to 180°.
Fig. 5.
Fig. 5. Simulated surface current and electric field profiles for 0°, 90°, and 180°, (a) & (b) represents electric field and surface current profiles for 0° at 0.5246 THz. (c) & (d) represents electric field and surface current profiles for 90° at lower resonance frequency 0.4802 THz. (e) & (f) represents electric field and surface current profiles for 90° at higher resonance frequency 0.5276 THz. (g) & (h) represents electric field and surface current profiles for 180° at resonance frequency 0.4766 THz.
Fig. 6.
Fig. 6. Schematic of the RLC circuit model. The electrical components $R_{1}$, $L_{1}$, $C_{1}$ represent the resistance, inductance, capacitance describing the fundamental LC resonance of the right meta-resonator and $R_{2}$, $L_{2}$, $C_{2}$ describe the resonance for the second left resonator. $I_{1}$ and $I_{2}$ represent the excited currents in right and left resonators respectively. The parameter M is responsible for the coupling between the resonators.
Fig. 7.
Fig. 7. Terahertz amplitude transmission through the coupled resonators in planar THz metamaterials obtained from RLC circuit model for various rotations of left split ring resonator w.r.t right SRR. The results affirm numerical observations. (a) Co-polarization transmission. (b) Cross-Polarization transmission.

Tables (2)

Tables Icon

Table 1. R, L, C and M values for Co-Polarization transmission

Tables Icon

Table 2. R, L, C and M values for Cross-Polarization transmission

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

[ R 1 + j ω L 1 + 1 j ω C 1 ] I 1 + j ω M I 2 = V
j ω M I 1 + [ R 2 + j ω L 2 + 1 j ω C 2 ] I 2 = 0
I 1 = V [ R 2 + j ω L 2 + 1 j ω C 2 ] [ R 1 + j ω L 1 + 1 j ω C 1 ] [ R 2 + j ω L 2 + 1 j ω C 2 ] ω 2 M 2 j 2
I 2 = V j ω M [ R 1 + j ω L 1 + 1 j ω C 1 ] [ R 2 + j ω L 2 + 1 j ω C 2 ] ω 2 M 2 j 2
Z c r o s s = Z 1 Z 2 ( Z m ) 2 Z m
Z c o = Z 1 Z 2 ( Z m ) 2 Z 2
Z 1 = R 1 + j ω L 1 + 1 j ω C 1
Z 2 = R 2 + j ω L 2 + 1 j ω C 2
Z m = j ω M
t ( ω ) = Z t o t a l ( Z s + Z 0 ) Z s ( Z t o t a l + Z 0 ) + ( Z t o t a l Z 0 )

Metrics