Abstract

We present a metallic zinc indiffused diced ridge waveguide in magnesium doped periodically poled lithium niobate (MgO:PPLN) capable of generating over 1 W of 780 nm with 70% efficiency. Our 40 mm long waveguide has near circular fundamental mode output with diameter 10.4 µm and insertion loss of -1.17 dB. Using a commercial 2 W EDFA-based system, the SHG output power did not exhibit roll-off at maximum available pump power.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
ZnO indiffused MgO:PPLN ridge waveguides

Lewis G. Carpenter, Sam A. Berry, Rex H. S. Bannerman, Alan C. Gray, and Corin B. E. Gawith
Opt. Express 27(17) 24538-24544 (2019)

Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals

Lei Wang, Christian E. Haunhorst, Martin F. Volk, Feng Chen, and Detlef Kip
Opt. Express 23(23) 30188-30194 (2015)

Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3

Kiminori Mizuuchi, Tomoya Sugita, Kazuhisa Yamamoto, Tatsuo Kawaguchi, Takeshi Yoshino, and Minoru Imaeda
Opt. Lett. 28(15) 1344-1346 (2003)

References

  • View by:
  • |
  • |
  • |

  1. W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, Cambridge, 2003).
  2. Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
    [Crossref]
  3. C.-W. Hsu, R. Lai, C.-s. Hsu, Y.-t. Huang, K. Wu, and M.-H. Chou, “Efficient, watt-level frequency doubling and optical parametric amplification on periodically poled lithium niobate ridge waveguide,” Proc. SPIE 10902, 12 (2019).
    [Crossref]
  4. N. Kretzschmar, U. Eismann, F. Sievers, F. Chevy, and C. Salomon, “2.4-watts second-harmonic generation in ppZnO:LN ridge waveguide for lithium laser cooling,” Opt. Express 25(13), 14840 (2017).
    [Crossref]
  5. S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium,” Opt. Express 20(8), 8915 (2012).
    [Crossref]
  6. T. H. Runcorn, R. T. Murray, and J. R. Taylor, “High Average Power Second-Harmonic Generation of a CW Erbium Fiber MOPA,” IEEE Photonics Technol. Lett. 29(18), 1576–1579 (2017).
    [Crossref]
  7. A. Henderson, P. Esquinasi, and M. Levin, “6.3 Watt single frequency CW source at 780nm based on frequency conversion of a fiber laser,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications IX, vol. 7582SPIE - International Society For Optics and PhotonicsP. E. Powers, ed. (2010), p. 75820F.
  8. T. Umeki, O. Tadanaga, and M. Asobe, “Highly Efficient Wavelength Converter Using Direct-Bonded PPZnLN Ridge Waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
    [Crossref]
  9. C. Langrock, S. Kumar, J. McGeehan, A. Willner, and M. Fejer, “All-optical signal processing using /spl chi//sup (2)/ nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
    [Crossref]
  10. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
    [Crossref]
  11. L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
    [Crossref]
  12. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19(17), 16032 (2011).
    [Crossref]
  13. T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
    [Crossref]
  14. P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3 -based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
    [Crossref]
  15. F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3(4), 362 (2016).
    [Crossref]
  16. T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B: Lasers Opt. 116(4), 997–1004 (2014).
    [Crossref]
  17. D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express 19(3), 2046 (2011).
    [Crossref]
  18. S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B: Lasers Opt. 120(4), 737–749 (2015).
    [Crossref]
  19. T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Highly efficient +5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide,” IEEE Photonics Technol. Lett. 20(1), 15–17 (2008).
    [Crossref]
  20. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5(11), 1438 (2018).
    [Crossref]
  21. L. Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, “High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide,” Opt. Express 13(13), 4862 (2005).
    [Crossref]
  22. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179 (2002).
    [Crossref]
  23. L. G. Carpenter, S. A. Berry, R. H. S. Bannerman, A. C. Gray, and C. B. E. Gawith, “ZnO indiffused MgO:PPLN ridge waveguides,” Opt. Express 27(17), 24538 (2019).
    [Crossref]
  24. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hansch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792 (2009).
    [Crossref]
  25. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
    [Crossref]
  26. L. Carpenter, S. Berry, and C. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
    [Crossref]
  27. W. Young, M. Fejer, M. Digonnet, A. Marshall, and R. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightwave Technol. 10(9), 1238–1246 (1992).
    [Crossref]

2019 (2)

C.-W. Hsu, R. Lai, C.-s. Hsu, Y.-t. Huang, K. Wu, and M.-H. Chou, “Efficient, watt-level frequency doubling and optical parametric amplification on periodically poled lithium niobate ridge waveguide,” Proc. SPIE 10902, 12 (2019).
[Crossref]

L. G. Carpenter, S. A. Berry, R. H. S. Bannerman, A. C. Gray, and C. B. E. Gawith, “ZnO indiffused MgO:PPLN ridge waveguides,” Opt. Express 27(17), 24538 (2019).
[Crossref]

2018 (1)

2017 (4)

N. Kretzschmar, U. Eismann, F. Sievers, F. Chevy, and C. Salomon, “2.4-watts second-harmonic generation in ppZnO:LN ridge waveguide for lithium laser cooling,” Opt. Express 25(13), 14840 (2017).
[Crossref]

T. H. Runcorn, R. T. Murray, and J. R. Taylor, “High Average Power Second-Harmonic Generation of a CW Erbium Fiber MOPA,” IEEE Photonics Technol. Lett. 29(18), 1576–1579 (2017).
[Crossref]

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3 -based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

L. Carpenter, S. Berry, and C. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
[Crossref]

2016 (2)

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3(4), 362 (2016).
[Crossref]

2015 (2)

S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B: Lasers Opt. 120(4), 737–749 (2015).
[Crossref]

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

2014 (2)

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B: Lasers Opt. 116(4), 997–1004 (2014).
[Crossref]

2012 (1)

2011 (2)

2010 (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly Efficient Wavelength Converter Using Direct-Bonded PPZnLN Ridge Waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

2009 (1)

2008 (1)

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Highly efficient +5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide,” IEEE Photonics Technol. Lett. 20(1), 15–17 (2008).
[Crossref]

2006 (2)

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

C. Langrock, S. Kumar, J. McGeehan, A. Willner, and M. Fejer, “All-optical signal processing using /spl chi//sup (2)/ nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[Crossref]

2005 (1)

2002 (2)

1992 (1)

W. Young, M. Fejer, M. Digonnet, A. Marshall, and R. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightwave Technol. 10(9), 1238–1246 (1992).
[Crossref]

Akamatsu, D.

Alibart, O.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

Altin, P. A.

Antoni-Micollier, L.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B: Lasers Opt. 116(4), 997–1004 (2014).
[Crossref]

Arahira, S.

Asobe, M.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly Efficient Wavelength Converter Using Direct-Bonded PPZnLN Ridge Waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hansch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792 (2009).
[Crossref]

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Highly efficient +5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide,” IEEE Photonics Technol. Lett. 20(1), 15–17 (2008).
[Crossref]

Baldi, P.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Bannerman, R. H. S.

Bennetts, S.

Berry, S.

L. Carpenter, S. Berry, and C. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
[Crossref]

Berry, S. A.

Berthon, J.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B: Lasers Opt. 116(4), 997–1004 (2014).
[Crossref]

Carpenter, L.

L. Carpenter, S. Berry, and C. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
[Crossref]

Carpenter, L. G.

Chevy, F.

Chou, M.-H.

C.-W. Hsu, R. Lai, C.-s. Hsu, Y.-t. Huang, K. Wu, and M.-H. Chou, “Efficient, watt-level frequency doubling and optical parametric amplification on periodically poled lithium niobate ridge waveguide,” Proc. SPIE 10902, 12 (2019).
[Crossref]

Clark, A. S.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

Close, J. D.

Collins, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

D’Auria, V.

Das, B. K.

S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B: Lasers Opt. 120(4), 737–749 (2015).
[Crossref]

De Riedmatten, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Debs, J. E.

DeMicheli, M.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Desiatov, B.

Digonnet, M.

W. Young, M. Fejer, M. Digonnet, A. Marshall, and R. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightwave Technol. 10(9), 1238–1246 (1992).
[Crossref]

Eggleton, B. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

Eismann, U.

Emmerson, G. D.

Esquinasi, P.

A. Henderson, P. Esquinasi, and M. Levin, “6.3 Watt single frequency CW source at 780nm based on frequency conversion of a fiber laser,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications IX, vol. 7582SPIE - International Society For Optics and PhotonicsP. E. Powers, ed. (2010), p. 75820F.

Faure, B.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B: Lasers Opt. 116(4), 997–1004 (2014).
[Crossref]

Fedrici, B.

Feigelson, R.

W. Young, M. Fejer, M. Digonnet, A. Marshall, and R. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightwave Technol. 10(9), 1238–1246 (1992).
[Crossref]

Fejer, M.

C. Langrock, S. Kumar, J. McGeehan, A. Willner, and M. Fejer, “All-optical signal processing using /spl chi//sup (2)/ nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[Crossref]

W. Young, M. Fejer, M. Digonnet, A. Marshall, and R. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightwave Technol. 10(9), 1238–1246 (1992).
[Crossref]

Fejer, M. M.

Fu, Z.

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Fujimura, M.

Gallo, K.

Gawith, C.

L. Carpenter, S. Berry, and C. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
[Crossref]

Gawith, C. B. E.

Gisin, N.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Gosnell, T. R.

W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, Cambridge, 2003).

Gray, A. C.

Hansch, T. W.

Hayford, D.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Henderson, A.

A. Henderson, P. Esquinasi, and M. Levin, “6.3 Watt single frequency CW source at 780nm based on frequency conversion of a fiber laser,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications IX, vol. 7582SPIE - International Society For Optics and PhotonicsP. E. Powers, ed. (2010), p. 75820F.

Herrmann, H.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3 -based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Hong, F.-L.

Hsu, C.-s.

C.-W. Hsu, R. Lai, C.-s. Hsu, Y.-t. Huang, K. Wu, and M.-H. Chou, “Efficient, watt-level frequency doubling and optical parametric amplification on periodically poled lithium niobate ridge waveguide,” Proc. SPIE 10902, 12 (2019).
[Crossref]

Hsu, C.-W.

C.-W. Hsu, R. Lai, C.-s. Hsu, Y.-t. Huang, K. Wu, and M.-H. Chou, “Efficient, watt-level frequency doubling and optical parametric amplification on periodically poled lithium niobate ridge waveguide,” Proc. SPIE 10902, 12 (2019).
[Crossref]

Huang, Y.-t.

C.-W. Hsu, R. Lai, C.-s. Hsu, Y.-t. Huang, K. Wu, and M.-H. Chou, “Efficient, watt-level frequency doubling and optical parametric amplification on periodically poled lithium niobate ridge waveguide,” Proc. SPIE 10902, 12 (2019).
[Crossref]

Inoue, S.

Jankowski, M.

Kaiser, F.

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Kishimoto, T.

Kohno, T.

Kretzschmar, N.

Krupa, S.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Kuhn, C. C. N.

Kumar, S.

Kurimura, S.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Kurz, J. R.

Lai, R.

C.-W. Hsu, R. Lai, C.-s. Hsu, Y.-t. Huang, K. Wu, and M.-H. Chou, “Efficient, watt-level frequency doubling and optical parametric amplification on periodically poled lithium niobate ridge waveguide,” Proc. SPIE 10902, 12 (2019).
[Crossref]

Langrock, C.

Lévèque, T.

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B: Lasers Opt. 116(4), 997–1004 (2014).
[Crossref]

Levin, M.

A. Henderson, P. Esquinasi, and M. Levin, “6.3 Watt single frequency CW source at 780nm based on frequency conversion of a fiber laser,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications IX, vol. 7582SPIE - International Society For Optics and PhotonicsP. E. Powers, ed. (2010), p. 75820F.

Lin, Q.

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Liu, W.

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Loncar, M.

Luo, K. H.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3 -based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Magari, K.

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Highly efficient +5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide,” IEEE Photonics Technol. Lett. 20(1), 15–17 (2008).
[Crossref]

Marandi, A.

Marshall, A.

W. Young, M. Fejer, M. Digonnet, A. Marshall, and R. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightwave Technol. 10(9), 1238–1246 (1992).
[Crossref]

Maruyama, M.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

McDonald, G. D.

McGeehan, J.

Meany, T.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

Meier, T.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3 -based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Ming, L.

Monteiro, F.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Murray, R. T.

T. H. Runcorn, R. T. Murray, and J. R. Taylor, “High Average Power Second-Harmonic Generation of a CW Erbium Fiber MOPA,” IEEE Photonics Technol. Lett. 29(18), 1576–1579 (2017).
[Crossref]

Nakajima, H.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Namekata, N.

Ngah, L. A.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

Nippa, D.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Nishida, Y.

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hansch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792 (2009).
[Crossref]

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Highly efficient +5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide,” IEEE Photonics Technol. Lett. 20(1), 15–17 (2008).
[Crossref]

Nishikawa, T.

Nurmikko, A. V.

W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, Cambridge, 2003).

O’Connor, M. V.

Oesterling, L.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Onae, A.

Ostrowsky, D.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Ozawa, A.

Pal, S.

S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B: Lasers Opt. 120(4), 737–749 (2015).
[Crossref]

Parameswaran, K. R.

Reichelt, M.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3 -based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Risk, W. P.

W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, Cambridge, 2003).

Robins, N. P.

Roussev, R. V.

Route, R. K.

Runcorn, T. H.

T. H. Runcorn, R. T. Murray, and J. R. Taylor, “High Average Power Second-Harmonic Generation of a CW Erbium Fiber MOPA,” IEEE Photonics Technol. Lett. 29(18), 1576–1579 (2017).
[Crossref]

Salomon, C.

Sané, S. S.

Sanguinetti, B.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Sharapova, P. R.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3 -based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Sievers, F.

Silberhorn, C.

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3 -based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Smith, P. G. R.

Sohler, W.

S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B: Lasers Opt. 120(4), 737–749 (2015).
[Crossref]

Steel, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

Stinaff, E.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Suzuki, H.

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Highly efficient +5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide,” IEEE Photonics Technol. Lett. 20(1), 15–17 (2008).
[Crossref]

Tadanaga, O.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly Efficient Wavelength Converter Using Direct-Bonded PPZnLN Ridge Waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Highly efficient +5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide,” IEEE Photonics Technol. Lett. 20(1), 15–17 (2008).
[Crossref]

Tanzilli, S.

F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3(4), 362 (2016).
[Crossref]

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Taylor, J. R.

T. H. Runcorn, R. T. Murray, and J. R. Taylor, “High Average Power Second-Harmonic Generation of a CW Erbium Fiber MOPA,” IEEE Photonics Technol. Lett. 29(18), 1576–1579 (2017).
[Crossref]

Thew, R.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Tittel, W.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Umeki, T.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly Efficient Wavelength Converter Using Direct-Bonded PPZnLN Ridge Waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Highly efficient +5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide,” IEEE Photonics Technol. Lett. 20(1), 15–17 (2008).
[Crossref]

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Wang, C.

Wang, Q.

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Wang, Z.

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Williams, R. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

Willner, A.

Withford, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

Wolterman, R.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Wu, K.

C.-W. Hsu, R. Lai, C.-s. Hsu, Y.-t. Huang, K. Wu, and M.-H. Chou, “Efficient, watt-level frequency doubling and optical parametric amplification on periodically poled lithium niobate ridge waveguide,” Proc. SPIE 10902, 12 (2019).
[Crossref]

Yaegashi, H.

Yanagawa, T.

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Highly efficient +5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide,” IEEE Photonics Technol. Lett. 20(1), 15–17 (2008).
[Crossref]

Yasuda, M.

Young, W.

W. Young, M. Fejer, M. Digonnet, A. Marshall, and R. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightwave Technol. 10(9), 1238–1246 (1992).
[Crossref]

Zavatta, A.

Zbinden, H.

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

Zhang, M.

Appl. Phys. B: Lasers Opt. (2)

T. Lévèque, L. Antoni-Micollier, B. Faure, and J. Berthon, “A laser setup for rubidium cooling dedicated to space applications,” Appl. Phys. B: Lasers Opt. 116(4), 997–1004 (2014).
[Crossref]

S. Pal, B. K. Das, and W. Sohler, “Photorefractive damage resistance in Ti:PPLN waveguides with ridge geometry,” Appl. Phys. B: Lasers Opt. 120(4), 737–749 (2015).
[Crossref]

Appl. Phys. Lett. (1)

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89(19), 191123 (2006).
[Crossref]

Electron. Lett. (1)

L. Carpenter, S. Berry, and C. Gawith, “Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step,” Electron. Lett. 53(25), 1672–1674 (2017).
[Crossref]

Eur. Phys. J. D (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D 18(2), 155–160 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly Efficient Wavelength Converter Using Direct-Bonded PPZnLN Ridge Waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. H. Runcorn, R. T. Murray, and J. R. Taylor, “High Average Power Second-Harmonic Generation of a CW Erbium Fiber MOPA,” IEEE Photonics Technol. Lett. 29(18), 1576–1579 (2017).
[Crossref]

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Highly efficient +5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide,” IEEE Photonics Technol. Lett. 20(1), 15–17 (2008).
[Crossref]

J. Lightwave Technol. (2)

C. Langrock, S. Kumar, J. McGeehan, A. Willner, and M. Fejer, “All-optical signal processing using /spl chi//sup (2)/ nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[Crossref]

W. Young, M. Fejer, M. Digonnet, A. Marshall, and R. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightwave Technol. 10(9), 1238–1246 (1992).
[Crossref]

J. Mod. Opt. (1)

L. Oesterling, F. Monteiro, S. Krupa, D. Nippa, R. Wolterman, D. Hayford, E. Stinaff, B. Sanguinetti, H. Zbinden, and R. Thew, “Development of photon pair sources using periodically poled lithium niobate waveguide technology and fiber optic components,” J. Mod. Opt. 62(20), 1722–1731 (2015).
[Crossref]

Laser Photonics Rev. (1)

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photonics Rev. 8(3), L42–L46 (2014).
[Crossref]

New J. Phys. (1)

P. R. Sharapova, K. H. Luo, H. Herrmann, M. Reichelt, T. Meier, and C. Silberhorn, “Toolbox for the design of LiNbO3 -based passive and active integrated quantum circuits,” New J. Phys. 19(12), 123009 (2017).
[Crossref]

Opt. Commun. (1)

Q. Wang, Z. Wang, Z. Fu, W. Liu, and Q. Lin, “A compact laser system for the cold atom gravimeter,” Opt. Commun. 358, 82–87 (2016).
[Crossref]

Opt. Express (7)

N. Kretzschmar, U. Eismann, F. Sievers, F. Chevy, and C. Salomon, “2.4-watts second-harmonic generation in ppZnO:LN ridge waveguide for lithium laser cooling,” Opt. Express 25(13), 14840 (2017).
[Crossref]

S. S. Sané, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, “11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium,” Opt. Express 20(8), 8915 (2012).
[Crossref]

S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19(17), 16032 (2011).
[Crossref]

D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express 19(3), 2046 (2011).
[Crossref]

L. Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, “High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide,” Opt. Express 13(13), 4862 (2005).
[Crossref]

L. G. Carpenter, S. A. Berry, R. H. S. Bannerman, A. C. Gray, and C. B. E. Gawith, “ZnO indiffused MgO:PPLN ridge waveguides,” Opt. Express 27(17), 24538 (2019).
[Crossref]

T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hansch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17(20), 17792 (2009).
[Crossref]

Opt. Lett. (1)

Optica (2)

Proc. SPIE (1)

C.-W. Hsu, R. Lai, C.-s. Hsu, Y.-t. Huang, K. Wu, and M.-H. Chou, “Efficient, watt-level frequency doubling and optical parametric amplification on periodically poled lithium niobate ridge waveguide,” Proc. SPIE 10902, 12 (2019).
[Crossref]

Other (2)

A. Henderson, P. Esquinasi, and M. Levin, “6.3 Watt single frequency CW source at 780nm based on frequency conversion of a fiber laser,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications IX, vol. 7582SPIE - International Society For Optics and PhotonicsP. E. Powers, ed. (2010), p. 75820F.

W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers (Cambridge University Press, Cambridge, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The fabrication of the diced ridge PPLN waveguides: (1) a 100 nm metallic zinc layer is deposited onto a PPLN wafer, (2) the metallic zinc is indiffused below 950 $^\circ$C in an O$_2$ atmosphere to create a planar guiding layer, (3) ridge waveguides are diced into the wafer (including facets) using ductile dicing, and (4) the resulting multiple ridge waveguide chip structure when singulated out of the wafer.
Fig. 2.
Fig. 2. Scanning electron microscope image of diced ridge waveguides in MgO:PPLN. Two ridge waveguides are shown here defined by three optical quality dicing cuts.
Fig. 3.
Fig. 3. Experimental setup used to characterise SHG conversion efficiency of our MgO:PPLN ridge waveguides. TLS: tunable laser source, IFP-1550: Inline fiber polarizer (1550 nm), ZFC: zoom fiber collimator, DMLP950: dichroic mirror (long pass 950 nm cut-on wavelength).
Fig. 4.
Fig. 4. SHG output power vs. launched pump power in the waveguide. At the maximum powers available in the lab, the PPLN waveguide did not exhibit signs of efficiency roll off due to parasitic nonlinear effects and the efficiency fit in the linear regime shows a normalised conversion efficiency of 100.6 %/W (6.29 %/W cm$^2$).
Fig. 5.
Fig. 5. (a) SHG spectra at highest launched pump power 1.59 W, measured exiting the waveguide. The crystal temperature was tuned to deliver the maximum output (113 $^\circ$C) when pumped at 1560.4 nm to deliver maximum power at the Rb$^{87}$ D$_2$ line used for rubidium magneto-optical traps. The phasematching bandwidth is 0.3 nm FWHM, in agreement with the phasematching bandwidth expected for bulk PPLN. (b) The SHG spectra with 160 mW of pump power. The similarities in the spectra at these two extremes highlights its phasematching stability over the powers used in this study.
Fig. 6.
Fig. 6. Top - waveguide mode output at 1560 nm with 1-d averaged line plots demonstrating single mode output with near-circular ISO second-moment mode field diameter (MFD) of 9.91 µm and 11.14 µm for the $x$ and $y$ axes respectively. Bottom - waveguide mode output measured using a 780 nm SLED, the MFD is measured at 11.22 µm and 8.99 µm for the $x$ and $y$ axes respectively; however when launched with 780 nm light the waveguide, unlike its SHG output, is multimode.

Tables (1)

Tables Icon

Table 1. PPLN waveguide CW SHG powers and efficiencies for the C-band

Metrics