Abstract

We analyze the characteristic of amplified spontaneous emission (ASE) in a high power diode pumped Nd:YAG slab gain module. Simultaneously the characteristic of parasitic oscillation (PO) is considered. A high-efficiency three-dimensional coupled ASE calculation model using the geometric optical tracing technique is proposed. The model considers the stimulated emission cross-section correction by thermal effect and diffuse reflection on rough surfaces. From the experiment result of the fluorescence curve and small signal gain coefficient, the impact of ASE and PO on QCW-slab amplification is evident. Quantitative agreement between the ASE numerical model and experiment is achieved. The energy storage as well as the gain limit condition in QCW-slab amplification are investigated with the help of experiment. For the Nd:YAG slab with the size of 150.2 mm*30 mm*2.5 mm, the energy storage limit is 1100 mJ.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb3+:YAG laser amplifier for the HiLASE Project

Magdalena Sawicka, Martin Divoky, Jakub Novak, Antonio Lucianetti, Bedrich Rus, and Tomas Mocek
J. Opt. Soc. Am. B 29(6) 1270-1276 (2012)

Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs

D. Albach, J.-C. Chanteloup, and G. le Touzé
Opt. Express 17(5) 3792-3801 (2009)

Yb:YAG master oscillator power amplifier for remote wind sensing

A. K. Sridharan, S. Saraf, and R. L. Byer
Appl. Opt. 46(30) 7552-7565 (2007)

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, “Solid State Laser Engineering”
  2. J. B Trenholme, “Naval Research Laboratory”
  3. J. M. Mcmahon, J. Emmett, J. F. Holzrichter, and J. B. Trenholme, “A glass-disk-laser amplifier,” IEEE J. Quantum Electron. 9(10), 992–999 (1973).
    [Crossref]
  4. K. Contag, M. Karszewskik, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
    [Crossref]
  5. J. M. Mcmahon, Report No. 7838. “Laser research and development,” Naval Research Laboratory: Washington, DC (1974).
  6. D. C. Brown, S. D. Jacobs, and N. Nee, “Parasitic oscillations, absorption, stored energy density and heat density in activemirror and disk amplifiers,” Appl. Opt. 17(2), 211–224 (1978).
    [Crossref]
  7. D. C. Brown, High-Peak-Power Nd:Glass Laser Systems (Springer, 1981).
  8. J. A. Glaze, S. Guch, and J. B. Trenhlome, “Parasitic suppression in large aperture Nd:Glass disk laser amplifiers,” Appl. Opt. 13(12), 2808 (1974).
    [Crossref]
  9. S. Guch Jr, “Parasitic suppression in large aperture disk lasers employing liquid edge claddings,” Appl. Opt. 15(6), 1453–1457 (1976).
    [Crossref]
  10. D. A. Copeland, “Amplified spontaneous emission (ASE) models and approximations for thin-disk laser modeling,” Proc. SPIE 8599, 85991P (2013).
    [Crossref]
  11. J. Speiser, “Scaling of thin-disk lasers—influence of amplified spontaneous emission,” J. Opt. Soc. Am. B 26(1), 26–35 (2009).
    [Crossref]
  12. A. Hariri and S. Sarikhani, “Theoretical study of amplified spontaneous emission using a model based on a geometrically dependent gain coefficient,” J. Opt. 15(8), 085703 (2013).
    [Crossref]
  13. D. Kouznetsov and J. F. Bisson, “Role of undoped cap in the scaling of thin-disk lasers,” J. Opt. Soc. Am. B 25(3), 338–345 (2008).
    [Crossref]
  14. K. Ertel, S. Banerjee, P. D. Mason, P. J. Phillips, M. Siebold, C. Hernandezh-Comez, and J. C. Collier, “Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation,” Opt. Express 19(27), 26610–26626 (2011).
    [Crossref]
  15. Y. Qiao, X. Zhu, G. Zhu, Y. Chen, W. Zhao, and H. Wang, “Analytical model of amplified spontaneous emission with different thickness anti-ASE caps for thin disk lasers,” Appl. Opt. 56(18), 5131–5138 (2017).
    [Crossref]
  16. N. P. Barnes and B. M. Walsh, “Amplified Spontaneous Emission-Application to Nd:YAG Lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
    [Crossref]
  17. Q. Lü and S. Dong, “Numerical and experimental investigation on ASE effectsin high-power slab amplifiers,” Opt. Laser Technol. 25(5), 309–314 (1993).
    [Crossref]
  18. C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified Spontaneous Emission in Slab Amplifiers”,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
    [Crossref]
  19. A. K. Sridharan, S. Saraf, S. Sinha, and R. L. Byer, “Zigzag slabs for soild-state laser amplifiers:batch fabrication and parasitic oscillation suppression,” Appl. Opt. 45(14), 3340–3351 (2006).
    [Crossref]
  20. D. Albach, J.-C. Chanteloup, and G. Le Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb^3+: YAG slabs,” Opt. Express 17(5), 3792–3801 (2009).
    [Crossref]
  21. M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb:YAG laser amplifier for the HiLASE Project,” J. Opt. Soc. Am. B 29(6), 1270–1276 (2012).
    [Crossref]
  22. M. Sawicka, M. Divoky, A. Lucianetti, and T. Mocek, “Effect of amplified spontaneous emission and parasitic oscillations on the performance of cryogenically-cooled slab amplifiers,” Laser Part. Beams 31(4), 553–560 (2013).
    [Crossref]
  23. B. Chen, J. Dong, M. Patel, Y. Chen, A. Kar, and M. A. Bass, “Modeling of High Power Solid-State Slab Lasers,” Proc. SPIE 4968, 1 (2003).
    [Crossref]

2017 (1)

2013 (3)

M. Sawicka, M. Divoky, A. Lucianetti, and T. Mocek, “Effect of amplified spontaneous emission and parasitic oscillations on the performance of cryogenically-cooled slab amplifiers,” Laser Part. Beams 31(4), 553–560 (2013).
[Crossref]

D. A. Copeland, “Amplified spontaneous emission (ASE) models and approximations for thin-disk laser modeling,” Proc. SPIE 8599, 85991P (2013).
[Crossref]

A. Hariri and S. Sarikhani, “Theoretical study of amplified spontaneous emission using a model based on a geometrically dependent gain coefficient,” J. Opt. 15(8), 085703 (2013).
[Crossref]

2012 (1)

2011 (1)

2009 (2)

2008 (1)

2006 (2)

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified Spontaneous Emission in Slab Amplifiers”,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[Crossref]

A. K. Sridharan, S. Saraf, S. Sinha, and R. L. Byer, “Zigzag slabs for soild-state laser amplifiers:batch fabrication and parasitic oscillation suppression,” Appl. Opt. 45(14), 3340–3351 (2006).
[Crossref]

2003 (1)

B. Chen, J. Dong, M. Patel, Y. Chen, A. Kar, and M. A. Bass, “Modeling of High Power Solid-State Slab Lasers,” Proc. SPIE 4968, 1 (2003).
[Crossref]

1999 (2)

N. P. Barnes and B. M. Walsh, “Amplified Spontaneous Emission-Application to Nd:YAG Lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

K. Contag, M. Karszewskik, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

1993 (1)

Q. Lü and S. Dong, “Numerical and experimental investigation on ASE effectsin high-power slab amplifiers,” Opt. Laser Technol. 25(5), 309–314 (1993).
[Crossref]

1978 (1)

1976 (1)

1974 (1)

1973 (1)

J. M. Mcmahon, J. Emmett, J. F. Holzrichter, and J. B. Trenholme, “A glass-disk-laser amplifier,” IEEE J. Quantum Electron. 9(10), 992–999 (1973).
[Crossref]

Albach, D.

Banerjee, S.

Barnes, N. P.

N. P. Barnes and B. M. Walsh, “Amplified Spontaneous Emission-Application to Nd:YAG Lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

Bass, M. A.

B. Chen, J. Dong, M. Patel, Y. Chen, A. Kar, and M. A. Bass, “Modeling of High Power Solid-State Slab Lasers,” Proc. SPIE 4968, 1 (2003).
[Crossref]

Bisson, J. F.

Brown, D. C.

Byer, R. L.

Chanteloup, J.-C.

Chen, B.

B. Chen, J. Dong, M. Patel, Y. Chen, A. Kar, and M. A. Bass, “Modeling of High Power Solid-State Slab Lasers,” Proc. SPIE 4968, 1 (2003).
[Crossref]

Chen, Y.

Collier, J. C.

Contag, K.

K. Contag, M. Karszewskik, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Copeland, D. A.

D. A. Copeland, “Amplified spontaneous emission (ASE) models and approximations for thin-disk laser modeling,” Proc. SPIE 8599, 85991P (2013).
[Crossref]

Divoky, M.

M. Sawicka, M. Divoky, A. Lucianetti, and T. Mocek, “Effect of amplified spontaneous emission and parasitic oscillations on the performance of cryogenically-cooled slab amplifiers,” Laser Part. Beams 31(4), 553–560 (2013).
[Crossref]

M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb:YAG laser amplifier for the HiLASE Project,” J. Opt. Soc. Am. B 29(6), 1270–1276 (2012).
[Crossref]

Dong, J.

B. Chen, J. Dong, M. Patel, Y. Chen, A. Kar, and M. A. Bass, “Modeling of High Power Solid-State Slab Lasers,” Proc. SPIE 4968, 1 (2003).
[Crossref]

Dong, S.

Q. Lü and S. Dong, “Numerical and experimental investigation on ASE effectsin high-power slab amplifiers,” Opt. Laser Technol. 25(5), 309–314 (1993).
[Crossref]

Emmett, J.

J. M. Mcmahon, J. Emmett, J. F. Holzrichter, and J. B. Trenholme, “A glass-disk-laser amplifier,” IEEE J. Quantum Electron. 9(10), 992–999 (1973).
[Crossref]

Ertel, K.

Giesen, A.

K. Contag, M. Karszewskik, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Glaze, J. A.

Goren, C.

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified Spontaneous Emission in Slab Amplifiers”,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[Crossref]

Guch, S.

Guch Jr, S.

Hariri, A.

A. Hariri and S. Sarikhani, “Theoretical study of amplified spontaneous emission using a model based on a geometrically dependent gain coefficient,” J. Opt. 15(8), 085703 (2013).
[Crossref]

Hernandezh-Comez, C.

Holzrichter, J. F.

J. M. Mcmahon, J. Emmett, J. F. Holzrichter, and J. B. Trenholme, “A glass-disk-laser amplifier,” IEEE J. Quantum Electron. 9(10), 992–999 (1973).
[Crossref]

Hugel, H.

K. Contag, M. Karszewskik, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Jacobs, S. D.

Kar, A.

B. Chen, J. Dong, M. Patel, Y. Chen, A. Kar, and M. A. Bass, “Modeling of High Power Solid-State Slab Lasers,” Proc. SPIE 4968, 1 (2003).
[Crossref]

Karszewskik, M.

K. Contag, M. Karszewskik, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Koechner, W.

W. Koechner, “Solid State Laser Engineering”

Kouznetsov, D.

Le Touzé, G.

Lü, Q.

Q. Lü and S. Dong, “Numerical and experimental investigation on ASE effectsin high-power slab amplifiers,” Opt. Laser Technol. 25(5), 309–314 (1993).
[Crossref]

Lucianetti, A.

M. Sawicka, M. Divoky, A. Lucianetti, and T. Mocek, “Effect of amplified spontaneous emission and parasitic oscillations on the performance of cryogenically-cooled slab amplifiers,” Laser Part. Beams 31(4), 553–560 (2013).
[Crossref]

M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb:YAG laser amplifier for the HiLASE Project,” J. Opt. Soc. Am. B 29(6), 1270–1276 (2012).
[Crossref]

Marcus, G.

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified Spontaneous Emission in Slab Amplifiers”,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[Crossref]

Mason, P. D.

Mcmahon, J. M.

J. M. Mcmahon, J. Emmett, J. F. Holzrichter, and J. B. Trenholme, “A glass-disk-laser amplifier,” IEEE J. Quantum Electron. 9(10), 992–999 (1973).
[Crossref]

J. M. Mcmahon, Report No. 7838. “Laser research and development,” Naval Research Laboratory: Washington, DC (1974).

Mocek, T.

M. Sawicka, M. Divoky, A. Lucianetti, and T. Mocek, “Effect of amplified spontaneous emission and parasitic oscillations on the performance of cryogenically-cooled slab amplifiers,” Laser Part. Beams 31(4), 553–560 (2013).
[Crossref]

M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb:YAG laser amplifier for the HiLASE Project,” J. Opt. Soc. Am. B 29(6), 1270–1276 (2012).
[Crossref]

Nee, N.

Novak, J.

Patel, M.

B. Chen, J. Dong, M. Patel, Y. Chen, A. Kar, and M. A. Bass, “Modeling of High Power Solid-State Slab Lasers,” Proc. SPIE 4968, 1 (2003).
[Crossref]

Pearl, S.

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified Spontaneous Emission in Slab Amplifiers”,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[Crossref]

Phillips, P. J.

Qiao, Y.

Rus, B.

Saraf, S.

Sarikhani, S.

A. Hariri and S. Sarikhani, “Theoretical study of amplified spontaneous emission using a model based on a geometrically dependent gain coefficient,” J. Opt. 15(8), 085703 (2013).
[Crossref]

Sawicka, M.

M. Sawicka, M. Divoky, A. Lucianetti, and T. Mocek, “Effect of amplified spontaneous emission and parasitic oscillations on the performance of cryogenically-cooled slab amplifiers,” Laser Part. Beams 31(4), 553–560 (2013).
[Crossref]

M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb:YAG laser amplifier for the HiLASE Project,” J. Opt. Soc. Am. B 29(6), 1270–1276 (2012).
[Crossref]

Siebold, M.

Sinha, S.

Speiser, J.

Sridharan, A. K.

Stewen, C.

K. Contag, M. Karszewskik, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Trenhlome, J. B.

Trenholme, J. B

J. B Trenholme, “Naval Research Laboratory”

Trenholme, J. B.

J. M. Mcmahon, J. Emmett, J. F. Holzrichter, and J. B. Trenholme, “A glass-disk-laser amplifier,” IEEE J. Quantum Electron. 9(10), 992–999 (1973).
[Crossref]

Tzuk, Y.

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified Spontaneous Emission in Slab Amplifiers”,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[Crossref]

Walsh, B. M.

N. P. Barnes and B. M. Walsh, “Amplified Spontaneous Emission-Application to Nd:YAG Lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

Wang, H.

Zhao, W.

Zhu, G.

Zhu, X.

Appl. Opt. (5)

IEEE J. Quantum Electron. (3)

N. P. Barnes and B. M. Walsh, “Amplified Spontaneous Emission-Application to Nd:YAG Lasers,” IEEE J. Quantum Electron. 35(1), 101–109 (1999).
[Crossref]

C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified Spontaneous Emission in Slab Amplifiers”,” IEEE J. Quantum Electron. 42(12), 1239–1247 (2006).
[Crossref]

J. M. Mcmahon, J. Emmett, J. F. Holzrichter, and J. B. Trenholme, “A glass-disk-laser amplifier,” IEEE J. Quantum Electron. 9(10), 992–999 (1973).
[Crossref]

J. Opt. (1)

A. Hariri and S. Sarikhani, “Theoretical study of amplified spontaneous emission using a model based on a geometrically dependent gain coefficient,” J. Opt. 15(8), 085703 (2013).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Part. Beams (1)

M. Sawicka, M. Divoky, A. Lucianetti, and T. Mocek, “Effect of amplified spontaneous emission and parasitic oscillations on the performance of cryogenically-cooled slab amplifiers,” Laser Part. Beams 31(4), 553–560 (2013).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

Q. Lü and S. Dong, “Numerical and experimental investigation on ASE effectsin high-power slab amplifiers,” Opt. Laser Technol. 25(5), 309–314 (1993).
[Crossref]

Proc. SPIE (2)

B. Chen, J. Dong, M. Patel, Y. Chen, A. Kar, and M. A. Bass, “Modeling of High Power Solid-State Slab Lasers,” Proc. SPIE 4968, 1 (2003).
[Crossref]

D. A. Copeland, “Amplified spontaneous emission (ASE) models and approximations for thin-disk laser modeling,” Proc. SPIE 8599, 85991P (2013).
[Crossref]

Quantum Electron. (1)

K. Contag, M. Karszewskik, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Other (4)

J. M. Mcmahon, Report No. 7838. “Laser research and development,” Naval Research Laboratory: Washington, DC (1974).

D. C. Brown, High-Peak-Power Nd:Glass Laser Systems (Springer, 1981).

W. Koechner, “Solid State Laser Engineering”

J. B Trenholme, “Naval Research Laboratory”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. The Nd:YAG slab and quasi-continuous end pumped slab gain module: (a) The structure of Nd:YAG slab;(b) The real products of quasi-continuous end pumped slab gain module
Fig. 2.
Fig. 2. Mind mapping of the ASE calculation model
Fig. 3.
Fig. 3. The calculation results for thermal effect in slab(a) Distribution of temperature in the gain medium;(b) Distribution of temperature gradient
Fig. 4.
Fig. 4. Lambert’s cosine law.
Fig. 5.
Fig. 5. Calculated results :(a) weight coefficient in ASE; (b) Proportion of the population inversion
Fig. 6.
Fig. 6. The calculation result of the small signal gain coefficient
Fig. 7.
Fig. 7. Parasitic oscillation and the threshold current under the different pump pulse width: (a) 250 µs 160 A;(b) 300 µs 140 A;(c) 350 µs 130 A
Fig. 8.
Fig. 8. Schematic of measurement for small gain coefficient in slab
Fig. 9.
Fig. 9. Experiment value and theoretical value of small gain coefficient in slab

Tables (1)

Tables Icon

Table 1. The slab parameters

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d n 2 d t = W p ( n t o t n 2 ) n 2 τ f W p n t o t n 2 τ f
g 0 = Δ n σ = P i n n t r n a b s τ f σ h v p V s l a b ( 1 e t p / t p τ f τ f )
R 1 R 2 exp [ ( g 0 α ) ] L = 1
N s p = n 2 τ d V d Ω 4 π
N A S E = N s p ( e g 0 L ( x , y , z , Ω ) 1 ) = n 2 4 π τ ( e g 0 L ( x , y , z , Ω ) 1 ) d V d Ω
n A S E = V Ω N A S E d V d Ω / V s l a b = V , Ω n 2 4 π τ V s l a b ( e g 0 L ( x , y , z , Ω ) 1 )
W p n t o t = n 2 τ f + V , Ω n 2 4 π τ V s l a b ( e g 0 L ( x , y , z , Ω ) 1 )
σ e ( N d : Y A G ) = ( 3.9026 0.0037 T ) × 10 19 c m 2
I s c a t ( θ , φ ) = η d i f f ( θ ) I i n = R d i f f I i n π c o s ( θ )
g 0 = E s t E s V S l a b

Metrics