Abstract

We designed and fabricated a flat multi-level diffractive lens (MDL) that is achromatic in the SWIR band (875 nm to 1675 nm). The MDL had a focal length of 25 mm, aperture diameter of 8.93 mm, and thickness of only 2.6 µm. By pairing the MDL with a SWIR image sensor, we also characterized its imaging performance in terms of the point-spread functions, modulation-transfer functions, and still and video imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-thin near infrared camera enabled by a flat multi-level diffractive lens

Sourangsu Banerji, Monjurul Meem, Apratim Majumder, Fernando Vasquez Guevara, Berardi Sensale-Rodriguez, and Rajesh Menon
Opt. Lett. 44(22) 5450-5452 (2019)

Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters

Nima Pahlevan, Jean-Claude Roger, and Ziauddin Ahmad
Opt. Express 25(6) 6015-6035 (2017)

Full-color video and still imaging using two flat lenses

Monjurul Meem, Apratim Majumder, and Rajesh Menon
Opt. Express 26(21) 26866-26871 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras and applications,” Proc. SPIE 6939, 69390I (2008).
    [Crossref]
  2. Y. G. Soskind, “Diffractive optics technologies in infrared systems,” In Infrared Technology and Applications XLI (Vol. 9451, p. 94511 T). International Society for Optics and Photonics.
  3. G. G. Slusarev, “Optical Systems with Phase Layers,” Soviet Physics-Doclady, Vol. 2, No. 2, pp. 161-163 (1957). Reprinted in: Selected Papers on Holographic and Diffractive Lenses and Mirrors, T. W. Stone and B. J. Thompson eds., SPIE Milestone series, Vol. MS 34, (SPIE, 1991), pp. 412–414.
  4. G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” Technical Report 854 (MIT Lincoln Laboratory, 1989).
  5. P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
    [Crossref]
  6. N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
    [Crossref]
  7. M. Meem, A. Majumder, and R. Menon, “Full-color video and still imaging using two flat lenses,” Opt. Express 26(21), 26866 (2018).
    [Crossref]
  8. M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, Broadband lightweight flat lenses for longwave-infrared imaging. arXiv: 1904.09011. (2019).
  9. S. Banerji and B. Sensale-Rodriguez, “A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements,” Sci. Rep. 9(1), 5801 (2019).
    [Crossref]
  10. S. Banerji and B. Sensale-Rodriguez, “3D-printed diffractive terahertz optical elements through computational design,” In Micro-and Nanotechnology Sensors, Systems, and Applications XI (Vol. 10982, p. 109822X). International Society for Optics and Photonics (2019).
  11. S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface” arXiv: 1907.06251. (2019).
  12. The quantum efficiency is available (labeled STD-SWIR) here: http://www.sensorsinc.com/images/uploads/documents/VIS_NIR_SWIR_FPA_TYPICAL_QE_CHART.pdf
  13. S. Shrestha, A. Overvig, M. Lu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light: Sci. Appl. 7(1), 85 (2018).
    [Crossref]
  14. M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
    [Crossref]
  15. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
    [Crossref]
  16. J. Hu, C. H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
    [Crossref]
  17. S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Imaging with flat optics: metalenses or diffractive lenses?” Optica 6(6), 805 (2019).
    [Crossref]

2019 (2)

S. Banerji and B. Sensale-Rodriguez, “A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements,” Sci. Rep. 9(1), 5801 (2019).
[Crossref]

S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Imaging with flat optics: metalenses or diffractive lenses?” Optica 6(6), 805 (2019).
[Crossref]

2018 (3)

S. Shrestha, A. Overvig, M. Lu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light: Sci. Appl. 7(1), 85 (2018).
[Crossref]

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref]

M. Meem, A. Majumder, and R. Menon, “Full-color video and still imaging using two flat lenses,” Opt. Express 26(21), 26866 (2018).
[Crossref]

2017 (1)

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

2016 (2)

J. Hu, C. H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[Crossref]

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref]

2015 (1)

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref]

2008 (1)

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras and applications,” Proc. SPIE 6939, 69390I (2008).
[Crossref]

Aieta, F.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref]

Banerji, S.

S. Banerji and B. Sensale-Rodriguez, “A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements,” Sci. Rep. 9(1), 5801 (2019).
[Crossref]

S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Imaging with flat optics: metalenses or diffractive lenses?” Optica 6(6), 805 (2019).
[Crossref]

S. Banerji and B. Sensale-Rodriguez, “3D-printed diffractive terahertz optical elements through computational design,” In Micro-and Nanotechnology Sensors, Systems, and Applications XI (Vol. 10982, p. 109822X). International Society for Optics and Photonics (2019).

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, Broadband lightweight flat lenses for longwave-infrared imaging. arXiv: 1904.09011. (2019).

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface” arXiv: 1907.06251. (2019).

Capasso, F.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref]

Chen, J.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Chen, J. W.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Chu, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Genevet, P.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref]

Hansen, M. P.

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras and applications,” Proc. SPIE 6939, 69390I (2008).
[Crossref]

Hu, J.

J. Hu, C. H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[Crossref]

Kanhaiya, P.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref]

Kats, M. A.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref]

Khorasaninejad, M.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref]

Kuan, C. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Lai, Y. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Lauhon, L. J.

J. Hu, C. H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[Crossref]

Li, T.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Liu, C. H.

J. Hu, C. H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[Crossref]

Lu, M.

S. Shrestha, A. Overvig, M. Lu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light: Sci. Appl. 7(1), 85 (2018).
[Crossref]

Lu, S. H.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Majumder, A.

S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Imaging with flat optics: metalenses or diffractive lenses?” Optica 6(6), 805 (2019).
[Crossref]

M. Meem, A. Majumder, and R. Menon, “Full-color video and still imaging using two flat lenses,” Opt. Express 26(21), 26866 (2018).
[Crossref]

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface” arXiv: 1907.06251. (2019).

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, Broadband lightweight flat lenses for longwave-infrared imaging. arXiv: 1904.09011. (2019).

Malchow, D. S.

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras and applications,” Proc. SPIE 6939, 69390I (2008).
[Crossref]

Meem, M.

S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Imaging with flat optics: metalenses or diffractive lenses?” Optica 6(6), 805 (2019).
[Crossref]

M. Meem, A. Majumder, and R. Menon, “Full-color video and still imaging using two flat lenses,” Opt. Express 26(21), 26866 (2018).
[Crossref]

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref]

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, Broadband lightweight flat lenses for longwave-infrared imaging. arXiv: 1904.09011. (2019).

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface” arXiv: 1907.06251. (2019).

Menon, R.

S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Imaging with flat optics: metalenses or diffractive lenses?” Optica 6(6), 805 (2019).
[Crossref]

M. Meem, A. Majumder, and R. Menon, “Full-color video and still imaging using two flat lenses,” Opt. Express 26(21), 26866 (2018).
[Crossref]

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref]

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref]

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface” arXiv: 1907.06251. (2019).

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, Broadband lightweight flat lenses for longwave-infrared imaging. arXiv: 1904.09011. (2019).

Mohammad, N.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref]

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref]

Odom, T. W.

J. Hu, C. H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[Crossref]

Overvig, A.

S. Shrestha, A. Overvig, M. Lu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light: Sci. Appl. 7(1), 85 (2018).
[Crossref]

Ren, X.

J. Hu, C. H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[Crossref]

Rousso, D.

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref]

Sensale-Rodriguez, B.

S. Banerji and B. Sensale-Rodriguez, “A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements,” Sci. Rep. 9(1), 5801 (2019).
[Crossref]

S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Imaging with flat optics: metalenses or diffractive lenses?” Optica 6(6), 805 (2019).
[Crossref]

S. Banerji and B. Sensale-Rodriguez, “3D-printed diffractive terahertz optical elements through computational design,” In Micro-and Nanotechnology Sensors, Systems, and Applications XI (Vol. 10982, p. 109822X). International Society for Optics and Photonics (2019).

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, Broadband lightweight flat lenses for longwave-infrared imaging. arXiv: 1904.09011. (2019).

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface” arXiv: 1907.06251. (2019).

Shen, B.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref]

Shrestha, S.

S. Shrestha, A. Overvig, M. Lu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light: Sci. Appl. 7(1), 85 (2018).
[Crossref]

Slusarev, G. G.

G. G. Slusarev, “Optical Systems with Phase Layers,” Soviet Physics-Doclady, Vol. 2, No. 2, pp. 161-163 (1957). Reprinted in: Selected Papers on Holographic and Diffractive Lenses and Mirrors, T. W. Stone and B. J. Thompson eds., SPIE Milestone series, Vol. MS 34, (SPIE, 1991), pp. 412–414.

Soskind, Y. G.

Y. G. Soskind, “Diffractive optics technologies in infrared systems,” In Infrared Technology and Applications XLI (Vol. 9451, p. 94511 T). International Society for Optics and Photonics.

Stein, A.

S. Shrestha, A. Overvig, M. Lu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light: Sci. Appl. 7(1), 85 (2018).
[Crossref]

Su, V. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Swanson, G. J.

G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” Technical Report 854 (MIT Lincoln Laboratory, 1989).

Vasquez, F. G.

S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, “Imaging with flat optics: metalenses or diffractive lenses?” Optica 6(6), 805 (2019).
[Crossref]

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, Broadband lightweight flat lenses for longwave-infrared imaging. arXiv: 1904.09011. (2019).

Wang, P.

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref]

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref]

Wang, S.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Wu, P. C.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Xu, B.

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Yu, N.

S. Shrestha, A. Overvig, M. Lu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light: Sci. Appl. 7(1), 85 (2018).
[Crossref]

ACS Nano (1)

J. Hu, C. H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, “Plasmonic lattice lenses for multiwavelength achromatic focusing,” ACS Nano 10(11), 10275–10282 (2016).
[Crossref]

Light: Sci. Appl. (1)

S. Shrestha, A. Overvig, M. Lu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light: Sci. Appl. 7(1), 85 (2018).
[Crossref]

Nano Lett. (1)

M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, “Achromatic metasurface lens at telecommunication wavelengths,” Nano Lett. 15(8), 5358–5362 (2015).
[Crossref]

Nat. Commun. (1)

S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, and T. Li, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8(1), 187 (2017).
[Crossref]

Opt. Express (1)

Optica (1)

Proc. SPIE (1)

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras and applications,” Proc. SPIE 6939, 69390I (2008).
[Crossref]

Sci. Rep. (3)

P. Wang, N. Mohammad, and R. Menon, “Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing,” Sci. Rep. 6(1), 21545 (2016).
[Crossref]

N. Mohammad, M. Meem, B. Shen, P. Wang, and R. Menon, “Broadband imaging with one planar diffractive lens,” Sci. Rep. 8(1), 2799 (2018).
[Crossref]

S. Banerji and B. Sensale-Rodriguez, “A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements,” Sci. Rep. 9(1), 5801 (2019).
[Crossref]

Other (7)

S. Banerji and B. Sensale-Rodriguez, “3D-printed diffractive terahertz optical elements through computational design,” In Micro-and Nanotechnology Sensors, Systems, and Applications XI (Vol. 10982, p. 109822X). International Society for Optics and Photonics (2019).

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface” arXiv: 1907.06251. (2019).

The quantum efficiency is available (labeled STD-SWIR) here: http://www.sensorsinc.com/images/uploads/documents/VIS_NIR_SWIR_FPA_TYPICAL_QE_CHART.pdf

M. Meem, S. Banerji, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, Broadband lightweight flat lenses for longwave-infrared imaging. arXiv: 1904.09011. (2019).

Y. G. Soskind, “Diffractive optics technologies in infrared systems,” In Infrared Technology and Applications XLI (Vol. 9451, p. 94511 T). International Society for Optics and Photonics.

G. G. Slusarev, “Optical Systems with Phase Layers,” Soviet Physics-Doclady, Vol. 2, No. 2, pp. 161-163 (1957). Reprinted in: Selected Papers on Holographic and Diffractive Lenses and Mirrors, T. W. Stone and B. J. Thompson eds., SPIE Milestone series, Vol. MS 34, (SPIE, 1991), pp. 412–414.

G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” Technical Report 854 (MIT Lincoln Laboratory, 1989).

Supplementary Material (2)

NameDescription
» Visualization 1       Video of AF target.
» Visualization 2       Video of macbeth chart.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Schematic of the SWIR MDL. (b) The optimized height profile with focal length = 25 mm and NA = 0.17. (c-f) simulated and (g-i) measured point-spread functions at the λ = 975 nm, 1175 nm, 1275 nm and 1375 nm, respectively.
Fig. 2.
Fig. 2. (a) Simulated and measured focusing efficiency as a function of wavelength. A systematic study of the fabrication errors with relation to (b) standard deviation of the pixel height error, (c) pixel width error and (d) effect of both pixel width and standard deviation of the pixel height error. The effect of error in pixel width is more prominent among the two with the combined effect bringing down the error tolerance to ∼100 nm for ∼50% efficiency. (e) Full-width at half-maximum (FWHM) as a function of wavelength. (f) Simulated Zernike coefficients of the MDL at λ = 1275 nm.
Fig. 3.
Fig. 3. (a) Photograph of the MDL (inset = optical micrograph). (b) Magnified optical micrograph of the central portion of the MDL. (c) Side view of the MDL. Images captured under ambient indoor lighting of (d) the Air Force resolution chart (see Visualization 1), (e) the Macbeth color chart (see Visualization 2) and (f) a human face. Wiener deconvolution was applied to improve the images.

Tables (1)

Tables Icon

Table 1. Summary of the reported work in comparison to previously reported thin flat metalenses.

Metrics