Abstract

A simple method is proposed to achieve high quality multiple-image encryption through the use of random binary plaintext and QR code. In the encryption phase, multiple images are converted into QR codes, and then each QR code is subjected to exclusive-OR operation with random binary plaintext to obtain the corresponding decryption key. The random binary plaintext is further treated as the input of a single image cryptosystem for encryption resulting in improved encryption strength. In the decryption phase, the random binary plaintext is decrypted with multiple decryption keys to recover QR codes. The high quality original images are retrieved by scanning the recovered QR codes with a QR code scanning system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Triple-image encryption based on phase-truncated Fresnel transform and basic vector operation

Xuemei Pan, Xiangfeng Meng, Xiulun Yang, Yurong Wang, Xiang Peng, Wenqi He, Guoyan Dong, and Hongyi Chen
Appl. Opt. 54(28) 8485-8493 (2015)

Fresnel domain nonlinear optical image encryption scheme based on Gerchberg–Saxton phase-retrieval algorithm

Sudheesh K. Rajput and Naveen K. Nishchal
Appl. Opt. 53(3) 418-425 (2014)

Binary-tree encryption strategy for optical multiple-image encryption

Jiawang Yi and Guanzheng Tan
Appl. Opt. 55(20) 5280-5291 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
    [Crossref] [PubMed]
  2. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29(14), 1584–1586 (2004).
    [Crossref] [PubMed]
  3. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
    [Crossref] [PubMed]
  4. R. Tao, Y. Xin, and Y. Wang, “Double image encryption based on random phase encoding in the fractional Fourier domain,” Opt. Express 15(24), 16067–16079 (2007).
    [Crossref] [PubMed]
  5. N. Singh and A. Sinha, “Optical image encryption using Hartley transform and logistic map,” Opt. Commun. 282(6), 1104–1109 (2009).
    [Crossref]
  6. H. Li and Y. Wang, “Double-image encryption based on iterative gyrator transform,” Opt. Commun. 281(23), 5745–5749 (2008).
    [Crossref]
  7. Z. Liu, Q. Guo, L. Xu, M. A. Ahmad, and S. Liu, “Double image encryption by using iterative random binary encoding in gyrator domains,” Opt. Express 18(11), 12033–12043 (2010).
    [Crossref] [PubMed]
  8. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33(21), 2443–2445 (2008).
    [Crossref] [PubMed]
  9. C. H. Niu, X. L. Wang, N. G. Lv, Z. H. Zhou, and X. Y. Li, “An encryption method with multiple encrypted keys based on interference principle,” Opt. Express 18(8), 7827–7834 (2010).
    [Crossref] [PubMed]
  10. A. Alfalou and C. Brosseau, “Dual encryption scheme of images using polarized light,” Opt. Lett. 35(13), 2185–2187 (2010).
    [Crossref] [PubMed]
  11. Q. Wang, Q. Guo, and L. Lei, “Multiple-image encryption system using cascaded phase mask encoding and a modified Gerchberg-Saxton algorithm in gyrator domain,” Opt. Commun. 320(2), 12–21 (2014).
    [Crossref]
  12. Z. Tang, J. Song, X. Zhang, and R. Sun, “Multiple-image encryption with bit-plane decomposition and chaotic maps,” Opt. Lasers Eng. 80, 1–11 (2016).
    [Crossref]
  13. A. Jain, M. Ahmad, and V. Khare, “A ridgelet based symmetric multiple image encryption in wavelet domain using chaotic key image,” Commun. Comput. Inf. Sci. 305, 135–144 (2012).
    [Crossref]
  14. X. Zhang and X. Wang, “Multiple-image encryption algorithm based on mixed image element and chaos,” Opt. Lasers Eng. 92, 6–16 (2017).
    [Crossref]
  15. S. Liansheng, X. Meiting, and T. Ailing, “Multiple-image encryption based on phase mask multiplexing in fractional Fourier transform domain,” Opt. Lett. 38(11), 1996–1998 (2013).
    [Crossref] [PubMed]
  16. H. T. Chang, H. E. Hwang, C. L. Lee, and M. T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt. 50(5), 710–716 (2011).
    [Crossref] [PubMed]
  17. Q. Gong, X. Liu, G. Li, and Y. Qin, “Multiple-image encryption and authentication with sparse representation by space multiplexing,” Appl. Opt. 52(31), 7486–7493 (2013).
    [Crossref] [PubMed]
  18. Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
    [Crossref]
  19. X. Wang and D. Zhao, “Multiple-image encryption based on nonlinear amplitude-truncation and phase-truncation in Fourier domain,” Opt. Commun. 284(1), 148–152 (2011).
    [Crossref]
  20. J. W. Han, C. S. Park, D. H. Ryu, and E. S. Kim, “Optical image encryption based on XOR operations,” Opt. Eng. 38(1–3), 47–54 (1999).
    [Crossref]
  21. G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1–6), 25–31 (2000).
    [Crossref]
  22. G. Unnikrishnan and K. Singh, “Optical encryption using quadratic phase systems,” Opt. Commun. 193(1), 51–67 (2001).
    [Crossref]
  23. H. Tu, M. Chen, and C. Cheng, “Multiple polarization encoding for gray image encryption based on liquid crystal exclusive OR logic,” Opt. Rev. 13(5), 308–313 (2006).
    [Crossref]
  24. Z. Wang, Y. K. Huang, Y. Deng, J. Chang, and P. R. Prucnal, “Optical encryption with OCDMA code swapping using all-optical XOR logic gate,” IEEE Photonics Technol. Lett. 21(7), 411–413 (2009).
    [Crossref]
  25. Y. Qin and Y. Zhang, “Information encryption in ghost imaging with customized data container and XOR operation,” IEEE Photonics J. 9(2), 1–9 (2017).
    [Crossref]
  26. S. K. Rajput and N. K. Nishchal, “An optical encryption and authentication scheme using asymmetric keys,” J. Opt. Soc. Am. A 31(6), 1233–1238 (2014).
    [Crossref] [PubMed]
  27. H. Chang and C. C. Chen, “Fully-phase asymmetric-image verification system based on joint transform correlator,” Opt. Express 14(4), 1458–1467 (2006).
    [Crossref] [PubMed]
  28. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Security analysis of optical encryption,” Proc. SPIE 5986, 598603 (2005).
    [Crossref]
  29. U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T. Sheridan, “A known-plaintext heuristic attack on the Fourier plane encryption algorithm,” Opt. Express 14(8), 3181–3186 (2006).
    [Crossref] [PubMed]
  30. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30(13), 1644–1646 (2005).
    [Crossref] [PubMed]
  31. Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
    [Crossref]
  32. X. Deng and X. Zhu, “A simple and practical color image encryption with the help of QR code,” Opt. Appl. 45(4), 513–521 (2015).
  33. Y. Sheng, Z. Xin, M. S. Alam, L. Xi, and L. Xiao-Feng, “Information hiding based on double random-phase encoding and public-key cryptography,” Opt. Express 17(5), 3270–3284 (2009).
    [Crossref] [PubMed]
  34. Y. Zhang, C. H. Zheng, and N. Tanno, “Optical encryption based on iterative fractional Fourier transform,” Opt. Commun. 202(4–6), 277–285 (2002).
    [Crossref]

2017 (2)

X. Zhang and X. Wang, “Multiple-image encryption algorithm based on mixed image element and chaos,” Opt. Lasers Eng. 92, 6–16 (2017).
[Crossref]

Y. Qin and Y. Zhang, “Information encryption in ghost imaging with customized data container and XOR operation,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

2016 (1)

Z. Tang, J. Song, X. Zhang, and R. Sun, “Multiple-image encryption with bit-plane decomposition and chaotic maps,” Opt. Lasers Eng. 80, 1–11 (2016).
[Crossref]

2015 (3)

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

X. Deng and X. Zhu, “A simple and practical color image encryption with the help of QR code,” Opt. Appl. 45(4), 513–521 (2015).

2014 (2)

S. K. Rajput and N. K. Nishchal, “An optical encryption and authentication scheme using asymmetric keys,” J. Opt. Soc. Am. A 31(6), 1233–1238 (2014).
[Crossref] [PubMed]

Q. Wang, Q. Guo, and L. Lei, “Multiple-image encryption system using cascaded phase mask encoding and a modified Gerchberg-Saxton algorithm in gyrator domain,” Opt. Commun. 320(2), 12–21 (2014).
[Crossref]

2013 (2)

2012 (1)

A. Jain, M. Ahmad, and V. Khare, “A ridgelet based symmetric multiple image encryption in wavelet domain using chaotic key image,” Commun. Comput. Inf. Sci. 305, 135–144 (2012).
[Crossref]

2011 (2)

H. T. Chang, H. E. Hwang, C. L. Lee, and M. T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt. 50(5), 710–716 (2011).
[Crossref] [PubMed]

X. Wang and D. Zhao, “Multiple-image encryption based on nonlinear amplitude-truncation and phase-truncation in Fourier domain,” Opt. Commun. 284(1), 148–152 (2011).
[Crossref]

2010 (3)

2009 (3)

N. Singh and A. Sinha, “Optical image encryption using Hartley transform and logistic map,” Opt. Commun. 282(6), 1104–1109 (2009).
[Crossref]

Y. Sheng, Z. Xin, M. S. Alam, L. Xi, and L. Xiao-Feng, “Information hiding based on double random-phase encoding and public-key cryptography,” Opt. Express 17(5), 3270–3284 (2009).
[Crossref] [PubMed]

Z. Wang, Y. K. Huang, Y. Deng, J. Chang, and P. R. Prucnal, “Optical encryption with OCDMA code swapping using all-optical XOR logic gate,” IEEE Photonics Technol. Lett. 21(7), 411–413 (2009).
[Crossref]

2008 (2)

H. Li and Y. Wang, “Double-image encryption based on iterative gyrator transform,” Opt. Commun. 281(23), 5745–5749 (2008).
[Crossref]

Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33(21), 2443–2445 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (3)

2005 (2)

2004 (1)

2002 (1)

Y. Zhang, C. H. Zheng, and N. Tanno, “Optical encryption based on iterative fractional Fourier transform,” Opt. Commun. 202(4–6), 277–285 (2002).
[Crossref]

2001 (1)

G. Unnikrishnan and K. Singh, “Optical encryption using quadratic phase systems,” Opt. Commun. 193(1), 51–67 (2001).
[Crossref]

2000 (2)

G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1–6), 25–31 (2000).
[Crossref]

G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
[Crossref] [PubMed]

1999 (1)

J. W. Han, C. S. Park, D. H. Ryu, and E. S. Kim, “Optical image encryption based on XOR operations,” Opt. Eng. 38(1–3), 47–54 (1999).
[Crossref]

1995 (1)

Ahmad, M.

A. Jain, M. Ahmad, and V. Khare, “A ridgelet based symmetric multiple image encryption in wavelet domain using chaotic key image,” Commun. Comput. Inf. Sci. 305, 135–144 (2012).
[Crossref]

Ahmad, M. A.

Ailing, T.

Alam, M. S.

Alfalou, A.

Arcos, S.

Brosseau, C.

Carnicer, A.

Castro, A.

Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Security analysis of optical encryption,” Proc. SPIE 5986, 598603 (2005).
[Crossref]

Chang, H.

Chang, H. T.

Chang, J.

Z. Wang, Y. K. Huang, Y. Deng, J. Chang, and P. R. Prucnal, “Optical encryption with OCDMA code swapping using all-optical XOR logic gate,” IEEE Photonics Technol. Lett. 21(7), 411–413 (2009).
[Crossref]

Chen, C. C.

Chen, M.

H. Tu, M. Chen, and C. Cheng, “Multiple polarization encoding for gray image encryption based on liquid crystal exclusive OR logic,” Opt. Rev. 13(5), 308–313 (2006).
[Crossref]

Cheng, C.

H. Tu, M. Chen, and C. Cheng, “Multiple polarization encoding for gray image encryption based on liquid crystal exclusive OR logic,” Opt. Rev. 13(5), 308–313 (2006).
[Crossref]

Deng, X.

X. Deng and X. Zhu, “A simple and practical color image encryption with the help of QR code,” Opt. Appl. 45(4), 513–521 (2015).

Deng, Y.

Z. Wang, Y. K. Huang, Y. Deng, J. Chang, and P. R. Prucnal, “Optical encryption with OCDMA code swapping using all-optical XOR logic gate,” IEEE Photonics Technol. Lett. 21(7), 411–413 (2009).
[Crossref]

Frauel, Y.

Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Security analysis of optical encryption,” Proc. SPIE 5986, 598603 (2005).
[Crossref]

Gong, Q.

Gopinathan, U.

Guo, Q.

Q. Wang, Q. Guo, and L. Lei, “Multiple-image encryption system using cascaded phase mask encoding and a modified Gerchberg-Saxton algorithm in gyrator domain,” Opt. Commun. 320(2), 12–21 (2014).
[Crossref]

Z. Liu, Q. Guo, L. Xu, M. A. Ahmad, and S. Liu, “Double image encryption by using iterative random binary encoding in gyrator domains,” Opt. Express 18(11), 12033–12043 (2010).
[Crossref] [PubMed]

Han, J. W.

J. W. Han, C. S. Park, D. H. Ryu, and E. S. Kim, “Optical image encryption based on XOR operations,” Opt. Eng. 38(1–3), 47–54 (1999).
[Crossref]

Huang, Y. K.

Z. Wang, Y. K. Huang, Y. Deng, J. Chang, and P. R. Prucnal, “Optical encryption with OCDMA code swapping using all-optical XOR logic gate,” IEEE Photonics Technol. Lett. 21(7), 411–413 (2009).
[Crossref]

Hwang, H. E.

Jain, A.

A. Jain, M. Ahmad, and V. Khare, “A ridgelet based symmetric multiple image encryption in wavelet domain using chaotic key image,” Commun. Comput. Inf. Sci. 305, 135–144 (2012).
[Crossref]

Javidi, B.

Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Security analysis of optical encryption,” Proc. SPIE 5986, 598603 (2005).
[Crossref]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
[Crossref] [PubMed]

Joseph, J.

Juvells, I.

Khare, V.

A. Jain, M. Ahmad, and V. Khare, “A ridgelet based symmetric multiple image encryption in wavelet domain using chaotic key image,” Commun. Comput. Inf. Sci. 305, 135–144 (2012).
[Crossref]

Kim, E. S.

J. W. Han, C. S. Park, D. H. Ryu, and E. S. Kim, “Optical image encryption based on XOR operations,” Opt. Eng. 38(1–3), 47–54 (1999).
[Crossref]

Lee, C. L.

Lee, M. T.

Lei, L.

Q. Wang, Q. Guo, and L. Lei, “Multiple-image encryption system using cascaded phase mask encoding and a modified Gerchberg-Saxton algorithm in gyrator domain,” Opt. Commun. 320(2), 12–21 (2014).
[Crossref]

Li, G.

Li, H.

H. Li and Y. Wang, “Double-image encryption based on iterative gyrator transform,” Opt. Commun. 281(23), 5745–5749 (2008).
[Crossref]

Li, X. Y.

Li, Y.

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

Liansheng, S.

Liu, S.

Liu, X.

Liu, Z.

Lv, N. G.

Meiting, X.

Monaghan, D. S.

Montes-Usategui, M.

Naughton, T. J.

Nishchal, N. K.

Niu, C. H.

Park, C. S.

J. W. Han, C. S. Park, D. H. Ryu, and E. S. Kim, “Optical image encryption based on XOR operations,” Opt. Eng. 38(1–3), 47–54 (1999).
[Crossref]

Pohit, M.

G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1–6), 25–31 (2000).
[Crossref]

Prucnal, P. R.

Z. Wang, Y. K. Huang, Y. Deng, J. Chang, and P. R. Prucnal, “Optical encryption with OCDMA code swapping using all-optical XOR logic gate,” IEEE Photonics Technol. Lett. 21(7), 411–413 (2009).
[Crossref]

Qin, Y.

Y. Qin and Y. Zhang, “Information encryption in ghost imaging with customized data container and XOR operation,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Q. Gong, X. Liu, G. Li, and Y. Qin, “Multiple-image encryption and authentication with sparse representation by space multiplexing,” Appl. Opt. 52(31), 7486–7493 (2013).
[Crossref] [PubMed]

Rajput, S. K.

Refregier, P.

Ryu, D. H.

J. W. Han, C. S. Park, D. H. Ryu, and E. S. Kim, “Optical image encryption based on XOR operations,” Opt. Eng. 38(1–3), 47–54 (1999).
[Crossref]

Sheng, Y.

Sheridan, J. T.

Singh, K.

G. Unnikrishnan and K. Singh, “Optical encryption using quadratic phase systems,” Opt. Commun. 193(1), 51–67 (2001).
[Crossref]

G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1–6), 25–31 (2000).
[Crossref]

G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
[Crossref] [PubMed]

Singh, N.

N. Singh and A. Sinha, “Optical image encryption using Hartley transform and logistic map,” Opt. Commun. 282(6), 1104–1109 (2009).
[Crossref]

Sinha, A.

N. Singh and A. Sinha, “Optical image encryption using Hartley transform and logistic map,” Opt. Commun. 282(6), 1104–1109 (2009).
[Crossref]

Situ, G.

Song, J.

Z. Tang, J. Song, X. Zhang, and R. Sun, “Multiple-image encryption with bit-plane decomposition and chaotic maps,” Opt. Lasers Eng. 80, 1–11 (2016).
[Crossref]

Sun, R.

Z. Tang, J. Song, X. Zhang, and R. Sun, “Multiple-image encryption with bit-plane decomposition and chaotic maps,” Opt. Lasers Eng. 80, 1–11 (2016).
[Crossref]

Tang, Z.

Z. Tang, J. Song, X. Zhang, and R. Sun, “Multiple-image encryption with bit-plane decomposition and chaotic maps,” Opt. Lasers Eng. 80, 1–11 (2016).
[Crossref]

Tanno, N.

Y. Zhang, C. H. Zheng, and N. Tanno, “Optical encryption based on iterative fractional Fourier transform,” Opt. Commun. 202(4–6), 277–285 (2002).
[Crossref]

Tao, R.

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

R. Tao, Y. Xin, and Y. Wang, “Double image encryption based on random phase encoding in the fractional Fourier domain,” Opt. Express 15(24), 16067–16079 (2007).
[Crossref] [PubMed]

Tu, H.

H. Tu, M. Chen, and C. Cheng, “Multiple polarization encoding for gray image encryption based on liquid crystal exclusive OR logic,” Opt. Rev. 13(5), 308–313 (2006).
[Crossref]

Unnikrishnan, G.

G. Unnikrishnan and K. Singh, “Optical encryption using quadratic phase systems,” Opt. Commun. 193(1), 51–67 (2001).
[Crossref]

G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1–6), 25–31 (2000).
[Crossref]

G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
[Crossref] [PubMed]

Wang, B.

Wang, Q.

Q. Wang, Q. Guo, and L. Lei, “Multiple-image encryption system using cascaded phase mask encoding and a modified Gerchberg-Saxton algorithm in gyrator domain,” Opt. Commun. 320(2), 12–21 (2014).
[Crossref]

Wang, X.

X. Zhang and X. Wang, “Multiple-image encryption algorithm based on mixed image element and chaos,” Opt. Lasers Eng. 92, 6–16 (2017).
[Crossref]

X. Wang and D. Zhao, “Multiple-image encryption based on nonlinear amplitude-truncation and phase-truncation in Fourier domain,” Opt. Commun. 284(1), 148–152 (2011).
[Crossref]

Wang, X. L.

Wang, Y.

H. Li and Y. Wang, “Double-image encryption based on iterative gyrator transform,” Opt. Commun. 281(23), 5745–5749 (2008).
[Crossref]

R. Tao, Y. Xin, and Y. Wang, “Double image encryption based on random phase encoding in the fractional Fourier domain,” Opt. Express 15(24), 16067–16079 (2007).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, Y. K. Huang, Y. Deng, J. Chang, and P. R. Prucnal, “Optical encryption with OCDMA code swapping using all-optical XOR logic gate,” IEEE Photonics Technol. Lett. 21(7), 411–413 (2009).
[Crossref]

Xi, L.

Xiao-Feng, L.

Xin, Y.

Xin, Z.

Xu, L.

Zhang, F.

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

Zhang, J.

Zhang, X.

X. Zhang and X. Wang, “Multiple-image encryption algorithm based on mixed image element and chaos,” Opt. Lasers Eng. 92, 6–16 (2017).
[Crossref]

Z. Tang, J. Song, X. Zhang, and R. Sun, “Multiple-image encryption with bit-plane decomposition and chaotic maps,” Opt. Lasers Eng. 80, 1–11 (2016).
[Crossref]

Zhang, Y.

Y. Qin and Y. Zhang, “Information encryption in ghost imaging with customized data container and XOR operation,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33(21), 2443–2445 (2008).
[Crossref] [PubMed]

Y. Zhang, C. H. Zheng, and N. Tanno, “Optical encryption based on iterative fractional Fourier transform,” Opt. Commun. 202(4–6), 277–285 (2002).
[Crossref]

Zhao, D.

X. Wang and D. Zhao, “Multiple-image encryption based on nonlinear amplitude-truncation and phase-truncation in Fourier domain,” Opt. Commun. 284(1), 148–152 (2011).
[Crossref]

Zheng, C. H.

Y. Zhang, C. H. Zheng, and N. Tanno, “Optical encryption based on iterative fractional Fourier transform,” Opt. Commun. 202(4–6), 277–285 (2002).
[Crossref]

Zhou, Z. H.

Zhu, X.

X. Deng and X. Zhu, “A simple and practical color image encryption with the help of QR code,” Opt. Appl. 45(4), 513–521 (2015).

Appl. Opt. (2)

Commun. Comput. Inf. Sci. (1)

A. Jain, M. Ahmad, and V. Khare, “A ridgelet based symmetric multiple image encryption in wavelet domain using chaotic key image,” Commun. Comput. Inf. Sci. 305, 135–144 (2012).
[Crossref]

IEEE Photonics J. (1)

Y. Qin and Y. Zhang, “Information encryption in ghost imaging with customized data container and XOR operation,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Z. Wang, Y. K. Huang, Y. Deng, J. Chang, and P. R. Prucnal, “Optical encryption with OCDMA code swapping using all-optical XOR logic gate,” IEEE Photonics Technol. Lett. 21(7), 411–413 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Appl. (1)

X. Deng and X. Zhu, “A simple and practical color image encryption with the help of QR code,” Opt. Appl. 45(4), 513–521 (2015).

Opt. Commun. (7)

Y. Zhang, C. H. Zheng, and N. Tanno, “Optical encryption based on iterative fractional Fourier transform,” Opt. Commun. 202(4–6), 277–285 (2002).
[Crossref]

Q. Wang, Q. Guo, and L. Lei, “Multiple-image encryption system using cascaded phase mask encoding and a modified Gerchberg-Saxton algorithm in gyrator domain,” Opt. Commun. 320(2), 12–21 (2014).
[Crossref]

G. Unnikrishnan, M. Pohit, and K. Singh, “A polarization encoded optical encryption system using ferroelectric spatial light modulator,” Opt. Commun. 185(1–6), 25–31 (2000).
[Crossref]

G. Unnikrishnan and K. Singh, “Optical encryption using quadratic phase systems,” Opt. Commun. 193(1), 51–67 (2001).
[Crossref]

N. Singh and A. Sinha, “Optical image encryption using Hartley transform and logistic map,” Opt. Commun. 282(6), 1104–1109 (2009).
[Crossref]

H. Li and Y. Wang, “Double-image encryption based on iterative gyrator transform,” Opt. Commun. 281(23), 5745–5749 (2008).
[Crossref]

X. Wang and D. Zhao, “Multiple-image encryption based on nonlinear amplitude-truncation and phase-truncation in Fourier domain,” Opt. Commun. 284(1), 148–152 (2011).
[Crossref]

Opt. Eng. (1)

J. W. Han, C. S. Park, D. H. Ryu, and E. S. Kim, “Optical image encryption based on XOR operations,” Opt. Eng. 38(1–3), 47–54 (1999).
[Crossref]

Opt. Express (6)

Opt. Lasers Eng. (4)

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

Z. Tang, J. Song, X. Zhang, and R. Sun, “Multiple-image encryption with bit-plane decomposition and chaotic maps,” Opt. Lasers Eng. 80, 1–11 (2016).
[Crossref]

Y. Li, F. Zhang, Y. Li, and R. Tao, “Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform,” Opt. Lasers Eng. 72, 18–25 (2015).
[Crossref]

X. Zhang and X. Wang, “Multiple-image encryption algorithm based on mixed image element and chaos,” Opt. Lasers Eng. 92, 6–16 (2017).
[Crossref]

Opt. Lett. (7)

Opt. Rev. (1)

H. Tu, M. Chen, and C. Cheng, “Multiple polarization encoding for gray image encryption based on liquid crystal exclusive OR logic,” Opt. Rev. 13(5), 308–313 (2006).
[Crossref]

Proc. SPIE (1)

Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Security analysis of optical encryption,” Proc. SPIE 5986, 598603 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Realization of multiple-image encryption in the majority of single image cryptosystems.
Fig. 2
Fig. 2 Encryption system: Double Random Phase Encryption. M1 and M2 are two random phase masks. L1 and L2 are two convex lenses.
Fig. 3
Fig. 3 Simulation results. (a) Original image “Flower,” (b) corresponding QR code of (a). (c) Original image “School,” (d) corresponding QR code of (c). (e) Original image “Garden,” (f) corresponding QR code of (e). (g) Random binary plaintext E. (h) Amplitude of the encrypted result and (h) phase of the encrypted result.
Fig. 4
Fig. 4 Key sensitivity. (a)-(c) The decrypted QR codes with the wrong M1. (d)-(f) The decrypted QR codes with the wrong M2. (g)-(i) The decrypted QR codes with the wrong decryption keys k1, k2 and k3, respectively. (j)-(l) The decrypted QR codes with the wrong E. (m)-(o) The decrypted QR codes with correct keys. (p)-(r) The restored images by scanning QR codes of (m)-(o).
Fig. 5
Fig. 5 Results of Gaussian noise resistance. (a)-(c) The decrypted QR codes with standard deviation 0.1, (d)-(f) corresponding scanned images of (a)-(c). (g)-(i) The decrypted image with standard deviation 0.5, (j)-(l) corresponding scanned images of (g)-(i). (m)-(o) The decrypted image with Gaussian noise of standard deviation 1.0, (p)-(r) corresponding scanned images of (m)-(o).
Fig. 6
Fig. 6 Tolerance against occlusion attacks. (a) Cipher image with 1/16 occlusion. (b)-(d) The decrypted QR codes from (a). (e)-(g) The restored images by scanning QR codes of (b)-(d).

Tables (1)

Tables Icon

Table 1 Computational time of the whole process (seconds).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ E = r a n d ( N , N ) E ( E > = 0.5 ) = 1 E ( E < 0.5 ) = 0 ,
K n = ( E ) x o r ( Q R n ) ,
C ( u ) = F T { F T { F ( x ) × exp [ j 2 π n ( x ) ] } × exp [ j 2 π b ( u ) ] } ,
C C = E { [ I E ( I ) ] [ I 0 E ( I 0 ) ] } E { [ I E ( I ) ] 2 } 3 E { [ I 0 E ( I 0 ) ] 2 } ,

Metrics