Abstract

The characteristics of monolithically integrated light-emitting diodes (LEDs), photodetectors (PDs), and waveguides on a GaN-on-Si wafer are investigated. The InGaN/GaN multi-quantum wells, which are responsible for blue light emission in LEDs, are also used for photodetection in PDs. Despite the Stokes shift, a spectral overlap of 25  nm between the emission and absorption spectra provides the PDs with sufficient photosensitivity to signals from the emitter while remaining insensitive to ambient lighting. Optical interconnects in the form of linear or bent suspended waveguides bridging the LEDs and PDs are formed by selective detachment of etched GaN mesas from the Si substrate. Additionally, the PDs can be detached from the substrate and remounted on an elevated platform, owing to the flexibility of the thin-film waveguide. The 150  μm×150  μm LEDs and PDs exhibit rapid response on nanosecond time scales, which is attributed to fast radiative recombinations as well as minimized resistive-capacitive (RC) delays, enabling transmission of pseudorandom binary sequence (PRBS) data signals at rates of 250 Mb/s with an opening in the eye diagram. Together with multichannel transmission free of crosstalk, the ability of the planar and three-dimensional monolithic photonic systems to handle visible-light communication (VLC) applications is demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities

Wei Cai, Yongchao Yang, Xumin Gao, Jialei Yuan, Wei Yuan, Hongbo Zhu, and Yongjin Wang
Opt. Express 24(6) 6004-6010 (2016)

Monolithic integration of GaN-based phototransistors and light-emitting diodes

Pinghui S. Yeh, Yu-Chieh Chiu, Tsung-Che Wu, Yan-Xiang Chen, Tzu-Hsun Wang, and Tzu-Chieh Chou
Opt. Express 27(21) 29854-29862 (2019)

Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates

Yating Wan, Zeyu Zhang, Ruilin Chao, Justin Norman, Daehwan Jung, Chen Shang, Qiang Li, MJ Kennedy, Di Liang, Chong Zhang, Jin-Wei Shi, Arthur C. Gossard, Kei May Lau, and John E. Bowers
Opt. Express 25(22) 27715-27723 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Razeghi, “III-nitride optoelectronic devices: from ultraviolet toward terahertz,” IEEE Photon. J. 3, 263–267 (2011).
    [Crossref]
  2. J. W. Orton and C. T. Foxon, “Group III nitride semiconductors for short wavelength light-emitting devices,” Rep. Prog. Phys. 61, 1–75 (1998).
    [Crossref]
  3. U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE 96, 287–305 (2008).
    [Crossref]
  4. E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. 13, 7115 (2001).
  5. V. Cimalla, J. Pezoldt, and O. Ambacher, “Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications,” J. Phys. D 40, 6386–6434 (2007).
    [Crossref]
  6. S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures,” Jpn. J. Appl. Phys. 34, L797–L799 (1995).
    [Crossref]
  7. J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
    [Crossref]
  8. J. L. Yuan, X. M. Gao, Y. C. Yang, G. X. Zhu, W. Yuan, H. W. Choi, Z. Y. Zhang, and Y. J. Wang, “GaN directional couplers for on-chip optical interconnect,” Semicond. Sci. Technol. 32, 045001 (2017).
    [Crossref]
  9. Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
    [Crossref]
  10. H. W. Choi, K. H. Li, and H. Lu, “Light-emitting diodes (leds) with monolithically-integrated photodetectors for in situ real-time intensity monitoring,” WO ApplicationWO2017197576A1 (November 23, 2017).
  11. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
    [Crossref]
  12. A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227–236 (2011).
    [Crossref]
  13. S. Y. Wei, Y. L. Jia, and C. X. Xia, “Excitonic optical absorption in wurtzite InGaN/GaN quantum wells,” Superlatt. Microstruct. 51, 9–15 (2012).
    [Crossref]
  14. H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
    [Crossref]
  15. P. Frajtag, N. A. El-Masry, N. Nepal, and S. M. Bedair, “Embedded voids approach for low defect density in epitaxial GaN films,” Appl. Phys. Lett. 98, 023115 (2011).
    [Crossref]
  16. Y. Y. Zhang, Z. T. Ma, X. H. Zhang, T. Wang, and H. W. Choi, “Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si,” Appl. Phys. Lett. 104, 221106 (2014).
    [Crossref]
  17. M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence,” Appl. Phys. Lett. 72, 1066–1068 (1998).
    [Crossref]
  18. J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29, 158–160 (2008).
    [Crossref]
  19. M. S. Islim, R. X. Ferreira, X. Y. He, E. Y. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. D. Gu, H. Haas, and M. D. Dawson, “Towards 10  Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LEDP,” Photon. Res. 5, A35 (2017).
    [Crossref]
  20. J. H. Lau, “Overview and outlook of through-silicon via (TSV) and 3D integrations,” Microelectron. Int. 28, 8–22 (2011).
    [Crossref]

2017 (3)

J. L. Yuan, X. M. Gao, Y. C. Yang, G. X. Zhu, W. Yuan, H. W. Choi, Z. Y. Zhang, and Y. J. Wang, “GaN directional couplers for on-chip optical interconnect,” Semicond. Sci. Technol. 32, 045001 (2017).
[Crossref]

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

M. S. Islim, R. X. Ferreira, X. Y. He, E. Y. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. D. Gu, H. Haas, and M. D. Dawson, “Towards 10  Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LEDP,” Photon. Res. 5, A35 (2017).
[Crossref]

2014 (1)

Y. Y. Zhang, Z. T. Ma, X. H. Zhang, T. Wang, and H. W. Choi, “Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si,” Appl. Phys. Lett. 104, 221106 (2014).
[Crossref]

2012 (2)

S. Y. Wei, Y. L. Jia, and C. X. Xia, “Excitonic optical absorption in wurtzite InGaN/GaN quantum wells,” Superlatt. Microstruct. 51, 9–15 (2012).
[Crossref]

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

2011 (4)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227–236 (2011).
[Crossref]

M. Razeghi, “III-nitride optoelectronic devices: from ultraviolet toward terahertz,” IEEE Photon. J. 3, 263–267 (2011).
[Crossref]

P. Frajtag, N. A. El-Masry, N. Nepal, and S. M. Bedair, “Embedded voids approach for low defect density in epitaxial GaN films,” Appl. Phys. Lett. 98, 023115 (2011).
[Crossref]

J. H. Lau, “Overview and outlook of through-silicon via (TSV) and 3D integrations,” Microelectron. Int. 28, 8–22 (2011).
[Crossref]

2010 (1)

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

2008 (2)

U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE 96, 287–305 (2008).
[Crossref]

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29, 158–160 (2008).
[Crossref]

2007 (1)

V. Cimalla, J. Pezoldt, and O. Ambacher, “Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications,” J. Phys. D 40, 6386–6434 (2007).
[Crossref]

2006 (1)

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

2001 (1)

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. 13, 7115 (2001).

1998 (2)

J. W. Orton and C. T. Foxon, “Group III nitride semiconductors for short wavelength light-emitting devices,” Rep. Prog. Phys. 61, 1–75 (1998).
[Crossref]

M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence,” Appl. Phys. Lett. 72, 1066–1068 (1998).
[Crossref]

1995 (1)

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures,” Jpn. J. Appl. Phys. 34, L797–L799 (1995).
[Crossref]

Abare, A. C.

M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence,” Appl. Phys. Lett. 72, 1066–1068 (1998).
[Crossref]

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

Ambacher, O.

V. Cimalla, J. Pezoldt, and O. Ambacher, “Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications,” J. Phys. D 40, 6386–6434 (2007).
[Crossref]

Bailey, R. C.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227–236 (2011).
[Crossref]

Bamiedakis, N.

Bedair, S. M.

P. Frajtag, N. A. El-Masry, N. Nepal, and S. M. Bedair, “Embedded voids approach for low defect density in epitaxial GaN films,” Appl. Phys. Lett. 98, 023115 (2011).
[Crossref]

Bowers, J. E.

M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence,” Appl. Phys. Lett. 72, 1066–1068 (1998).
[Crossref]

Calle, F.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. 13, 7115 (2001).

Chen, C. H.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29, 158–160 (2008).
[Crossref]

Chen, P.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Choi, H. W.

J. L. Yuan, X. M. Gao, Y. C. Yang, G. X. Zhu, W. Yuan, H. W. Choi, Z. Y. Zhang, and Y. J. Wang, “GaN directional couplers for on-chip optical interconnect,” Semicond. Sci. Technol. 32, 045001 (2017).
[Crossref]

Y. Y. Zhang, Z. T. Ma, X. H. Zhang, T. Wang, and H. W. Choi, “Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si,” Appl. Phys. Lett. 104, 221106 (2014).
[Crossref]

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

H. W. Choi, K. H. Li, and H. Lu, “Light-emitting diodes (leds) with monolithically-integrated photodetectors for in situ real-time intensity monitoring,” WO ApplicationWO2017197576A1 (November 23, 2017).

Chua, S. J.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Cimalla, V.

V. Cimalla, J. Pezoldt, and O. Ambacher, “Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications,” J. Phys. D 40, 6386–6434 (2007).
[Crossref]

Dawson, M. D.

M. S. Islim, R. X. Ferreira, X. Y. He, E. Y. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. D. Gu, H. Haas, and M. D. Dawson, “Towards 10  Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LEDP,” Photon. Res. 5, A35 (2017).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

Denbaars, S. P.

M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence,” Appl. Phys. Lett. 72, 1066–1068 (1998).
[Crossref]

El-Masry, N. A.

P. Frajtag, N. A. El-Masry, N. Nepal, and S. M. Bedair, “Embedded voids approach for low defect density in epitaxial GaN films,” Appl. Phys. Lett. 98, 023115 (2011).
[Crossref]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

Ferreira, R. X.

Fleischer, S. B.

M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence,” Appl. Phys. Lett. 72, 1066–1068 (1998).
[Crossref]

Foxon, C. T.

J. W. Orton and C. T. Foxon, “Group III nitride semiconductors for short wavelength light-emitting devices,” Rep. Prog. Phys. 61, 1–75 (1998).
[Crossref]

Frajtag, P.

P. Frajtag, N. A. El-Masry, N. Nepal, and S. M. Bedair, “Embedded voids approach for low defect density in epitaxial GaN films,” Appl. Phys. Lett. 98, 023115 (2011).
[Crossref]

Gao, X.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Gao, X. M.

J. L. Yuan, X. M. Gao, Y. C. Yang, G. X. Zhu, W. Yuan, H. W. Choi, Z. Y. Zhang, and Y. J. Wang, “GaN directional couplers for on-chip optical interconnect,” Semicond. Sci. Technol. 32, 045001 (2017).
[Crossref]

Gibart, P.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. 13, 7115 (2001).

Gong, Z.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

Green, R. P.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

Gu, E. D.

M. S. Islim, R. X. Ferreira, X. Y. He, E. Y. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. D. Gu, H. Haas, and M. D. Dawson, “Towards 10  Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LEDP,” Photon. Res. 5, A35 (2017).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

Guilhabert, B.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

Haas, H.

He, X. Y.

Hu, E. L.

M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence,” Appl. Phys. Lett. 72, 1066–1068 (1998).
[Crossref]

Hui, K. N.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Islim, M. S.

Iwasa, N.

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures,” Jpn. J. Appl. Phys. 34, L797–L799 (1995).
[Crossref]

Jia, Y. L.

S. Y. Wei, Y. L. Jia, and C. X. Xia, “Excitonic optical absorption in wurtzite InGaN/GaN quantum wells,” Superlatt. Microstruct. 51, 9–15 (2012).
[Crossref]

Jiang, Y.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Kazior, T. E.

U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE 96, 287–305 (2008).
[Crossref]

Keller, S.

M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence,” Appl. Phys. Lett. 72, 1066–1068 (1998).
[Crossref]

Kelly, A. E.

M. S. Islim, R. X. Ferreira, X. Y. He, E. Y. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, I. H. White, A. E. Kelly, E. D. Gu, H. Haas, and M. D. Dawson, “Towards 10  Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LEDP,” Photon. Res. 5, A35 (2017).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

Lai, P. T.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Lai, W. C.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29, 158–160 (2008).
[Crossref]

Lau, J. H.

J. H. Lau, “Overview and outlook of through-silicon via (TSV) and 3D integrations,” Microelectron. Int. 28, 8–22 (2011).
[Crossref]

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

Li, K. H.

H. W. Choi, K. H. Li, and H. Lu, “Light-emitting diodes (leds) with monolithically-integrated photodetectors for in situ real-time intensity monitoring,” WO ApplicationWO2017197576A1 (November 23, 2017).

Lin, G. R.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29, 158–160 (2008).
[Crossref]

Lu, H.

H. W. Choi, K. H. Li, and H. Lu, “Light-emitting diodes (leds) with monolithically-integrated photodetectors for in situ real-time intensity monitoring,” WO ApplicationWO2017197576A1 (November 23, 2017).

Ma, Z. T.

Y. Y. Zhang, Z. T. Ma, X. H. Zhang, T. Wang, and H. W. Choi, “Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si,” Appl. Phys. Lett. 104, 221106 (2014).
[Crossref]

Massoubre, D.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

McKendry, J. J. D.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

Minsky, M. S.

M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence,” Appl. Phys. Lett. 72, 1066–1068 (1998).
[Crossref]

Mishra, U. K.

U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE 96, 287–305 (2008).
[Crossref]

Monroy, E.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. 13, 7115 (2001).

Munoz, E.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. 13, 7115 (2001).

Nagahama, S. I.

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures,” Jpn. J. Appl. Phys. 34, L797–L799 (1995).
[Crossref]

Nakamura, S.

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures,” Jpn. J. Appl. Phys. 34, L797–L799 (1995).
[Crossref]

Nepal, N.

P. Frajtag, N. A. El-Masry, N. Nepal, and S. M. Bedair, “Embedded voids approach for low defect density in epitaxial GaN films,” Appl. Phys. Lett. 98, 023115 (2011).
[Crossref]

Omnes, F.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. 13, 7115 (2001).

Orton, J. W.

J. W. Orton and C. T. Foxon, “Group III nitride semiconductors for short wavelength light-emitting devices,” Rep. Prog. Phys. 61, 1–75 (1998).
[Crossref]

Pau, J. L.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. 13, 7115 (2001).

Penty, R. V.

Pezoldt, J.

V. Cimalla, J. Pezoldt, and O. Ambacher, “Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications,” J. Phys. D 40, 6386–6434 (2007).
[Crossref]

Razeghi, M.

M. Razeghi, “III-nitride optoelectronic devices: from ultraviolet toward terahertz,” IEEE Photon. J. 3, 263–267 (2011).
[Crossref]

Senoh, N.

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures,” Jpn. J. Appl. Phys. 34, L797–L799 (1995).
[Crossref]

Shen, L.

U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE 96, 287–305 (2008).
[Crossref]

Sheu, J. K.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29, 158–160 (2008).
[Crossref]

Shi, J. W.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29, 158–160 (2008).
[Crossref]

Shi, Z.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Teng, J. H.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Tripathy, S.

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Videv, S.

Viola, S.

Wang, T.

Y. Y. Zhang, Z. T. Ma, X. H. Zhang, T. Wang, and H. W. Choi, “Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si,” Appl. Phys. Lett. 104, 221106 (2014).
[Crossref]

Wang, Y.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Wang, Y. J.

J. L. Yuan, X. M. Gao, Y. C. Yang, G. X. Zhu, W. Yuan, H. W. Choi, Z. Y. Zhang, and Y. J. Wang, “GaN directional couplers for on-chip optical interconnect,” Semicond. Sci. Technol. 32, 045001 (2017).
[Crossref]

Washburn, A. L.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227–236 (2011).
[Crossref]

Watson, S.

Wei, S. Y.

S. Y. Wei, Y. L. Jia, and C. X. Xia, “Excitonic optical absorption in wurtzite InGaN/GaN quantum wells,” Superlatt. Microstruct. 51, 9–15 (2012).
[Crossref]

White, I. H.

Wu, Y. F.

U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE 96, 287–305 (2008).
[Crossref]

Xia, C. X.

S. Y. Wei, Y. L. Jia, and C. X. Xia, “Excitonic optical absorption in wurtzite InGaN/GaN quantum wells,” Superlatt. Microstruct. 51, 9–15 (2012).
[Crossref]

Xie, E. Y.

Yang, Y. C.

J. L. Yuan, X. M. Gao, Y. C. Yang, G. X. Zhu, W. Yuan, H. W. Choi, Z. Y. Zhang, and Y. J. Wang, “GaN directional couplers for on-chip optical interconnect,” Semicond. Sci. Technol. 32, 045001 (2017).
[Crossref]

Yuan, J.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Yuan, J. L.

J. L. Yuan, X. M. Gao, Y. C. Yang, G. X. Zhu, W. Yuan, H. W. Choi, Z. Y. Zhang, and Y. J. Wang, “GaN directional couplers for on-chip optical interconnect,” Semicond. Sci. Technol. 32, 045001 (2017).
[Crossref]

Yuan, W.

J. L. Yuan, X. M. Gao, Y. C. Yang, G. X. Zhu, W. Yuan, H. W. Choi, Z. Y. Zhang, and Y. J. Wang, “GaN directional couplers for on-chip optical interconnect,” Semicond. Sci. Technol. 32, 045001 (2017).
[Crossref]

Zhang, F.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Zhang, S.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Zhang, X. H.

Y. Y. Zhang, Z. T. Ma, X. H. Zhang, T. Wang, and H. W. Choi, “Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si,” Appl. Phys. Lett. 104, 221106 (2014).
[Crossref]

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

Zhang, Y. Y.

Y. Y. Zhang, Z. T. Ma, X. H. Zhang, T. Wang, and H. W. Choi, “Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si,” Appl. Phys. Lett. 104, 221106 (2014).
[Crossref]

Zhang, Z. Y.

J. L. Yuan, X. M. Gao, Y. C. Yang, G. X. Zhu, W. Yuan, H. W. Choi, Z. Y. Zhang, and Y. J. Wang, “GaN directional couplers for on-chip optical interconnect,” Semicond. Sci. Technol. 32, 045001 (2017).
[Crossref]

Zhu, G. X.

J. L. Yuan, X. M. Gao, Y. C. Yang, G. X. Zhu, W. Yuan, H. W. Choi, Z. Y. Zhang, and Y. J. Wang, “GaN directional couplers for on-chip optical interconnect,” Semicond. Sci. Technol. 32, 045001 (2017).
[Crossref]

Zhu, H.

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

Analyst (1)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227–236 (2011).
[Crossref]

Appl. Phys. Lett. (5)

H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89, 211101 (2006).
[Crossref]

P. Frajtag, N. A. El-Masry, N. Nepal, and S. M. Bedair, “Embedded voids approach for low defect density in epitaxial GaN films,” Appl. Phys. Lett. 98, 023115 (2011).
[Crossref]

Y. Y. Zhang, Z. T. Ma, X. H. Zhang, T. Wang, and H. W. Choi, “Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si,” Appl. Phys. Lett. 104, 221106 (2014).
[Crossref]

M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence,” Appl. Phys. Lett. 72, 1066–1068 (1998).
[Crossref]

Z. Shi, X. Gao, J. Yuan, S. Zhang, Y. Jiang, F. Zhang, Y. Jiang, H. Zhu, and Y. Wang, “Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics,” Appl. Phys. Lett. 111, 241104 (2017).
[Crossref]

IEEE Electron Device Lett. (1)

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29, 158–160 (2008).
[Crossref]

IEEE Photon. J. (1)

M. Razeghi, “III-nitride optoelectronic devices: from ultraviolet toward terahertz,” IEEE Photon. J. 3, 263–267 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22, 1346–1348 (2010).
[Crossref]

J. Phys. (1)

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. 13, 7115 (2001).

J. Phys. D (1)

V. Cimalla, J. Pezoldt, and O. Ambacher, “Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications,” J. Phys. D 40, 6386–6434 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Nakamura, N. Senoh, N. Iwasa, and S. I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures,” Jpn. J. Appl. Phys. 34, L797–L799 (1995).
[Crossref]

Laser Photon. Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev. 6, 463–487 (2012).
[Crossref]

Microelectron. Int. (1)

J. H. Lau, “Overview and outlook of through-silicon via (TSV) and 3D integrations,” Microelectron. Int. 28, 8–22 (2011).
[Crossref]

Photon. Res. (1)

Proc. IEEE (1)

U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE 96, 287–305 (2008).
[Crossref]

Rep. Prog. Phys. (1)

J. W. Orton and C. T. Foxon, “Group III nitride semiconductors for short wavelength light-emitting devices,” Rep. Prog. Phys. 61, 1–75 (1998).
[Crossref]

Semicond. Sci. Technol. (1)

J. L. Yuan, X. M. Gao, Y. C. Yang, G. X. Zhu, W. Yuan, H. W. Choi, Z. Y. Zhang, and Y. J. Wang, “GaN directional couplers for on-chip optical interconnect,” Semicond. Sci. Technol. 32, 045001 (2017).
[Crossref]

Superlatt. Microstruct. (1)

S. Y. Wei, Y. L. Jia, and C. X. Xia, “Excitonic optical absorption in wurtzite InGaN/GaN quantum wells,” Superlatt. Microstruct. 51, 9–15 (2012).
[Crossref]

Other (1)

H. W. Choi, K. H. Li, and H. Lu, “Light-emitting diodes (leds) with monolithically-integrated photodetectors for in situ real-time intensity monitoring,” WO ApplicationWO2017197576A1 (November 23, 2017).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplementary Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagrams illustrate the integration of LEDs, PDs, and waveguides on a GaN-on-Si wafer. Microphotographs show optical transmission between LEDs and PDs connected between (b) linear and (c) bent waveguides. The scale bars in (b) and (c) represent 1 mm in length.
Fig. 2.
Fig. 2. EL spectrum of the LED operated at 1 mA and spectral responsivity of the PD.
Fig. 3.
Fig. 3. Ray-trace simulation results of the (a) GaN-on-sapphire (b) GaN-on-Si, and (c) suspended waveguides. (d) Simulated optical power in the suspended waveguides as a function of distance. The set shows PD photocurrent as a function of the laser irradiation position. SEM (top oblique view) images show the waveguide morphologies. (e) Before and (f) after wet etching. The scale bars represent 10 μm in length.
Fig. 4.
Fig. 4. (a) IPDV plots of the PD responding to illumination from the LED operated at currents from 0 (dark) to 20 mA. (b) IPDV plots of the PD under ambient lighting conditions and optical transmission in an adjacent channel. (c) IPDV characteristics of planar systems with linear and bent waveguides.
Fig. 5.
Fig. 5. (a) Time-resolved PL decay curve of the InGaN/GaN QWs structure measured at room temperature. (b) Transient photocurrent response of the PD when driven by a short pulse. The red and blue lines represent the rising and falling edges, respectively. (c) Schematic diagram of the experimental setup for evaluating data transmission performance. (d) Measured eye diagram of transmission of a PRBS signal at 250 Mb/s.
Fig. 6.
Fig. 6. (a) Schematic diagram and (b) microphotograph of the 3D photonic system. (c) IPDV plots of the PDs before and after selective-area liftoff. (d) Measured eye diagram of transmission of a PRBS signal at 250 Mb/s in the 3D photonic system.

Metrics