Abstract

Position-sensitive detectors (PSDs) based on the lateral photo effect have been widely used in diverse applications including optical engineering, aerospace, and military fields. With increasing demands for long-working-distance, low-energy-consumption, and weak-signal-sensing systems, the poor responsivity of conventional silicon-based PSDs has become a bottleneck limiting their applications. Herein, we propose a high-performance passive PSD based on a graphene–Si heterostructure. The graphene is adapted as a photon-absorbing and charge-separation layer working together with Si as a junction, while the high mobility provides promising ultra-long carrier diffusion length and facilitates a large active area of the device. A PSD with a working area of 8  mm×8  mm is demonstrated to present excellent position sensitivity to weak light at the nanowatt level (much better than the limit of microwatts of Si P-I-N PSDs). More importantly, it shows very fast response and low degree of nonlinearity of 3%, and extends the operating wavelength to the near-infrared region (1319 and 1550 nm). This work therefore provides a new strategy for high-performance and broadband PSDs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance graphene photodetector using interfacial gating

Xitao Guo, Wenhui Wang, Haiyan Nan, Yuanfang Yu, Jie Jiang, Weiwei Zhao, Jinhuan Li, Zainab Zafar, Nan Xiang, Zhonghua Ni, Weida Hu, Yumeng You, and Zhenhua Ni
Optica 3(10) 1066-1070 (2016)

Enhanced lateral photovoltaic effect in the p-n heterojunction composed of manganite and silicon by side irradiation for position sensitive detecting

Juan Du, Hao Ni, Kun Zhao, Y.-C. Kong, H. K. Wong, Songqing Zhao, and Shaohua Chen
Opt. Express 19(18) 17260-17266 (2011)

Highly sensitive UVA and violet photodetector based on single-layer graphene-TiO2 heterojunction

Feng-Xia Liang, Deng-Yue Zhang, Jiu-Zhen Wang, Wei-Yu Kong, Zhi-Xiang Zhang, Yi Wang, and Lin-Bao Luo
Opt. Express 24(23) 25922-25932 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Arimoto, H. Yamamoto, H. Ohno, and H. Hasegawa, “Hydrogenated amorphous silicon position sensitive detector,” J. Appl. Phys. 57, 4778–4782 (1985).
    [Crossref]
  2. G. Lucovsky, “Photoeffects in nonuniformly irradiated p-n junctions,” J. Appl. Phys. 31, 1088–1095 (1960).
    [Crossref]
  3. E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p-i–n diode,” Rev. Sci. Instrum. 65, 3784–3786 (1994).
    [Crossref]
  4. R. Martins and E. Fortunato, “Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si:H P-I-N devices,” Rev. Sci. Instrum. 66, 2927–2934 (1995).
    [Crossref]
  5. M. Vieira, “Speed photodetectors based on amorphous and microcrystalline silicon p-i–n devices,” Appl. Phys. Lett. 70, 220–222 (1997).
    [Crossref]
  6. E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A 51, 135–142 (1996).
    [Crossref]
  7. B. F. Levine, R. H. Willens, C. G. Bethea, and D. Brasen, “Lateral photoeffect in thin amorphous superlattice films of Si and Ti grown on a Si substrate,” Appl. Phys. Lett. 49, 1537–1539 (1986).
    [Crossref]
  8. S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide- semiconductor structures,” Opt. Express 16, 3798–3806 (2008).
    [Crossref]
  9. J. Henry and J. Livingstone, “Optimizing the wavelength response in one-dimensional p-Si Schottky barrier optical PSDs,” Phys. Status Solidi A 208, 1718–1725 (2011).
    [Crossref]
  10. C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95, 263506 (2009).
    [Crossref]
  11. P. F. Fonteint, P. Hendrikst, J. H. Woltert, A. Kucernakg, R. Peat, and D. E. Williams, “Differential measurements of the lateral photoeffect in GaAs/AlGaAs heterostructures,” Semicond. Sci. Technol. 4, 837–840 (1989).
    [Crossref]
  12. C. G. Mattsson, G. Thungstrom, H. Rodjegard, K. Bertilsson, H. E. Nilsson, and H. Martin, “Experimental evaluation of a thermopile detector with SU-8 membrane in a carbon dioxide meter setup,” IEEE Sens. J. 9, 1633–1638 (2009).
    [Crossref]
  13. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
    [Crossref]
  14. X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
    [Crossref]
  15. X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-Silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13, 909–916 (2013).
    [Crossref]
  16. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [Crossref]
  17. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
    [Crossref]
  18. Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
    [Crossref]
  19. M. Akatsuka and K. Sueoka, “Pinning effect of punched-out dislocations in carbon-, nitrogen- or boron-doped silicon wafers,” Jpn. J. Appl. Phys. 40, 1240–1241 (2001).
    [Crossref]
  20. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
    [Crossref]
  21. K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152, 1341–1349 (2012).
    [Crossref]
  22. S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “Lateral photovoltaic effect and magnetoresistance observed in Co-SiO2–Si metal-oxide–semiconductor structures,” J. Phys. D 40, 6926–6929 (2007).
    [Crossref]
  23. Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, “Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells,” Nano Lett. 15, 2104–2110 (2015).
    [Crossref]
  24. Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
    [Crossref]
  25. L. Chi, P. Zhu, H. Wang, X. Huang, and X. Li, “A high sensitivity position-sensitive detector based on Au-SiO2-Si structure,” J. Opt. 13, 015601 (2011).
    [Crossref]
  26. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
    [Crossref]

2016 (1)

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

2015 (1)

Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, “Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells,” Nano Lett. 15, 2104–2110 (2015).
[Crossref]

2013 (1)

X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-Silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13, 909–916 (2013).
[Crossref]

2012 (2)

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152, 1341–1349 (2012).
[Crossref]

2011 (2)

L. Chi, P. Zhu, H. Wang, X. Huang, and X. Li, “A high sensitivity position-sensitive detector based on Au-SiO2-Si structure,” J. Opt. 13, 015601 (2011).
[Crossref]

J. Henry and J. Livingstone, “Optimizing the wavelength response in one-dimensional p-Si Schottky barrier optical PSDs,” Phys. Status Solidi A 208, 1718–1725 (2011).
[Crossref]

2010 (2)

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

2009 (3)

C. G. Mattsson, G. Thungstrom, H. Rodjegard, K. Bertilsson, H. E. Nilsson, and H. Martin, “Experimental evaluation of a thermopile detector with SU-8 membrane in a carbon dioxide meter setup,” IEEE Sens. J. 9, 1633–1638 (2009).
[Crossref]

C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95, 263506 (2009).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

2008 (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide- semiconductor structures,” Opt. Express 16, 3798–3806 (2008).
[Crossref]

2007 (1)

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “Lateral photovoltaic effect and magnetoresistance observed in Co-SiO2–Si metal-oxide–semiconductor structures,” J. Phys. D 40, 6926–6929 (2007).
[Crossref]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

2001 (1)

M. Akatsuka and K. Sueoka, “Pinning effect of punched-out dislocations in carbon-, nitrogen- or boron-doped silicon wafers,” Jpn. J. Appl. Phys. 40, 1240–1241 (2001).
[Crossref]

1997 (1)

M. Vieira, “Speed photodetectors based on amorphous and microcrystalline silicon p-i–n devices,” Appl. Phys. Lett. 70, 220–222 (1997).
[Crossref]

1996 (1)

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A 51, 135–142 (1996).
[Crossref]

1995 (1)

R. Martins and E. Fortunato, “Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si:H P-I-N devices,” Rev. Sci. Instrum. 66, 2927–2934 (1995).
[Crossref]

1994 (1)

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p-i–n diode,” Rev. Sci. Instrum. 65, 3784–3786 (1994).
[Crossref]

1989 (1)

P. F. Fonteint, P. Hendrikst, J. H. Woltert, A. Kucernakg, R. Peat, and D. E. Williams, “Differential measurements of the lateral photoeffect in GaAs/AlGaAs heterostructures,” Semicond. Sci. Technol. 4, 837–840 (1989).
[Crossref]

1986 (1)

B. F. Levine, R. H. Willens, C. G. Bethea, and D. Brasen, “Lateral photoeffect in thin amorphous superlattice films of Si and Ti grown on a Si substrate,” Appl. Phys. Lett. 49, 1537–1539 (1986).
[Crossref]

1985 (1)

S. Arimoto, H. Yamamoto, H. Ohno, and H. Hasegawa, “Hydrogenated amorphous silicon position sensitive detector,” J. Appl. Phys. 57, 4778–4782 (1985).
[Crossref]

1960 (1)

G. Lucovsky, “Photoeffects in nonuniformly irradiated p-n junctions,” J. Appl. Phys. 31, 1088–1095 (1960).
[Crossref]

Akatsuka, M.

M. Akatsuka and K. Sueoka, “Pinning effect of punched-out dislocations in carbon-, nitrogen- or boron-doped silicon wafers,” Jpn. J. Appl. Phys. 40, 1240–1241 (2001).
[Crossref]

An, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

An, X.

X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-Silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13, 909–916 (2013).
[Crossref]

Anissimova, S.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

Arimoto, S.

S. Arimoto, H. Yamamoto, H. Ohno, and H. Hasegawa, “Hydrogenated amorphous silicon position sensitive detector,” J. Appl. Phys. 57, 4778–4782 (1985).
[Crossref]

Bertilsson, K.

C. G. Mattsson, G. Thungstrom, H. Rodjegard, K. Bertilsson, H. E. Nilsson, and H. Martin, “Experimental evaluation of a thermopile detector with SU-8 membrane in a carbon dioxide meter setup,” IEEE Sens. J. 9, 1633–1638 (2009).
[Crossref]

Bethea, C. G.

B. F. Levine, R. H. Willens, C. G. Bethea, and D. Brasen, “Lateral photoeffect in thin amorphous superlattice films of Si and Ti grown on a Si substrate,” Appl. Phys. Lett. 49, 1537–1539 (1986).
[Crossref]

Blake, P.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Brasen, D.

B. F. Levine, R. H. Willens, C. G. Bethea, and D. Brasen, “Lateral photoeffect in thin amorphous superlattice films of Si and Ti grown on a Si substrate,” Appl. Phys. Lett. 49, 1537–1539 (1986).
[Crossref]

Cai, W.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Cao, A.

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

Chi, L.

L. Chi, P. Zhu, H. Wang, X. Huang, and X. Li, “A high sensitivity position-sensitive detector based on Au-SiO2-Si structure,” J. Opt. 13, 015601 (2011).
[Crossref]

Du, M.

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Fang, W.

Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, “Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells,” Nano Lett. 15, 2104–2110 (2015).
[Crossref]

Fang, Y.

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Fernandes, L.

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A 51, 135–142 (1996).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Fonteint, P. F.

P. F. Fonteint, P. Hendrikst, J. H. Woltert, A. Kucernakg, R. Peat, and D. E. Williams, “Differential measurements of the lateral photoeffect in GaAs/AlGaAs heterostructures,” Semicond. Sci. Technol. 4, 837–840 (1989).
[Crossref]

Fortunato, E.

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A 51, 135–142 (1996).
[Crossref]

R. Martins and E. Fortunato, “Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si:H P-I-N devices,” Rev. Sci. Instrum. 66, 2927–2934 (1995).
[Crossref]

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p-i–n diode,” Rev. Sci. Instrum. 65, 3784–3786 (1994).
[Crossref]

Geim, A. K.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Grigorieva, I. V.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Gu, Y. Z.

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide- semiconductor structures,” Opt. Express 16, 3798–3806 (2008).
[Crossref]

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “Lateral photovoltaic effect and magnetoresistance observed in Co-SiO2–Si metal-oxide–semiconductor structures,” J. Phys. D 40, 6926–6929 (2007).
[Crossref]

Gui, X.

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

Hasegawa, H.

S. Arimoto, H. Yamamoto, H. Ohno, and H. Hasegawa, “Hydrogenated amorphous silicon position sensitive detector,” J. Appl. Phys. 57, 4778–4782 (1985).
[Crossref]

Heinz, T. F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152, 1341–1349 (2012).
[Crossref]

Hendrikst, P.

P. F. Fonteint, P. Hendrikst, J. H. Woltert, A. Kucernakg, R. Peat, and D. E. Williams, “Differential measurements of the lateral photoeffect in GaAs/AlGaAs heterostructures,” Semicond. Sci. Technol. 4, 837–840 (1989).
[Crossref]

Henry, J.

J. Henry and J. Livingstone, “Optimizing the wavelength response in one-dimensional p-Si Schottky barrier optical PSDs,” Phys. Status Solidi A 208, 1718–1725 (2011).
[Crossref]

Hill, E. H.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

Huang, X.

L. Chi, P. Zhu, H. Wang, X. Huang, and X. Li, “A high sensitivity position-sensitive detector based on Au-SiO2-Si structure,” J. Opt. 13, 015601 (2011).
[Crossref]

Jia, Y.

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Ju, L.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152, 1341–1349 (2012).
[Crossref]

Jung, I.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Jung, Y. J.

X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-Silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13, 909–916 (2013).
[Crossref]

Kang, F.

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

Kar, S.

X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-Silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13, 909–916 (2013).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Kim, S.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Kong, J.

Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, “Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells,” Nano Lett. 15, 2104–2110 (2015).
[Crossref]

Kucernakg, A.

P. F. Fonteint, P. Hendrikst, J. H. Woltert, A. Kucernakg, R. Peat, and D. E. Williams, “Differential measurements of the lateral photoeffect in GaAs/AlGaAs heterostructures,” Semicond. Sci. Technol. 4, 837–840 (1989).
[Crossref]

Lavareda, G.

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A 51, 135–142 (1996).
[Crossref]

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p-i–n diode,” Rev. Sci. Instrum. 65, 3784–3786 (1994).
[Crossref]

Levine, B. F.

B. F. Levine, R. H. Willens, C. G. Bethea, and D. Brasen, “Lateral photoeffect in thin amorphous superlattice films of Si and Ti grown on a Si substrate,” Appl. Phys. Lett. 49, 1537–1539 (1986).
[Crossref]

Li, C.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

Li, P.

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

Li, X.

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, “Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells,” Nano Lett. 15, 2104–2110 (2015).
[Crossref]

L. Chi, P. Zhu, H. Wang, X. Huang, and X. Li, “A high sensitivity position-sensitive detector based on Au-SiO2-Si structure,” J. Opt. 13, 015601 (2011).
[Crossref]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Li, Y.

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Li, Z.

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

Liu, F.

X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-Silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13, 909–916 (2013).
[Crossref]

Livingstone, J.

J. Henry and J. Livingstone, “Optimizing the wavelength response in one-dimensional p-Si Schottky barrier optical PSDs,” Phys. Status Solidi A 208, 1718–1725 (2011).
[Crossref]

Lucovsky, G.

G. Lucovsky, “Photoeffects in nonuniformly irradiated p-n junctions,” J. Appl. Phys. 31, 1088–1095 (1960).
[Crossref]

Lv, Z.

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Mackin, C.

Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, “Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells,” Nano Lett. 15, 2104–2110 (2015).
[Crossref]

Mak, K. F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152, 1341–1349 (2012).
[Crossref]

Martin, H.

C. G. Mattsson, G. Thungstrom, H. Rodjegard, K. Bertilsson, H. E. Nilsson, and H. Martin, “Experimental evaluation of a thermopile detector with SU-8 membrane in a carbon dioxide meter setup,” IEEE Sens. J. 9, 1633–1638 (2009).
[Crossref]

Martins, R.

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A 51, 135–142 (1996).
[Crossref]

R. Martins and E. Fortunato, “Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si:H P-I-N devices,” Rev. Sci. Instrum. 66, 2927–2934 (1995).
[Crossref]

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p-i–n diode,” Rev. Sci. Instrum. 65, 3784–3786 (1994).
[Crossref]

Mattsson, C. G.

C. G. Mattsson, G. Thungstrom, H. Rodjegard, K. Bertilsson, H. E. Nilsson, and H. Martin, “Experimental evaluation of a thermopile detector with SU-8 membrane in a carbon dioxide meter setup,” IEEE Sens. J. 9, 1633–1638 (2009).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Nah, J.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Nair, R. R.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Ni, Z. H.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

Nilsson, H. E.

C. G. Mattsson, G. Thungstrom, H. Rodjegard, K. Bertilsson, H. E. Nilsson, and H. Martin, “Experimental evaluation of a thermopile detector with SU-8 membrane in a carbon dioxide meter setup,” IEEE Sens. J. 9, 1633–1638 (2009).
[Crossref]

Novoselov, K. S.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Ohno, H.

S. Arimoto, H. Yamamoto, H. Ohno, and H. Hasegawa, “Hydrogenated amorphous silicon position sensitive detector,” J. Appl. Phys. 57, 4778–4782 (1985).
[Crossref]

Palacios, T.

Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, “Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells,” Nano Lett. 15, 2104–2110 (2015).
[Crossref]

Peat, R.

P. F. Fonteint, P. Hendrikst, J. H. Woltert, A. Kucernakg, R. Peat, and D. E. Williams, “Differential measurements of the lateral photoeffect in GaAs/AlGaAs heterostructures,” Semicond. Sci. Technol. 4, 837–840 (1989).
[Crossref]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Piner, R.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Ponomarenko, L. A.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

Rodjegard, H.

C. G. Mattsson, G. Thungstrom, H. Rodjegard, K. Bertilsson, H. E. Nilsson, and H. Martin, “Experimental evaluation of a thermopile detector with SU-8 membrane in a carbon dioxide meter setup,” IEEE Sens. J. 9, 1633–1638 (2009).
[Crossref]

Schedin, F.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

Shen, Z. X.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

Shi, E.

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

Soares, F.

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A 51, 135–142 (1996).
[Crossref]

Song, Y.

Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, “Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells,” Nano Lett. 15, 2104–2110 (2015).
[Crossref]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Sueoka, K.

M. Akatsuka and K. Sueoka, “Pinning effect of punched-out dislocations in carbon-, nitrogen- or boron-doped silicon wafers,” Jpn. J. Appl. Phys. 40, 1240–1241 (2001).
[Crossref]

Thungstrom, G.

C. G. Mattsson, G. Thungstrom, H. Rodjegard, K. Bertilsson, H. E. Nilsson, and H. Martin, “Experimental evaluation of a thermopile detector with SU-8 membrane in a carbon dioxide meter setup,” IEEE Sens. J. 9, 1633–1638 (2009).
[Crossref]

Tutuc, E.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Velamakanni, A.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Vieira, M.

M. Vieira, “Speed photodetectors based on amorphous and microcrystalline silicon p-i–n devices,” Appl. Phys. Lett. 70, 220–222 (1997).
[Crossref]

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p-i–n diode,” Rev. Sci. Instrum. 65, 3784–3786 (1994).
[Crossref]

Wang, F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152, 1341–1349 (2012).
[Crossref]

Wang, H.

L. Chi, P. Zhu, H. Wang, X. Huang, and X. Li, “A high sensitivity position-sensitive detector based on Au-SiO2-Si structure,” J. Opt. 13, 015601 (2011).
[Crossref]

C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95, 263506 (2009).
[Crossref]

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide- semiconductor structures,” Opt. Express 16, 3798–3806 (2008).
[Crossref]

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “Lateral photovoltaic effect and magnetoresistance observed in Co-SiO2–Si metal-oxide–semiconductor structures,” J. Phys. D 40, 6926–6929 (2007).
[Crossref]

Wang, K.

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

Wang, Z. H.

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide- semiconductor structures,” Opt. Express 16, 3798–3806 (2008).
[Crossref]

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “Lateral photovoltaic effect and magnetoresistance observed in Co-SiO2–Si metal-oxide–semiconductor structures,” J. Phys. D 40, 6926–6929 (2007).
[Crossref]

Wei, J.

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

Willens, R. H.

B. F. Levine, R. H. Willens, C. G. Bethea, and D. Brasen, “Lateral photoeffect in thin amorphous superlattice films of Si and Ti grown on a Si substrate,” Appl. Phys. Lett. 49, 1537–1539 (1986).
[Crossref]

Williams, D. E.

P. F. Fonteint, P. Hendrikst, J. H. Woltert, A. Kucernakg, R. Peat, and D. E. Williams, “Differential measurements of the lateral photoeffect in GaAs/AlGaAs heterostructures,” Semicond. Sci. Technol. 4, 837–840 (1989).
[Crossref]

Woltert, J. H.

P. F. Fonteint, P. Hendrikst, J. H. Woltert, A. Kucernakg, R. Peat, and D. E. Williams, “Differential measurements of the lateral photoeffect in GaAs/AlGaAs heterostructures,” Semicond. Sci. Technol. 4, 837–840 (1989).
[Crossref]

Wu, D.

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

Xia, Y. X.

C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95, 263506 (2009).
[Crossref]

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide- semiconductor structures,” Opt. Express 16, 3798–3806 (2008).
[Crossref]

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “Lateral photovoltaic effect and magnetoresistance observed in Co-SiO2–Si metal-oxide–semiconductor structures,” J. Phys. D 40, 6926–6929 (2007).
[Crossref]

Xiao, S. Q.

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide- semiconductor structures,” Opt. Express 16, 3798–3806 (2008).
[Crossref]

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “Lateral photovoltaic effect and magnetoresistance observed in Co-SiO2–Si metal-oxide–semiconductor structures,” J. Phys. D 40, 6926–6929 (2007).
[Crossref]

Yamamoto, H.

S. Arimoto, H. Yamamoto, H. Ohno, and H. Hasegawa, “Hydrogenated amorphous silicon position sensitive detector,” J. Appl. Phys. 57, 4778–4782 (1985).
[Crossref]

Yang, D.

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

Yang, R.

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

Yang, T.

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Yang, Y.

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Yu, C. Q.

C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95, 263506 (2009).
[Crossref]

Zhang, L.

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

Zhang, X.

Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, “Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells,” Nano Lett. 15, 2104–2110 (2015).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Zhao, Z. C.

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “The co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide- semiconductor structures,” Opt. Express 16, 3798–3806 (2008).
[Crossref]

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “Lateral photovoltaic effect and magnetoresistance observed in Co-SiO2–Si metal-oxide–semiconductor structures,” J. Phys. D 40, 6926–6929 (2007).
[Crossref]

Zhu, H.

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, “Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells,” Nano Lett. 15, 2104–2110 (2015).
[Crossref]

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

Zhu, M.

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Zhu, P.

L. Chi, P. Zhu, H. Wang, X. Huang, and X. Li, “A high sensitivity position-sensitive detector based on Au-SiO2-Si structure,” J. Opt. 13, 015601 (2011).
[Crossref]

Adv. Mater. (1)

X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, “Graphene-on-silicon Schottky junction solar cells,” Adv. Mater. 22, 2743–2748 (2010).
[Crossref]

Appl. Phys. Lett. (3)

C. Q. Yu, H. Wang, and Y. X. Xia, “Enhanced lateral photovoltaic effect in an improved oxide-metal-semiconductor structure of TiO2/Ti/Si,” Appl. Phys. Lett. 95, 263506 (2009).
[Crossref]

M. Vieira, “Speed photodetectors based on amorphous and microcrystalline silicon p-i–n devices,” Appl. Phys. Lett. 70, 220–222 (1997).
[Crossref]

B. F. Levine, R. H. Willens, C. G. Bethea, and D. Brasen, “Lateral photoeffect in thin amorphous superlattice films of Si and Ti grown on a Si substrate,” Appl. Phys. Lett. 49, 1537–1539 (1986).
[Crossref]

IEEE Sens. J. (1)

C. G. Mattsson, G. Thungstrom, H. Rodjegard, K. Bertilsson, H. E. Nilsson, and H. Martin, “Experimental evaluation of a thermopile detector with SU-8 membrane in a carbon dioxide meter setup,” IEEE Sens. J. 9, 1633–1638 (2009).
[Crossref]

J. Appl. Phys. (2)

S. Arimoto, H. Yamamoto, H. Ohno, and H. Hasegawa, “Hydrogenated amorphous silicon position sensitive detector,” J. Appl. Phys. 57, 4778–4782 (1985).
[Crossref]

G. Lucovsky, “Photoeffects in nonuniformly irradiated p-n junctions,” J. Appl. Phys. 31, 1088–1095 (1960).
[Crossref]

J. Opt. (1)

L. Chi, P. Zhu, H. Wang, X. Huang, and X. Li, “A high sensitivity position-sensitive detector based on Au-SiO2-Si structure,” J. Opt. 13, 015601 (2011).
[Crossref]

J. Phys. D (1)

S. Q. Xiao, H. Wang, Z. C. Zhao, Y. Z. Gu, Y. X. Xia, and Z. H. Wang, “Lateral photovoltaic effect and magnetoresistance observed in Co-SiO2–Si metal-oxide–semiconductor structures,” J. Phys. D 40, 6926–6929 (2007).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Akatsuka and K. Sueoka, “Pinning effect of punched-out dislocations in carbon-, nitrogen- or boron-doped silicon wafers,” Jpn. J. Appl. Phys. 40, 1240–1241 (2001).
[Crossref]

Nano Lett. (3)

Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, “On resonant scatterers as a factor limiting carrier mobility in graphene,” Nano Lett. 10, 3868–3872 (2010).
[Crossref]

Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhu, and J. Kong, “Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells,” Nano Lett. 15, 2104–2110 (2015).
[Crossref]

X. An, F. Liu, Y. J. Jung, and S. Kar, “Tunable graphene-Silicon heterojunctions for ultrasensitive photodetection,” Nano Lett. 13, 909–916 (2013).
[Crossref]

Nature (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[Crossref]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

Y. Jia, A. Cao, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, J. Wei, K. Wang, H. Zhu, and D. Wu, “Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer,” Phys. Chem. Chem. Phys. 14, 8391–8396 (2012).
[Crossref]

Phys. Status Solidi A (1)

J. Henry and J. Livingstone, “Optimizing the wavelength response in one-dimensional p-Si Schottky barrier optical PSDs,” Phys. Status Solidi A 208, 1718–1725 (2011).
[Crossref]

Rev. Sci. Instrum. (2)

E. Fortunato, G. Lavareda, M. Vieira, and R. Martins, “Thin film position sensitive detector based on amorphous silicon p-i–n diode,” Rev. Sci. Instrum. 65, 3784–3786 (1994).
[Crossref]

R. Martins and E. Fortunato, “Lateral photoeffect in large area one-dimensional thin-film position-sensitive detectors based in a-Si:H P-I-N devices,” Rev. Sci. Instrum. 66, 2927–2934 (1995).
[Crossref]

Science (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref]

Semicond. Sci. Technol. (1)

P. F. Fonteint, P. Hendrikst, J. H. Woltert, A. Kucernakg, R. Peat, and D. E. Williams, “Differential measurements of the lateral photoeffect in GaAs/AlGaAs heterostructures,” Semicond. Sci. Technol. 4, 837–840 (1989).
[Crossref]

Sens. Actuators A (1)

E. Fortunato, G. Lavareda, R. Martins, F. Soares, and L. Fernandes, “Large-area 1D thin-film position-sensitive detector with high detection resolution,” Sens. Actuators A 51, 135–142 (1996).
[Crossref]

Small (1)

X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, and Y. Fang, “High detectivity graphene-silicon heterojunction photodetector,” Small 12, 595–601 (2016).
[Crossref]

Solid State Commun. (1)

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: from the far infrared to the ultraviolet,” Solid State Commun. 152, 1341–1349 (2012).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       More results on control devices and discussion on mechanism

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of PSD based on graphene–Si heterojunction. (a) Schematic diagram of the graphene device on a lightly n-doped Si substrate. The photo-generated holes sweep into graphene under the built-in electric field, and then diffuse laterally, while the electrons enter the bulk Si. (b) and (c) Schematic structure and energy band diagrams of devices without (b) and with (c) graphene on a Si substrate. The pinning effect causes the surface band to bend upwards, leading to a built-in electric field from the bulk Si to the surface. The diffusion length of the holes in graphene are much longer than those in Si. (d) Electrical characteristics of the graphene–Si junction as a photodiode in the dark and under illumination of different powers. (e) The spatial dependence of the difference of output photovoltage (VX2VX1) measured from pure Si and graphene–Si, as shown in (b) and (c), respectively. Set the middle of the two electrodes (VX2, VX1) as the coordinate origin, and the interface of graphene–electrode VX1 and VX2 as 4  mm and 4 mm, respectively. (532 nm laser with spot size of 1  μm).
Fig. 2.
Fig. 2. Position-sensitive characteristics of the graphene-Si based PSD. (a) Photo-switching characteristics of the PSD with 820-nW incident light (532 nm) focusing at different positions. (b) The ratio [(VX2VX1)/(VX1+VX2)] as a function of the laser position with different spot sizes. The inset plots the position-sensitive characteristics of both directions (X and Y). (c) The position-sensitive characteristics under different incident light power. (d) The power dependence of the sum of the output voltages (VX1+VX2) in X direction.
Fig. 3.
Fig. 3. Performance of graphene–Si-based PSD. (a) The power dependence of the difference of the output voltages (VX2VX1) when the light spot is focused on the position of 1 μm away from the electrode VX2. (b) The position-sensitive characteristics under weak incident light of 17  nW. (c) The transient response of the device when the light (633 nm laser, at the position of 1 μm away from the electrode VX1) is switched on or off by an acoustic optical modulator with frequency of 10 kHz. (d) The distance dependence of the rise time of the device.
Fig. 4.
Fig. 4. Position-sensitive characteristics of the PSD for infrared light. (a) Time-dependent output photovoltage of the PSD with periodic chopping of infrared light source (1319 nm, 670 μW). (b) The position-sensitive characteristics under different powers of infrared light (1319 nm). (c) The difference of the output voltages (VX2VX1) as a function of power when the light spot is focused at 1 μm away from the electrode VX2 (1319 nm). (d) The position-sensitive characteristics for 1550 nm infrared light (4 mW).
Fig. 5.
Fig. 5. Demonstration of two-dimensional PSD. (a) The optical image of an 8  mm×8  mm PSD and schematic diagram of the movement of light in the operating area. (b) The measured trajectory (red dots) of the laser (633 nm, 40  μW). The white dotted line represents the actual position.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ=2×[i=1N(XiXiT)2]/NL×100%,

Metrics