Abstract

A colorless crystal of Ba2Mg(BO3)2 about 37 × 25 × 17 mm3 has been grown successfully by the Kyropoulos method. Thermal analyses results show that Ba2Mg(BO3)2 melts congruently. The phase purity of the raw materials and the grown crystals were confirmed by powder X-ray diffraction. Ba2Mg(BO3)2 exhibits a low UV cutoff of 187 nm and high transmittance below 3000 nm. The refractive indices of the crystal have been measured and the the least-squares fitting method was used to obtain the Sellmeier dispersion equations. The results indicate that Ba2Mg(BO3)2 is a potential birefringence crystal with large birefringence of 0.10422 at 546 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of polarizer made of the deep-UV birefringent crystal Ba2Mg(B3O6)2

Jing Zhao, Yingying Ma, and Rukang Li
Appl. Opt. 54(33) 9949-9953 (2015)

Ultraviolet nonlinear optical crystal: CsBe2BO3F2

Hongwei Huang, Chuangtian Chen, Xiaoyang Wang, Yong Zhu, Guiling Wang, Xin Zhang, Lirong Wang, and Jiyong Yao
J. Opt. Soc. Am. B 28(9) 2186-2190 (2011)

Nonlinear optical properties of Ca5(BO3)3F crystal

Ke Xu, Pascal Loiseau, Gerard Aka, Regine Maillard, Alain Maillard, and Takunori Taira
Opt. Express 16(22) 17735-17744 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. Q. Zhou, J. Xu, X. D. Chen, H. Y. Zhong, S. T. Wang, K. Xu, P. Z. Deng, and F. X. Gan, “Growth and spectrum of a novel birefringent α-BaB2O4 crystal,” J. Cryst. Growth 191(3), 517–519 (1998).
    [Crossref]
  2. S. Y. Zhang, X. Wu, Y. T. Song, D. Q. Ni, B. Q. Hu, and T. Zhou, “Growth of birefringent Ca3(BO3)2 crystals by the Czochralski method,” J. Cryst. Growth 252(1-3), 246–250 (2003).
    [Crossref]
  3. B. J. Isherwood and J. A. James, “Structural dependence of the optical birefringence of crystals with calcite and aragonite type structures,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(2), 340–341 (1976).
    [Crossref]
  4. W. Kinase, M. Tanaka, and H. Nomura, “Birefringence of CaCO3 and electronic polarizabilities of the constituent ions,” J. Phys. Soc. Jpn. 47(4), 1375–1376 (1979).
    [Crossref]
  5. R. N. Smartt and W. H. Steel, “Birefringence of quartz and calcite,” J. Opt. Soc. Am. 49(7), 710–868 (1959).
    [Crossref]
  6. H. T. Luo, T. Tkaczyk, E. L. Dereniak, K. Oka, and R. Sampson, “High birefringence of the yttrium vanadate crystal in the middle wavelength infrared,” Opt. Lett. 31(5), 616–618 (2006).
    [Crossref]
  7. T. Thao Tran and P. Shiv Halasyamani, “New Fluoride Carbonates: Centrosymmetric KPb2(CO3)2F and Noncentrosymmetric K2.70Pb5.15(CO3)5F3,” Inorg. Chem. 52(5), 2466–2473 (2013).
    [Crossref]
  8. H. Qingzhen and L. Jingkui, “Studies on flux systems for the single crystal growth of β-BaB2O4,” J. Cryst. Growth 97(3-4), 720–724 (1989).
    [Crossref]
  9. D. Y. Tang, W. R. Zeng, and Q. L. Zhao, “A study on growth of β-BaB2O4 crystals,” J. Cryst. Growth 123(3-4), 445–450 (1992).
    [Crossref]
  10. F. Liang, Y. W. Guo, Z. S. Lin, J. Y. Yao, G. C. Zhang, W. L. Yin, Y. C. Wu, and C. T. Chen, “Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group,” J. Mater. Chem. C 6(47), 12879–12887 (2018).
    [Crossref]
  11. X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
    [Crossref]
  12. A. Kato and H. Rikukawa, “First-principles studies of large birefringences in alkaline-earth orthoborate crystals,” Phys. Rev. B 72(4), 041101 (2005).
    [Crossref]
  13. F. L. Qin and R. K. Li, “Predicting refractive indices of the borate optical crystals,” J. Cryst. Growth 318(1), 642–644 (2011).
    [Crossref]
  14. J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “First-principles calculations of the electronic structure and optical properties ofLiB3O5,CsB3O5, and BaB2O4crystals,” Phys. Rev. B 57(12), 6925–6932 (1998).
    [Crossref]
  15. C. T. Chen, G. L. Wang, X. Y. Wang, and Z. Y. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications,” Appl. Phys. B: Lasers Opt. 97(1), 9–25 (2009).
    [Crossref]
  16. G. H. Zou, N. Ye, L. Huang, and X. S. Lin, “Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials,” J. Am. Chem. Soc. 133(49), 20001–20007 (2011).
    [Crossref]
  17. A. Akella and D. A. Keszler, “Structure and Eu2+ luminescence of dibarium magnesium orthoborate,” Mater. Res. Bull. 30(1), 105–111 (1995).
    [Crossref]
  18. K. Kato, “Second-harmonic generation to 2048 Å in Β-Ba2O4,” IEEE J. Quantum Electron. 22(7), 1013–1014 (1986).
    [Crossref]
  19. X. S. Lv, Y. G. Yang, B. Liu, Y. Y. Zhang, L. Wei, X. Zhao, and X. P. Wang, “Electronic structure and Raman spectroscopy study of dibarium magnesium orthoborate, Ba2Mg(BO3)2,” Vib. Spectrosc. 80, 53–58 (2015).
    [Crossref]
  20. Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
    [Crossref]
  21. X. L. Chen, B. B. Zhang, F. F. Zhang, Y. Wang, M. Zhang, Z. H. Yang, K. R. Poeppelmeier, and S. L. Pan, “Designing an excellent deep-ultraviolet birefringent material for light polarization,” J. Am. Chem. Soc. 140(47), 16311–16319 (2018).
    [Crossref]
  22. M. Zhang, D. H. An, C. Hu, X. L. Chen, Z. H. Yang, and S. L. Pan, “Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene,” J. Am. Chem. Soc. 141(7), 3258–3264 (2019).
    [Crossref]

2019 (1)

M. Zhang, D. H. An, C. Hu, X. L. Chen, Z. H. Yang, and S. L. Pan, “Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene,” J. Am. Chem. Soc. 141(7), 3258–3264 (2019).
[Crossref]

2018 (3)

X. L. Chen, B. B. Zhang, F. F. Zhang, Y. Wang, M. Zhang, Z. H. Yang, K. R. Poeppelmeier, and S. L. Pan, “Designing an excellent deep-ultraviolet birefringent material for light polarization,” J. Am. Chem. Soc. 140(47), 16311–16319 (2018).
[Crossref]

F. Liang, Y. W. Guo, Z. S. Lin, J. Y. Yao, G. C. Zhang, W. L. Yin, Y. C. Wu, and C. T. Chen, “Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group,” J. Mater. Chem. C 6(47), 12879–12887 (2018).
[Crossref]

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

2015 (1)

X. S. Lv, Y. G. Yang, B. Liu, Y. Y. Zhang, L. Wei, X. Zhao, and X. P. Wang, “Electronic structure and Raman spectroscopy study of dibarium magnesium orthoborate, Ba2Mg(BO3)2,” Vib. Spectrosc. 80, 53–58 (2015).
[Crossref]

2014 (1)

Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
[Crossref]

2013 (1)

T. Thao Tran and P. Shiv Halasyamani, “New Fluoride Carbonates: Centrosymmetric KPb2(CO3)2F and Noncentrosymmetric K2.70Pb5.15(CO3)5F3,” Inorg. Chem. 52(5), 2466–2473 (2013).
[Crossref]

2011 (2)

F. L. Qin and R. K. Li, “Predicting refractive indices of the borate optical crystals,” J. Cryst. Growth 318(1), 642–644 (2011).
[Crossref]

G. H. Zou, N. Ye, L. Huang, and X. S. Lin, “Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials,” J. Am. Chem. Soc. 133(49), 20001–20007 (2011).
[Crossref]

2009 (1)

C. T. Chen, G. L. Wang, X. Y. Wang, and Z. Y. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications,” Appl. Phys. B: Lasers Opt. 97(1), 9–25 (2009).
[Crossref]

2006 (1)

2005 (1)

A. Kato and H. Rikukawa, “First-principles studies of large birefringences in alkaline-earth orthoborate crystals,” Phys. Rev. B 72(4), 041101 (2005).
[Crossref]

2003 (1)

S. Y. Zhang, X. Wu, Y. T. Song, D. Q. Ni, B. Q. Hu, and T. Zhou, “Growth of birefringent Ca3(BO3)2 crystals by the Czochralski method,” J. Cryst. Growth 252(1-3), 246–250 (2003).
[Crossref]

1998 (2)

G. Q. Zhou, J. Xu, X. D. Chen, H. Y. Zhong, S. T. Wang, K. Xu, P. Z. Deng, and F. X. Gan, “Growth and spectrum of a novel birefringent α-BaB2O4 crystal,” J. Cryst. Growth 191(3), 517–519 (1998).
[Crossref]

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “First-principles calculations of the electronic structure and optical properties ofLiB3O5,CsB3O5, and BaB2O4crystals,” Phys. Rev. B 57(12), 6925–6932 (1998).
[Crossref]

1995 (1)

A. Akella and D. A. Keszler, “Structure and Eu2+ luminescence of dibarium magnesium orthoborate,” Mater. Res. Bull. 30(1), 105–111 (1995).
[Crossref]

1992 (1)

D. Y. Tang, W. R. Zeng, and Q. L. Zhao, “A study on growth of β-BaB2O4 crystals,” J. Cryst. Growth 123(3-4), 445–450 (1992).
[Crossref]

1989 (1)

H. Qingzhen and L. Jingkui, “Studies on flux systems for the single crystal growth of β-BaB2O4,” J. Cryst. Growth 97(3-4), 720–724 (1989).
[Crossref]

1986 (1)

K. Kato, “Second-harmonic generation to 2048 Å in Β-Ba2O4,” IEEE J. Quantum Electron. 22(7), 1013–1014 (1986).
[Crossref]

1979 (1)

W. Kinase, M. Tanaka, and H. Nomura, “Birefringence of CaCO3 and electronic polarizabilities of the constituent ions,” J. Phys. Soc. Jpn. 47(4), 1375–1376 (1979).
[Crossref]

1976 (1)

B. J. Isherwood and J. A. James, “Structural dependence of the optical birefringence of crystals with calcite and aragonite type structures,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(2), 340–341 (1976).
[Crossref]

1959 (1)

Akella, A.

A. Akella and D. A. Keszler, “Structure and Eu2+ luminescence of dibarium magnesium orthoborate,” Mater. Res. Bull. 30(1), 105–111 (1995).
[Crossref]

An, D. H.

M. Zhang, D. H. An, C. Hu, X. L. Chen, Z. H. Yang, and S. L. Pan, “Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene,” J. Am. Chem. Soc. 141(7), 3258–3264 (2019).
[Crossref]

Bian, Q.

Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
[Crossref]

Chen, C. T.

F. Liang, Y. W. Guo, Z. S. Lin, J. Y. Yao, G. C. Zhang, W. L. Yin, Y. C. Wu, and C. T. Chen, “Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group,” J. Mater. Chem. C 6(47), 12879–12887 (2018).
[Crossref]

C. T. Chen, G. L. Wang, X. Y. Wang, and Z. Y. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications,” Appl. Phys. B: Lasers Opt. 97(1), 9–25 (2009).
[Crossref]

Chen, X. D.

G. Q. Zhou, J. Xu, X. D. Chen, H. Y. Zhong, S. T. Wang, K. Xu, P. Z. Deng, and F. X. Gan, “Growth and spectrum of a novel birefringent α-BaB2O4 crystal,” J. Cryst. Growth 191(3), 517–519 (1998).
[Crossref]

Chen, X. L.

M. Zhang, D. H. An, C. Hu, X. L. Chen, Z. H. Yang, and S. L. Pan, “Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene,” J. Am. Chem. Soc. 141(7), 3258–3264 (2019).
[Crossref]

X. L. Chen, B. B. Zhang, F. F. Zhang, Y. Wang, M. Zhang, Z. H. Yang, K. R. Poeppelmeier, and S. L. Pan, “Designing an excellent deep-ultraviolet birefringent material for light polarization,” J. Am. Chem. Soc. 140(47), 16311–16319 (2018).
[Crossref]

Deng, P. Z.

G. Q. Zhou, J. Xu, X. D. Chen, H. Y. Zhong, S. T. Wang, K. Xu, P. Z. Deng, and F. X. Gan, “Growth and spectrum of a novel birefringent α-BaB2O4 crystal,” J. Cryst. Growth 191(3), 517–519 (1998).
[Crossref]

Dereniak, E. L.

Dong, L. Y.

Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
[Crossref]

Duan, C. G.

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “First-principles calculations of the electronic structure and optical properties ofLiB3O5,CsB3O5, and BaB2O4crystals,” Phys. Rev. B 57(12), 6925–6932 (1998).
[Crossref]

Gan, F. X.

G. Q. Zhou, J. Xu, X. D. Chen, H. Y. Zhong, S. T. Wang, K. Xu, P. Z. Deng, and F. X. Gan, “Growth and spectrum of a novel birefringent α-BaB2O4 crystal,” J. Cryst. Growth 191(3), 517–519 (1998).
[Crossref]

Gu, Z. Q.

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “First-principles calculations of the electronic structure and optical properties ofLiB3O5,CsB3O5, and BaB2O4crystals,” Phys. Rev. B 57(12), 6925–6932 (1998).
[Crossref]

Guo, Y. W.

F. Liang, Y. W. Guo, Z. S. Lin, J. Y. Yao, G. C. Zhang, W. L. Yin, Y. C. Wu, and C. T. Chen, “Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group,” J. Mater. Chem. C 6(47), 12879–12887 (2018).
[Crossref]

Hu, B. Q.

S. Y. Zhang, X. Wu, Y. T. Song, D. Q. Ni, B. Q. Hu, and T. Zhou, “Growth of birefringent Ca3(BO3)2 crystals by the Czochralski method,” J. Cryst. Growth 252(1-3), 246–250 (2003).
[Crossref]

Hu, C.

M. Zhang, D. H. An, C. Hu, X. L. Chen, Z. H. Yang, and S. L. Pan, “Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene,” J. Am. Chem. Soc. 141(7), 3258–3264 (2019).
[Crossref]

Hu, Y. Y.

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

Huang, L.

G. H. Zou, N. Ye, L. Huang, and X. S. Lin, “Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials,” J. Am. Chem. Soc. 133(49), 20001–20007 (2011).
[Crossref]

Isherwood, B. J.

B. J. Isherwood and J. A. James, “Structural dependence of the optical birefringence of crystals with calcite and aragonite type structures,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(2), 340–341 (1976).
[Crossref]

James, J. A.

B. J. Isherwood and J. A. James, “Structural dependence of the optical birefringence of crystals with calcite and aragonite type structures,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(2), 340–341 (1976).
[Crossref]

Jing, Q.

Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
[Crossref]

Jingkui, L.

H. Qingzhen and L. Jingkui, “Studies on flux systems for the single crystal growth of β-BaB2O4,” J. Cryst. Growth 97(3-4), 720–724 (1989).
[Crossref]

Kato, A.

A. Kato and H. Rikukawa, “First-principles studies of large birefringences in alkaline-earth orthoborate crystals,” Phys. Rev. B 72(4), 041101 (2005).
[Crossref]

Kato, K.

K. Kato, “Second-harmonic generation to 2048 Å in Β-Ba2O4,” IEEE J. Quantum Electron. 22(7), 1013–1014 (1986).
[Crossref]

Keszler, D. A.

A. Akella and D. A. Keszler, “Structure and Eu2+ luminescence of dibarium magnesium orthoborate,” Mater. Res. Bull. 30(1), 105–111 (1995).
[Crossref]

Kinase, W.

W. Kinase, M. Tanaka, and H. Nomura, “Birefringence of CaCO3 and electronic polarizabilities of the constituent ions,” J. Phys. Soc. Jpn. 47(4), 1375–1376 (1979).
[Crossref]

Li, J.

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “First-principles calculations of the electronic structure and optical properties ofLiB3O5,CsB3O5, and BaB2O4crystals,” Phys. Rev. B 57(12), 6925–6932 (1998).
[Crossref]

Li, Q. G.

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

Li, R. K.

F. L. Qin and R. K. Li, “Predicting refractive indices of the borate optical crystals,” J. Cryst. Growth 318(1), 642–644 (2011).
[Crossref]

Liang, F.

F. Liang, Y. W. Guo, Z. S. Lin, J. Y. Yao, G. C. Zhang, W. L. Yin, Y. C. Wu, and C. T. Chen, “Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group,” J. Mater. Chem. C 6(47), 12879–12887 (2018).
[Crossref]

Lin, X. S.

G. H. Zou, N. Ye, L. Huang, and X. S. Lin, “Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials,” J. Am. Chem. Soc. 133(49), 20001–20007 (2011).
[Crossref]

Lin, Z. S.

F. Liang, Y. W. Guo, Z. S. Lin, J. Y. Yao, G. C. Zhang, W. L. Yin, Y. C. Wu, and C. T. Chen, “Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group,” J. Mater. Chem. C 6(47), 12879–12887 (2018).
[Crossref]

Liu, B.

X. S. Lv, Y. G. Yang, B. Liu, Y. Y. Zhang, L. Wei, X. Zhao, and X. P. Wang, “Electronic structure and Raman spectroscopy study of dibarium magnesium orthoborate, Ba2Mg(BO3)2,” Vib. Spectrosc. 80, 53–58 (2015).
[Crossref]

Luo, H. T.

Lv, X. S.

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

X. S. Lv, Y. G. Yang, B. Liu, Y. Y. Zhang, L. Wei, X. Zhao, and X. P. Wang, “Electronic structure and Raman spectroscopy study of dibarium magnesium orthoborate, Ba2Mg(BO3)2,” Vib. Spectrosc. 80, 53–58 (2015).
[Crossref]

Ni, D. Q.

S. Y. Zhang, X. Wu, Y. T. Song, D. Q. Ni, B. Q. Hu, and T. Zhou, “Growth of birefringent Ca3(BO3)2 crystals by the Czochralski method,” J. Cryst. Growth 252(1-3), 246–250 (2003).
[Crossref]

Nomura, H.

W. Kinase, M. Tanaka, and H. Nomura, “Birefringence of CaCO3 and electronic polarizabilities of the constituent ions,” J. Phys. Soc. Jpn. 47(4), 1375–1376 (1979).
[Crossref]

Oka, K.

Pan, S. L.

M. Zhang, D. H. An, C. Hu, X. L. Chen, Z. H. Yang, and S. L. Pan, “Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene,” J. Am. Chem. Soc. 141(7), 3258–3264 (2019).
[Crossref]

X. L. Chen, B. B. Zhang, F. F. Zhang, Y. Wang, M. Zhang, Z. H. Yang, K. R. Poeppelmeier, and S. L. Pan, “Designing an excellent deep-ultraviolet birefringent material for light polarization,” J. Am. Chem. Soc. 140(47), 16311–16319 (2018).
[Crossref]

Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
[Crossref]

Poeppelmeier, K. R.

X. L. Chen, B. B. Zhang, F. F. Zhang, Y. Wang, M. Zhang, Z. H. Yang, K. R. Poeppelmeier, and S. L. Pan, “Designing an excellent deep-ultraviolet birefringent material for light polarization,” J. Am. Chem. Soc. 140(47), 16311–16319 (2018).
[Crossref]

Qin, F. L.

F. L. Qin and R. K. Li, “Predicting refractive indices of the borate optical crystals,” J. Cryst. Growth 318(1), 642–644 (2011).
[Crossref]

Qingzhen, H.

H. Qingzhen and L. Jingkui, “Studies on flux systems for the single crystal growth of β-BaB2O4,” J. Cryst. Growth 97(3-4), 720–724 (1989).
[Crossref]

Rikukawa, H.

A. Kato and H. Rikukawa, “First-principles studies of large birefringences in alkaline-earth orthoborate crystals,” Phys. Rev. B 72(4), 041101 (2005).
[Crossref]

Sampson, R.

Shiv Halasyamani, P.

T. Thao Tran and P. Shiv Halasyamani, “New Fluoride Carbonates: Centrosymmetric KPb2(CO3)2F and Noncentrosymmetric K2.70Pb5.15(CO3)5F3,” Inorg. Chem. 52(5), 2466–2473 (2013).
[Crossref]

Smartt, R. N.

Song, Y. T.

S. Y. Zhang, X. Wu, Y. T. Song, D. Q. Ni, B. Q. Hu, and T. Zhou, “Growth of birefringent Ca3(BO3)2 crystals by the Czochralski method,” J. Cryst. Growth 252(1-3), 246–250 (2003).
[Crossref]

Steel, W. H.

Tanaka, M.

W. Kinase, M. Tanaka, and H. Nomura, “Birefringence of CaCO3 and electronic polarizabilities of the constituent ions,” J. Phys. Soc. Jpn. 47(4), 1375–1376 (1979).
[Crossref]

Tang, D. Y.

D. Y. Tang, W. R. Zeng, and Q. L. Zhao, “A study on growth of β-BaB2O4 crystals,” J. Cryst. Growth 123(3-4), 445–450 (1992).
[Crossref]

Thao Tran, T.

T. Thao Tran and P. Shiv Halasyamani, “New Fluoride Carbonates: Centrosymmetric KPb2(CO3)2F and Noncentrosymmetric K2.70Pb5.15(CO3)5F3,” Inorg. Chem. 52(5), 2466–2473 (2013).
[Crossref]

Tkaczyk, T.

Wang, D. S.

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “First-principles calculations of the electronic structure and optical properties ofLiB3O5,CsB3O5, and BaB2O4crystals,” Phys. Rev. B 57(12), 6925–6932 (1998).
[Crossref]

Wang, G. L.

C. T. Chen, G. L. Wang, X. Y. Wang, and Z. Y. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications,” Appl. Phys. B: Lasers Opt. 97(1), 9–25 (2009).
[Crossref]

Wang, J. Y.

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

Wang, S. T.

G. Q. Zhou, J. Xu, X. D. Chen, H. Y. Zhong, S. T. Wang, K. Xu, P. Z. Deng, and F. X. Gan, “Growth and spectrum of a novel birefringent α-BaB2O4 crystal,” J. Cryst. Growth 191(3), 517–519 (1998).
[Crossref]

Wang, X. P.

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

X. S. Lv, Y. G. Yang, B. Liu, Y. Y. Zhang, L. Wei, X. Zhao, and X. P. Wang, “Electronic structure and Raman spectroscopy study of dibarium magnesium orthoborate, Ba2Mg(BO3)2,” Vib. Spectrosc. 80, 53–58 (2015).
[Crossref]

Wang, X. Y.

C. T. Chen, G. L. Wang, X. Y. Wang, and Z. Y. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications,” Appl. Phys. B: Lasers Opt. 97(1), 9–25 (2009).
[Crossref]

Wang, Y.

X. L. Chen, B. B. Zhang, F. F. Zhang, Y. Wang, M. Zhang, Z. H. Yang, K. R. Poeppelmeier, and S. L. Pan, “Designing an excellent deep-ultraviolet birefringent material for light polarization,” J. Am. Chem. Soc. 140(47), 16311–16319 (2018).
[Crossref]

Wei, L.

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

X. S. Lv, Y. G. Yang, B. Liu, Y. Y. Zhang, L. Wei, X. Zhao, and X. P. Wang, “Electronic structure and Raman spectroscopy study of dibarium magnesium orthoborate, Ba2Mg(BO3)2,” Vib. Spectrosc. 80, 53–58 (2015).
[Crossref]

Wu, H. P.

Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
[Crossref]

Wu, X.

S. Y. Zhang, X. Wu, Y. T. Song, D. Q. Ni, B. Q. Hu, and T. Zhou, “Growth of birefringent Ca3(BO3)2 crystals by the Czochralski method,” J. Cryst. Growth 252(1-3), 246–250 (2003).
[Crossref]

Wu, Y. C.

F. Liang, Y. W. Guo, Z. S. Lin, J. Y. Yao, G. C. Zhang, W. L. Yin, Y. C. Wu, and C. T. Chen, “Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group,” J. Mater. Chem. C 6(47), 12879–12887 (2018).
[Crossref]

Xu, J.

G. Q. Zhou, J. Xu, X. D. Chen, H. Y. Zhong, S. T. Wang, K. Xu, P. Z. Deng, and F. X. Gan, “Growth and spectrum of a novel birefringent α-BaB2O4 crystal,” J. Cryst. Growth 191(3), 517–519 (1998).
[Crossref]

Xu, J. H.

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

Xu, K.

G. Q. Zhou, J. Xu, X. D. Chen, H. Y. Zhong, S. T. Wang, K. Xu, P. Z. Deng, and F. X. Gan, “Growth and spectrum of a novel birefringent α-BaB2O4 crystal,” J. Cryst. Growth 191(3), 517–519 (1998).
[Crossref]

Xu, Z. Y.

C. T. Chen, G. L. Wang, X. Y. Wang, and Z. Y. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications,” Appl. Phys. B: Lasers Opt. 97(1), 9–25 (2009).
[Crossref]

Yang, Y. G.

X. S. Lv, Y. G. Yang, B. Liu, Y. Y. Zhang, L. Wei, X. Zhao, and X. P. Wang, “Electronic structure and Raman spectroscopy study of dibarium magnesium orthoborate, Ba2Mg(BO3)2,” Vib. Spectrosc. 80, 53–58 (2015).
[Crossref]

Yang, Z. H.

M. Zhang, D. H. An, C. Hu, X. L. Chen, Z. H. Yang, and S. L. Pan, “Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene,” J. Am. Chem. Soc. 141(7), 3258–3264 (2019).
[Crossref]

X. L. Chen, B. B. Zhang, F. F. Zhang, Y. Wang, M. Zhang, Z. H. Yang, K. R. Poeppelmeier, and S. L. Pan, “Designing an excellent deep-ultraviolet birefringent material for light polarization,” J. Am. Chem. Soc. 140(47), 16311–16319 (2018).
[Crossref]

Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
[Crossref]

Yao, J. Y.

F. Liang, Y. W. Guo, Z. S. Lin, J. Y. Yao, G. C. Zhang, W. L. Yin, Y. C. Wu, and C. T. Chen, “Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group,” J. Mater. Chem. C 6(47), 12879–12887 (2018).
[Crossref]

Ye, N.

G. H. Zou, N. Ye, L. Huang, and X. S. Lin, “Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials,” J. Am. Chem. Soc. 133(49), 20001–20007 (2011).
[Crossref]

Yin, W. L.

F. Liang, Y. W. Guo, Z. S. Lin, J. Y. Yao, G. C. Zhang, W. L. Yin, Y. C. Wu, and C. T. Chen, “Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group,” J. Mater. Chem. C 6(47), 12879–12887 (2018).
[Crossref]

Yu, H. J.

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

Yu, H. W.

Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
[Crossref]

Zeng, W. R.

D. Y. Tang, W. R. Zeng, and Q. L. Zhao, “A study on growth of β-BaB2O4 crystals,” J. Cryst. Growth 123(3-4), 445–450 (1992).
[Crossref]

Zhang, B. B.

X. L. Chen, B. B. Zhang, F. F. Zhang, Y. Wang, M. Zhang, Z. H. Yang, K. R. Poeppelmeier, and S. L. Pan, “Designing an excellent deep-ultraviolet birefringent material for light polarization,” J. Am. Chem. Soc. 140(47), 16311–16319 (2018).
[Crossref]

Zhang, C.

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

Zhang, F. F.

X. L. Chen, B. B. Zhang, F. F. Zhang, Y. Wang, M. Zhang, Z. H. Yang, K. R. Poeppelmeier, and S. L. Pan, “Designing an excellent deep-ultraviolet birefringent material for light polarization,” J. Am. Chem. Soc. 140(47), 16311–16319 (2018).
[Crossref]

Zhang, G. C.

F. Liang, Y. W. Guo, Z. S. Lin, J. Y. Yao, G. C. Zhang, W. L. Yin, Y. C. Wu, and C. T. Chen, “Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group,” J. Mater. Chem. C 6(47), 12879–12887 (2018).
[Crossref]

Zhang, H.

Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
[Crossref]

Zhang, H. D.

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

Zhang, M.

M. Zhang, D. H. An, C. Hu, X. L. Chen, Z. H. Yang, and S. L. Pan, “Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene,” J. Am. Chem. Soc. 141(7), 3258–3264 (2019).
[Crossref]

X. L. Chen, B. B. Zhang, F. F. Zhang, Y. Wang, M. Zhang, Z. H. Yang, K. R. Poeppelmeier, and S. L. Pan, “Designing an excellent deep-ultraviolet birefringent material for light polarization,” J. Am. Chem. Soc. 140(47), 16311–16319 (2018).
[Crossref]

Zhang, S. Y.

S. Y. Zhang, X. Wu, Y. T. Song, D. Q. Ni, B. Q. Hu, and T. Zhou, “Growth of birefringent Ca3(BO3)2 crystals by the Czochralski method,” J. Cryst. Growth 252(1-3), 246–250 (2003).
[Crossref]

Zhang, Y. Y.

X. S. Lv, Y. G. Yang, B. Liu, Y. Y. Zhang, L. Wei, X. Zhao, and X. P. Wang, “Electronic structure and Raman spectroscopy study of dibarium magnesium orthoborate, Ba2Mg(BO3)2,” Vib. Spectrosc. 80, 53–58 (2015).
[Crossref]

Zhao, Q. L.

D. Y. Tang, W. R. Zeng, and Q. L. Zhao, “A study on growth of β-BaB2O4 crystals,” J. Cryst. Growth 123(3-4), 445–450 (1992).
[Crossref]

Zhao, W. W.

Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
[Crossref]

Zhao, X.

X. S. Lv, Y. G. Yang, B. Liu, Y. Y. Zhang, L. Wei, X. Zhao, and X. P. Wang, “Electronic structure and Raman spectroscopy study of dibarium magnesium orthoborate, Ba2Mg(BO3)2,” Vib. Spectrosc. 80, 53–58 (2015).
[Crossref]

Zhong, H. Y.

G. Q. Zhou, J. Xu, X. D. Chen, H. Y. Zhong, S. T. Wang, K. Xu, P. Z. Deng, and F. X. Gan, “Growth and spectrum of a novel birefringent α-BaB2O4 crystal,” J. Cryst. Growth 191(3), 517–519 (1998).
[Crossref]

Zhou, G. Q.

G. Q. Zhou, J. Xu, X. D. Chen, H. Y. Zhong, S. T. Wang, K. Xu, P. Z. Deng, and F. X. Gan, “Growth and spectrum of a novel birefringent α-BaB2O4 crystal,” J. Cryst. Growth 191(3), 517–519 (1998).
[Crossref]

Zhou, T.

S. Y. Zhang, X. Wu, Y. T. Song, D. Q. Ni, B. Q. Hu, and T. Zhou, “Growth of birefringent Ca3(BO3)2 crystals by the Czochralski method,” J. Cryst. Growth 252(1-3), 246–250 (2003).
[Crossref]

Zou, G. H.

G. H. Zou, N. Ye, L. Huang, and X. S. Lin, “Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials,” J. Am. Chem. Soc. 133(49), 20001–20007 (2011).
[Crossref]

Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. (1)

B. J. Isherwood and J. A. James, “Structural dependence of the optical birefringence of crystals with calcite and aragonite type structures,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(2), 340–341 (1976).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

C. T. Chen, G. L. Wang, X. Y. Wang, and Z. Y. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications,” Appl. Phys. B: Lasers Opt. 97(1), 9–25 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Kato, “Second-harmonic generation to 2048 Å in Β-Ba2O4,” IEEE J. Quantum Electron. 22(7), 1013–1014 (1986).
[Crossref]

Inorg. Chem. (1)

T. Thao Tran and P. Shiv Halasyamani, “New Fluoride Carbonates: Centrosymmetric KPb2(CO3)2F and Noncentrosymmetric K2.70Pb5.15(CO3)5F3,” Inorg. Chem. 52(5), 2466–2473 (2013).
[Crossref]

J. Am. Chem. Soc. (3)

G. H. Zou, N. Ye, L. Huang, and X. S. Lin, “Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials,” J. Am. Chem. Soc. 133(49), 20001–20007 (2011).
[Crossref]

X. L. Chen, B. B. Zhang, F. F. Zhang, Y. Wang, M. Zhang, Z. H. Yang, K. R. Poeppelmeier, and S. L. Pan, “Designing an excellent deep-ultraviolet birefringent material for light polarization,” J. Am. Chem. Soc. 140(47), 16311–16319 (2018).
[Crossref]

M. Zhang, D. H. An, C. Hu, X. L. Chen, Z. H. Yang, and S. L. Pan, “Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene,” J. Am. Chem. Soc. 141(7), 3258–3264 (2019).
[Crossref]

J. Cryst. Growth (5)

G. Q. Zhou, J. Xu, X. D. Chen, H. Y. Zhong, S. T. Wang, K. Xu, P. Z. Deng, and F. X. Gan, “Growth and spectrum of a novel birefringent α-BaB2O4 crystal,” J. Cryst. Growth 191(3), 517–519 (1998).
[Crossref]

S. Y. Zhang, X. Wu, Y. T. Song, D. Q. Ni, B. Q. Hu, and T. Zhou, “Growth of birefringent Ca3(BO3)2 crystals by the Czochralski method,” J. Cryst. Growth 252(1-3), 246–250 (2003).
[Crossref]

F. L. Qin and R. K. Li, “Predicting refractive indices of the borate optical crystals,” J. Cryst. Growth 318(1), 642–644 (2011).
[Crossref]

H. Qingzhen and L. Jingkui, “Studies on flux systems for the single crystal growth of β-BaB2O4,” J. Cryst. Growth 97(3-4), 720–724 (1989).
[Crossref]

D. Y. Tang, W. R. Zeng, and Q. L. Zhao, “A study on growth of β-BaB2O4 crystals,” J. Cryst. Growth 123(3-4), 445–450 (1992).
[Crossref]

J. Mater. Chem. C (1)

F. Liang, Y. W. Guo, Z. S. Lin, J. Y. Yao, G. C. Zhang, W. L. Yin, Y. C. Wu, and C. T. Chen, “Ba2M(C3N3O3)2 (M = Mg, Ca): potential UV birefringent materials with strengthened optical anisotropy originating from the (C3N3O3)3- group,” J. Mater. Chem. C 6(47), 12879–12887 (2018).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (1)

Q. Bian, Z. H. Yang, L. Y. Dong, S. L. Pan, H. Zhang, H. P. Wu, H. W. Yu, W. W. Zhao, and Q. Jing, “First principle assisted prediction of the birefringence values of functional inorganic borate materials,” J. Phys. Chem. C 118(44), 25651–25657 (2014).
[Crossref]

J. Phys. Soc. Jpn. (1)

W. Kinase, M. Tanaka, and H. Nomura, “Birefringence of CaCO3 and electronic polarizabilities of the constituent ions,” J. Phys. Soc. Jpn. 47(4), 1375–1376 (1979).
[Crossref]

J. Solid State Chem. (1)

X. S. Lv, L. Wei, X. P. Wang, J. H. Xu, H. J. Yu, Y. Y. Hu, H. D. Zhang, C. Zhang, J. Y. Wang, and Q. G. Li, “Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2,” J. Solid State Chem. 258, 283–288 (2018).
[Crossref]

Mater. Res. Bull. (1)

A. Akella and D. A. Keszler, “Structure and Eu2+ luminescence of dibarium magnesium orthoborate,” Mater. Res. Bull. 30(1), 105–111 (1995).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (2)

J. Li, C. G. Duan, Z. Q. Gu, and D. S. Wang, “First-principles calculations of the electronic structure and optical properties ofLiB3O5,CsB3O5, and BaB2O4crystals,” Phys. Rev. B 57(12), 6925–6932 (1998).
[Crossref]

A. Kato and H. Rikukawa, “First-principles studies of large birefringences in alkaline-earth orthoborate crystals,” Phys. Rev. B 72(4), 041101 (2005).
[Crossref]

Vib. Spectrosc. (1)

X. S. Lv, Y. G. Yang, B. Liu, Y. Y. Zhang, L. Wei, X. Zhao, and X. P. Wang, “Electronic structure and Raman spectroscopy study of dibarium magnesium orthoborate, Ba2Mg(BO3)2,” Vib. Spectrosc. 80, 53–58 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Crystal photograph of Ba2Mg(BO3)2 (the minimum scale of the lattice is 1 mm).
Fig. 2.
Fig. 2. TG-DSC curves of Ba2Mg(BO3)2.
Fig. 3.
Fig. 3. Experimental XRD patterns of Ba2Mg(BO3)2 crystal before and after DSC experiment compared with the reported one.
Fig. 4.
Fig. 4. Transmission spectrum for Ba2Mg(BO3)2 crystal.
Fig. 5.
Fig. 5. The experimental refractive indices and the Sellmeier equations fitted curve for (a) Ca3(BO3)2 and (b) Ba2Mg(BO3)2.
Fig. 6.
Fig. 6. Ball-and-stick models of Ba2Mg(BO3)2 and Ca3(BO3)2 crystal.

Tables (1)

Tables Icon

Table 1. The measured refractive indices of the Ba2Mg(BO3)2 crystal

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n o 2 = 3.1064 + ( 0.01812 λ 2 0.01654 ) 0.01350 λ 2
n e 2 = 2.76662 + ( 0.01186 λ 2 0.01667 ) 0.00291 λ 2

Metrics