Abstract

Nitrogen-vacancy centers in diamond are attractive as quantum sensors owing to their remarkable optical and spin properties under ambient conditions. Here we experimentally demonstrated a hybrid fiber-based thermometer coupled with nitrogen-vacancy center ensemble and a permanent magnet, where the temperature sensitivity was improved by converting the temperature variation to the magnetic field change based on the thermal-demagnetization of the permanent magnet. We have achieved both large temperature working range (room temperature to 373 K) and millikelvin sensitivity (1.6 mK$/\sqrt {\textrm Hz}$), nearly 6-fold improvement compared with conventional technique. This stable and compact hybrid thermometer will enable a wide range of applications for large-area detection and imaging with high temperature sensitivity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Room-temperature magnetic gradiometry with fiber-coupled nitrogen-vacancy centers in diamond

S. M. Blakley, I. V. Fedotov, S. Ya. Kilin, and A. M. Zheltikov
Opt. Lett. 40(16) 3727-3730 (2015)

Plasmon-enhanced sensitivity of spin-based sensors based on a diamond ensemble of nitrogen vacancy color centers

Hao Guo, Yulei Chen, Dajin Wu, Rui Zhao, Jun Tang, Zongmin Ma, Chenyang Xue, Wendong Zhang, and Jun Liu
Opt. Lett. 42(3) 403-406 (2017)

Magnetometry for precision measurement using frequency-modulation microwave combined efficient photon-collection technique on an ensemble of nitrogen-vacancy centers in diamond

Zongmin Ma, Shaowen Zhang, Yueping Fu, Hua Yuan, Yunbo Shi, Jian Gao, Li Qin, Jun Tang, Jun Liu, and Yanjun Li
Opt. Express 26(1) 382-390 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500(7460), 54–58 (2013).
    [Crossref]
  2. S. H. Kim, J. Noh, M. K. Jeon, K. W. Kim, L. P. Lee, and S. I. Woo, “Micro-raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip,” J. Micromech. Microeng. 16(3), 526–530 (2006).
    [Crossref]
  3. Y. Yue and X. Wang, “Nanoscale thermal probing,” Nano Rev. 3(1), 11586 (2012).
    [Crossref]
  4. K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, “Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy,” Nat. Commun. 3(1), 705 (2012).
    [Crossref]
  5. F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodrguez, L. Martinez Maestro, E. Rodriguez, and J. A. Jaque, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
    [Crossref]
  6. F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
    [Crossref]
  7. R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65(1), 83–105 (2014).
    [Crossref]
  8. Y. Dong, B. Du, S.-C. Zhang, X.-D. Chen, and F.-W. Sun, “Solid quantum sensor based on nitrogen-vacancy center in diamond,” Acta Phys. Sin. 67(16), 160301 (2018).
    [Crossref]
  9. J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
    [Crossref]
  10. D. M. Toyli, F. Charles, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” Proc. Natl. Acad. Sci. 110(21), 8417–8421 (2013).
    [Crossref]
  11. N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
    [Crossref]
  12. A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, and U. L. Andersen, “Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 113(1), 013502 (2018).
    [Crossref]
  13. I. Fedotov, S. Blakley, E. Serebryannikov, N. Safronov, V. Velichansky, M. Scully, and A. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105(26), 261109 (2014).
    [Crossref]
  14. S. Blakley, I. Fedotov, L. Amitonova, E. Serebryannikov, H. Perez, S. Y. Kilin, and A. Zheltikov, “Fiber-optic vectorial magnetic-field gradiometry by a spatiotemporal differential optical detection of magnetic resonance in nitrogen–vacancy centers in diamond,” Opt. Lett. 41(9), 2057–2060 (2016).
    [Crossref]
  15. N. Safronov, I. Fedotov, Y. G. Ermakova, M. Matlashov, D. Sidorov-Biryukov, A. Fedotov, V. Belousov, and A. Zheltikov, “Microwave-induced thermogenetic activation of single cells,” Appl. Phys. Lett. 106(16), 163702 (2015).
    [Crossref]
  16. S. Blakley, A. Fedotov, J. Becker, N. Altangerel, I. Fedotov, P. Hemmer, M. Scully, and A. Zheltikov, “Stimulated fluorescence quenching in nitrogen–vacancy centers of diamond: temperature effects,” Opt. Lett. 41(9), 2077–2080 (2016).
    [Crossref]
  17. D. A. Broadway, S. E. Lillie, N. Dontschuk, A. Stacey, L. T. Hall, J.-P. Tetienne, and L. C. Hollenberg, “High precision single qubit tuning via thermo-magnetic field control,” Appl. Phys. Lett. 112(10), 103103 (2018).
    [Crossref]
  18. M.-D. Calin and E. Helerea, “Temperature influence on magnetic characteristics of NDFEB permanent magnets,” in 2011 7th international symposium on advanced topics in electrical engineering (ATEE), (IEEE, 2011), pp. 1–6.
  19. G. Yan, R. Chen, Y. Ding, S. Guo, D. Lee, and A. Yan, “The preparation of sintered ndfeb magnet with high-coercivity and high temperature-stability,” in J. Phys.: Conf. Ser., (IOP Publishing, 2011), 1, p. 012052.
  20. T. Sebastian, “Temperature effects on torque production and efficiency of pm motors using ndfeb magnets,” IEEE Trans. Ind. Appl. 31(2), 353–357 (1995).
    [Crossref]
  21. D. Suter and F. Jelezko, “Single-spin magnetic resonance in the nitrogen-vacancy center of diamond,” Prog. Nucl. Magn. Reson. Spectrosc. 98-99, 50–62 (2017).
    [Crossref]
  22. K. Jensen, V. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond,” Phys. Rev. B 87(1), 014115 (2013).
    [Crossref]
  23. A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC magnetic field sensitivity,” Phys. Rev. B 84(19), 195204 (2011).
    [Crossref]
  24. J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
    [Crossref]
  25. V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett. 104(7), 070801 (2010).
    [Crossref]
  26. P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5(1), 4429 (2014).
    [Crossref]
  27. M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
    [Crossref]
  28. M. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. Manson, and L. Hollenberg, “Theory of the ground-state spin of the NV- center in diamond,” Phys. Rev. B 85(20), 205203 (2012).
    [Crossref]
  29. T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
    [Crossref]
  30. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89(3), 035002 (2017).
    [Crossref]
  31. L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77(5), 056503 (2014).
    [Crossref]
  32. X.-D. Chen, F.-W. Sun, C.-L. Zou, J.-M. Cui, L.-M. Zhou, and G.-C. Guo, “Vector magnetic field sensing by a single nitrogen vacancy center in diamond,” EPL 101(6), 67003 (2013).
    [Crossref]
  33. Y. Dong, Y. Zheng, S. Li, C.-C. Li, X.-D. Chen, G.-C. Guo, and F.-W. Sun, “Non-markovianity-assisted high-fidelity deutsch–jozsa algorithm in diamond,” npj Quantum Inf. 4(1), 3 (2018).
    [Crossref]
  34. K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
    [Crossref]
  35. X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
    [Crossref]
  36. M. Dong, Z. Hu, Y. Liu, B. Yang, Y. Wang, and G. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Appl. Phys. Lett. 113(13), 131105 (2018).
    [Crossref]
  37. G.-Q. Liu, X. Feng, N. Wang, Q. Li, and R.-B. Liu, “Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin,” Nat. Commun. 10(1), 1344 (2019).
    [Crossref]
  38. X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 99(16), 161903 (2011).
    [Crossref]
  39. C.-C. Li, M. Gong, X.-D. Chen, S. Li, B.-W. Zhao, Y. Dong, G.-C. Guo, and F.-W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
    [Crossref]
  40. J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, “Sensitivity optimization for NV-diamond magnetometry,” arXiv preprint arXiv:1903.08176 (2019).
  41. A. Levchenko, V. Vasil’ev, S. Zibrov, A. Zibrov, A. Sivak, and I. Fedotov, “Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms,” Appl. Phys. Lett. 106(10), 102402 (2015).
    [Crossref]
  42. J.-Y. Xu, Y. Dong, S.-C. Zhang, Y. Zheng, X.-D. Chen, W. Zhu, G.-Z. Wang, G.-C. Guo, and F.-W. Sun, “Room-temperature composite-pulses for robust diamond magnetometry,” arXiv preprint arXiv:1811.00191 (2018).
  43. D. Duan, G. Du, V. K. Kavatamane, S. Arumugam, Y.-K. Tzeng, H.-C. Chang, and G. Balasubramanian, “Efficient nitrogen-vacancy centers’ fluorescence excitation and collection from micrometer-sized diamond by a tapered optical fiber in endoscope-type configuration,” Opt. Express 27(5), 6734–6745 (2019).
    [Crossref]
  44. D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
    [Crossref]
  45. L. Krusin-Elbaum, D. Newns, H. Zeng, V. Derycke, J. Sun, and R. Sandstrom, “Room-temperature ferromagnetic nanotubes controlled by electron or hole doping,” Nature 431(7009), 672–676 (2004).
    [Crossref]
  46. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Ma nosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4(6), 450–454 (2005).
    [Crossref]

2019 (2)

2018 (9)

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

Y. Dong, Y. Zheng, S. Li, C.-C. Li, X.-D. Chen, G.-C. Guo, and F.-W. Sun, “Non-markovianity-assisted high-fidelity deutsch–jozsa algorithm in diamond,” npj Quantum Inf. 4(1), 3 (2018).
[Crossref]

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
[Crossref]

Y. Dong, B. Du, S.-C. Zhang, X.-D. Chen, and F.-W. Sun, “Solid quantum sensor based on nitrogen-vacancy center in diamond,” Acta Phys. Sin. 67(16), 160301 (2018).
[Crossref]

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, and U. L. Andersen, “Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 113(1), 013502 (2018).
[Crossref]

D. A. Broadway, S. E. Lillie, N. Dontschuk, A. Stacey, L. T. Hall, J.-P. Tetienne, and L. C. Hollenberg, “High precision single qubit tuning via thermo-magnetic field control,” Appl. Phys. Lett. 112(10), 103103 (2018).
[Crossref]

M. Dong, Z. Hu, Y. Liu, B. Yang, Y. Wang, and G. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Appl. Phys. Lett. 113(13), 131105 (2018).
[Crossref]

2017 (3)

D. Suter and F. Jelezko, “Single-spin magnetic resonance in the nitrogen-vacancy center of diamond,” Prog. Nucl. Magn. Reson. Spectrosc. 98-99, 50–62 (2017).
[Crossref]

C.-C. Li, M. Gong, X.-D. Chen, S. Li, B.-W. Zhao, Y. Dong, G.-C. Guo, and F.-W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89(3), 035002 (2017).
[Crossref]

2016 (2)

2015 (3)

N. Safronov, I. Fedotov, Y. G. Ermakova, M. Matlashov, D. Sidorov-Biryukov, A. Fedotov, V. Belousov, and A. Zheltikov, “Microwave-induced thermogenetic activation of single cells,” Appl. Phys. Lett. 106(16), 163702 (2015).
[Crossref]

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

A. Levchenko, V. Vasil’ev, S. Zibrov, A. Zibrov, A. Sivak, and I. Fedotov, “Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms,” Appl. Phys. Lett. 106(10), 102402 (2015).
[Crossref]

2014 (6)

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77(5), 056503 (2014).
[Crossref]

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5(1), 4429 (2014).
[Crossref]

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65(1), 83–105 (2014).
[Crossref]

I. Fedotov, S. Blakley, E. Serebryannikov, N. Safronov, V. Velichansky, M. Scully, and A. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105(26), 261109 (2014).
[Crossref]

2013 (5)

K. Jensen, V. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond,” Phys. Rev. B 87(1), 014115 (2013).
[Crossref]

D. M. Toyli, F. Charles, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” Proc. Natl. Acad. Sci. 110(21), 8417–8421 (2013).
[Crossref]

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500(7460), 54–58 (2013).
[Crossref]

X.-D. Chen, F.-W. Sun, C.-L. Zou, J.-M. Cui, L.-M. Zhou, and G.-C. Guo, “Vector magnetic field sensing by a single nitrogen vacancy center in diamond,” EPL 101(6), 67003 (2013).
[Crossref]

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
[Crossref]

2012 (4)

M. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. Manson, and L. Hollenberg, “Theory of the ground-state spin of the NV- center in diamond,” Phys. Rev. B 85(20), 205203 (2012).
[Crossref]

J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Y. Yue and X. Wang, “Nanoscale thermal probing,” Nano Rev. 3(1), 11586 (2012).
[Crossref]

K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, “Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy,” Nat. Commun. 3(1), 705 (2012).
[Crossref]

2011 (2)

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC magnetic field sensitivity,” Phys. Rev. B 84(19), 195204 (2011).
[Crossref]

X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 99(16), 161903 (2011).
[Crossref]

2010 (2)

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett. 104(7), 070801 (2010).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodrguez, L. Martinez Maestro, E. Rodriguez, and J. A. Jaque, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

2006 (1)

S. H. Kim, J. Noh, M. K. Jeon, K. W. Kim, L. P. Lee, and S. I. Woo, “Micro-raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip,” J. Micromech. Microeng. 16(3), 526–530 (2006).
[Crossref]

2005 (1)

T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Ma nosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4(6), 450–454 (2005).
[Crossref]

2004 (1)

L. Krusin-Elbaum, D. Newns, H. Zeng, V. Derycke, J. Sun, and R. Sandstrom, “Room-temperature ferromagnetic nanotubes controlled by electron or hole doping,” Nature 431(7009), 672–676 (2004).
[Crossref]

1995 (1)

T. Sebastian, “Temperature effects on torque production and efficiency of pm motors using ndfeb magnets,” IEEE Trans. Ind. Appl. 31(2), 353–357 (1995).
[Crossref]

Acet, M.

T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Ma nosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4(6), 450–454 (2005).
[Crossref]

Acosta, V.

K. Jensen, V. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond,” Phys. Rev. B 87(1), 014115 (2013).
[Crossref]

Acosta, V. M.

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett. 104(7), 070801 (2010).
[Crossref]

Altangerel, N.

Amitonova, L.

Andersen, U. L.

A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, and U. L. Andersen, “Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 113(1), 013502 (2018).
[Crossref]

Arcizet, O.

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC magnetic field sensitivity,” Phys. Rev. B 84(19), 195204 (2011).
[Crossref]

Arumugam, S.

Arumugam, S. R.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

Awschalom, D. D.

D. M. Toyli, F. Charles, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” Proc. Natl. Acad. Sci. 110(21), 8417–8421 (2013).
[Crossref]

Balasubramanian, G.

D. Duan, G. Du, V. K. Kavatamane, S. Arumugam, Y.-K. Tzeng, H.-C. Chang, and G. Balasubramanian, “Efficient nitrogen-vacancy centers’ fluorescence excitation and collection from micrometer-sized diamond by a tapered optical fiber in endoscope-type configuration,” Opt. Express 27(5), 6734–6745 (2019).
[Crossref]

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

Barry, J. F.

J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, “Sensitivity optimization for NV-diamond magnetometry,” arXiv preprint arXiv:1903.08176 (2019).

Bauch, E.

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett. 104(7), 070801 (2010).
[Crossref]

J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, “Sensitivity optimization for NV-diamond magnetometry,” arXiv preprint arXiv:1903.08176 (2019).

Becker, J.

Belousov, V.

N. Safronov, I. Fedotov, Y. G. Ermakova, M. Matlashov, D. Sidorov-Biryukov, A. Fedotov, V. Belousov, and A. Zheltikov, “Microwave-induced thermogenetic activation of single cells,” Appl. Phys. Lett. 106(16), 163702 (2015).
[Crossref]

Blakley, S.

Bouchard, L.-S.

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett. 104(7), 070801 (2010).
[Crossref]

Broadway, D. A.

D. A. Broadway, S. E. Lillie, N. Dontschuk, A. Stacey, L. T. Hall, J.-P. Tetienne, and L. C. Hollenberg, “High precision single qubit tuning via thermo-magnetic field control,” Appl. Phys. Lett. 112(10), 103103 (2018).
[Crossref]

Budker, D.

K. Jensen, V. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond,” Phys. Rev. B 87(1), 014115 (2013).
[Crossref]

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett. 104(7), 070801 (2010).
[Crossref]

Calin, M.-D.

M.-D. Calin and E. Helerea, “Temperature influence on magnetic characteristics of NDFEB permanent magnets,” in 2011 7th international symposium on advanced topics in electrical engineering (ATEE), (IEEE, 2011), pp. 1–6.

Cappellaro, P.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89(3), 035002 (2017).
[Crossref]

Chang, H.-C.

D. Duan, G. Du, V. K. Kavatamane, S. Arumugam, Y.-K. Tzeng, H.-C. Chang, and G. Balasubramanian, “Efficient nitrogen-vacancy centers’ fluorescence excitation and collection from micrometer-sized diamond by a tapered optical fiber in endoscope-type configuration,” Opt. Express 27(5), 6734–6745 (2019).
[Crossref]

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

Chang, K.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65(1), 83–105 (2014).
[Crossref]

Charles, F.

D. M. Toyli, F. Charles, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” Proc. Natl. Acad. Sci. 110(21), 8417–8421 (2013).
[Crossref]

Chen, J.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

Chen, R.

G. Yan, R. Chen, Y. Ding, S. Guo, D. Lee, and A. Yan, “The preparation of sintered ndfeb magnet with high-coercivity and high temperature-stability,” in J. Phys.: Conf. Ser., (IOP Publishing, 2011), 1, p. 012052.

Chen, X.-D.

Y. Dong, B. Du, S.-C. Zhang, X.-D. Chen, and F.-W. Sun, “Solid quantum sensor based on nitrogen-vacancy center in diamond,” Acta Phys. Sin. 67(16), 160301 (2018).
[Crossref]

Y. Dong, Y. Zheng, S. Li, C.-C. Li, X.-D. Chen, G.-C. Guo, and F.-W. Sun, “Non-markovianity-assisted high-fidelity deutsch–jozsa algorithm in diamond,” npj Quantum Inf. 4(1), 3 (2018).
[Crossref]

C.-C. Li, M. Gong, X.-D. Chen, S. Li, B.-W. Zhao, Y. Dong, G.-C. Guo, and F.-W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

X.-D. Chen, F.-W. Sun, C.-L. Zou, J.-M. Cui, L.-M. Zhou, and G.-C. Guo, “Vector magnetic field sensing by a single nitrogen vacancy center in diamond,” EPL 101(6), 67003 (2013).
[Crossref]

X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 99(16), 161903 (2011).
[Crossref]

J.-Y. Xu, Y. Dong, S.-C. Zhang, Y. Zheng, X.-D. Chen, W. Zhu, G.-Z. Wang, G.-C. Guo, and F.-W. Sun, “Room-temperature composite-pulses for robust diamond magnetometry,” arXiv preprint arXiv:1811.00191 (2018).

Cheng, Z.-D.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
[Crossref]

Chipaux, M.

J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Christle, D. J.

D. M. Toyli, F. Charles, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” Proc. Natl. Acad. Sci. 110(21), 8417–8421 (2013).
[Crossref]

Cui, J.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
[Crossref]

Cui, J.-M.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
[Crossref]

X.-D. Chen, F.-W. Sun, C.-L. Zou, J.-M. Cui, L.-M. Zhou, and G.-C. Guo, “Vector magnetic field sensing by a single nitrogen vacancy center in diamond,” EPL 101(6), 67003 (2013).
[Crossref]

X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 99(16), 161903 (2011).
[Crossref]

Cui, X.-D.

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

Debuisschert, T.

J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Degen, C. L.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89(3), 035002 (2017).
[Crossref]

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65(1), 83–105 (2014).
[Crossref]

Derycke, V.

L. Krusin-Elbaum, D. Newns, H. Zeng, V. Derycke, J. Sun, and R. Sandstrom, “Room-temperature ferromagnetic nanotubes controlled by electron or hole doping,” Nature 431(7009), 672–676 (2004).
[Crossref]

Ding, Y.

G. Yan, R. Chen, Y. Ding, S. Guo, D. Lee, and A. Yan, “The preparation of sintered ndfeb magnet with high-coercivity and high temperature-stability,” in J. Phys.: Conf. Ser., (IOP Publishing, 2011), 1, p. 012052.

Dobrovitski, V. V.

D. M. Toyli, F. Charles, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” Proc. Natl. Acad. Sci. 110(21), 8417–8421 (2013).
[Crossref]

Doherty, M.

M. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. Manson, and L. Hollenberg, “Theory of the ground-state spin of the NV- center in diamond,” Phys. Rev. B 85(20), 205203 (2012).
[Crossref]

Doherty, M. W.

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Doi, Y.

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

Dolde, F.

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

M. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. Manson, and L. Hollenberg, “Theory of the ground-state spin of the NV- center in diamond,” Phys. Rev. B 85(20), 205203 (2012).
[Crossref]

Dong, C.-H.

X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 99(16), 161903 (2011).
[Crossref]

Dong, M.

M. Dong, Z. Hu, Y. Liu, B. Yang, Y. Wang, and G. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Appl. Phys. Lett. 113(13), 131105 (2018).
[Crossref]

Dong, Y.

Y. Dong, Y. Zheng, S. Li, C.-C. Li, X.-D. Chen, G.-C. Guo, and F.-W. Sun, “Non-markovianity-assisted high-fidelity deutsch–jozsa algorithm in diamond,” npj Quantum Inf. 4(1), 3 (2018).
[Crossref]

Y. Dong, B. Du, S.-C. Zhang, X.-D. Chen, and F.-W. Sun, “Solid quantum sensor based on nitrogen-vacancy center in diamond,” Acta Phys. Sin. 67(16), 160301 (2018).
[Crossref]

C.-C. Li, M. Gong, X.-D. Chen, S. Li, B.-W. Zhao, Y. Dong, G.-C. Guo, and F.-W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

J.-Y. Xu, Y. Dong, S.-C. Zhang, Y. Zheng, X.-D. Chen, W. Zhu, G.-Z. Wang, G.-C. Guo, and F.-W. Sun, “Room-temperature composite-pulses for robust diamond magnetometry,” arXiv preprint arXiv:1811.00191 (2018).

Dontschuk, N.

D. A. Broadway, S. E. Lillie, N. Dontschuk, A. Stacey, L. T. Hall, J.-P. Tetienne, and L. C. Hollenberg, “High precision single qubit tuning via thermo-magnetic field control,” Appl. Phys. Lett. 112(10), 103103 (2018).
[Crossref]

Dréau, A.

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC magnetic field sensitivity,” Phys. Rev. B 84(19), 195204 (2011).
[Crossref]

Du, B.

Y. Dong, B. Du, S.-C. Zhang, X.-D. Chen, and F.-W. Sun, “Solid quantum sensor based on nitrogen-vacancy center in diamond,” Acta Phys. Sin. 67(16), 160301 (2018).
[Crossref]

Du, G.

Duan, D.

D. Duan, G. Du, V. K. Kavatamane, S. Arumugam, Y.-K. Tzeng, H.-C. Chang, and G. Balasubramanian, “Efficient nitrogen-vacancy centers’ fluorescence excitation and collection from micrometer-sized diamond by a tapered optical fiber in endoscope-type configuration,” Opt. Express 27(5), 6734–6745 (2019).
[Crossref]

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

Duman, E.

T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Ma nosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4(6), 450–454 (2005).
[Crossref]

Ermakova, Y. G.

N. Safronov, I. Fedotov, Y. G. Ermakova, M. Matlashov, D. Sidorov-Biryukov, A. Fedotov, V. Belousov, and A. Zheltikov, “Microwave-induced thermogenetic activation of single cells,” Appl. Phys. Lett. 106(16), 163702 (2015).
[Crossref]

Fan, L.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

Fedder, H.

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

M. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. Manson, and L. Hollenberg, “Theory of the ground-state spin of the NV- center in diamond,” Phys. Rev. B 85(20), 205203 (2012).
[Crossref]

Fedotov, A.

S. Blakley, A. Fedotov, J. Becker, N. Altangerel, I. Fedotov, P. Hemmer, M. Scully, and A. Zheltikov, “Stimulated fluorescence quenching in nitrogen–vacancy centers of diamond: temperature effects,” Opt. Lett. 41(9), 2077–2080 (2016).
[Crossref]

N. Safronov, I. Fedotov, Y. G. Ermakova, M. Matlashov, D. Sidorov-Biryukov, A. Fedotov, V. Belousov, and A. Zheltikov, “Microwave-induced thermogenetic activation of single cells,” Appl. Phys. Lett. 106(16), 163702 (2015).
[Crossref]

Fedotov, I.

S. Blakley, A. Fedotov, J. Becker, N. Altangerel, I. Fedotov, P. Hemmer, M. Scully, and A. Zheltikov, “Stimulated fluorescence quenching in nitrogen–vacancy centers of diamond: temperature effects,” Opt. Lett. 41(9), 2077–2080 (2016).
[Crossref]

S. Blakley, I. Fedotov, L. Amitonova, E. Serebryannikov, H. Perez, S. Y. Kilin, and A. Zheltikov, “Fiber-optic vectorial magnetic-field gradiometry by a spatiotemporal differential optical detection of magnetic resonance in nitrogen–vacancy centers in diamond,” Opt. Lett. 41(9), 2057–2060 (2016).
[Crossref]

N. Safronov, I. Fedotov, Y. G. Ermakova, M. Matlashov, D. Sidorov-Biryukov, A. Fedotov, V. Belousov, and A. Zheltikov, “Microwave-induced thermogenetic activation of single cells,” Appl. Phys. Lett. 106(16), 163702 (2015).
[Crossref]

A. Levchenko, V. Vasil’ev, S. Zibrov, A. Zibrov, A. Sivak, and I. Fedotov, “Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms,” Appl. Phys. Lett. 106(10), 102402 (2015).
[Crossref]

I. Fedotov, S. Blakley, E. Serebryannikov, N. Safronov, V. Velichansky, M. Scully, and A. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105(26), 261109 (2014).
[Crossref]

Feng, F.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
[Crossref]

Feng, X.

G.-Q. Liu, X. Feng, N. Wang, Q. Li, and R.-B. Liu, “Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin,” Nat. Commun. 10(1), 1344 (2019).
[Crossref]

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

Fujiwara, M.

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

Fukui, T.

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

Funatsu, T.

K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, “Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy,” Nat. Commun. 3(1), 705 (2012).
[Crossref]

Gong, M.

C.-C. Li, M. Gong, X.-D. Chen, S. Li, B.-W. Zhao, Y. Dong, G.-C. Guo, and F.-W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Gota, C.

K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, “Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy,” Nat. Commun. 3(1), 705 (2012).
[Crossref]

Guo, G.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

Guo, G.-C.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
[Crossref]

Y. Dong, Y. Zheng, S. Li, C.-C. Li, X.-D. Chen, G.-C. Guo, and F.-W. Sun, “Non-markovianity-assisted high-fidelity deutsch–jozsa algorithm in diamond,” npj Quantum Inf. 4(1), 3 (2018).
[Crossref]

C.-C. Li, M. Gong, X.-D. Chen, S. Li, B.-W. Zhao, Y. Dong, G.-C. Guo, and F.-W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

X.-D. Chen, F.-W. Sun, C.-L. Zou, J.-M. Cui, L.-M. Zhou, and G.-C. Guo, “Vector magnetic field sensing by a single nitrogen vacancy center in diamond,” EPL 101(6), 67003 (2013).
[Crossref]

X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 99(16), 161903 (2011).
[Crossref]

J.-Y. Xu, Y. Dong, S.-C. Zhang, Y. Zheng, X.-D. Chen, W. Zhu, G.-Z. Wang, G.-C. Guo, and F.-W. Sun, “Room-temperature composite-pulses for robust diamond magnetometry,” arXiv preprint arXiv:1811.00191 (2018).

Guo, L.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

Guo, S.

G. Yan, R. Chen, Y. Ding, S. Guo, D. Lee, and A. Yan, “The preparation of sintered ndfeb magnet with high-coercivity and high temperature-stability,” in J. Phys.: Conf. Ser., (IOP Publishing, 2011), 1, p. 012052.

Hall, L. T.

D. A. Broadway, S. E. Lillie, N. Dontschuk, A. Stacey, L. T. Hall, J.-P. Tetienne, and L. C. Hollenberg, “High precision single qubit tuning via thermo-magnetic field control,” Appl. Phys. Lett. 112(10), 103103 (2018).
[Crossref]

Han, Z.-F.

X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 99(16), 161903 (2011).
[Crossref]

Harada, Y.

K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, “Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy,” Nat. Commun. 3(1), 705 (2012).
[Crossref]

Hart, C. A.

J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, “Sensitivity optimization for NV-diamond magnetometry,” arXiv preprint arXiv:1903.08176 (2019).

Hayashi, K.

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

Helerea, E.

M.-D. Calin and E. Helerea, “Temperature influence on magnetic characteristics of NDFEB permanent magnets,” in 2011 7th international symposium on advanced topics in electrical engineering (ATEE), (IEEE, 2011), pp. 1–6.

Hemley, R. J.

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Hemmer, P.

Hingant, T.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77(5), 056503 (2014).
[Crossref]

Hollenberg, L.

M. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. Manson, and L. Hollenberg, “Theory of the ground-state spin of the NV- center in diamond,” Phys. Rev. B 85(20), 205203 (2012).
[Crossref]

Hollenberg, L. C.

D. A. Broadway, S. E. Lillie, N. Dontschuk, A. Stacey, L. T. Hall, J.-P. Tetienne, and L. C. Hollenberg, “High precision single qubit tuning via thermo-magnetic field control,” Appl. Phys. Lett. 112(10), 103103 (2018).
[Crossref]

Hollenberg, L. C. L.

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Hu, Z.

M. Dong, Z. Hu, Y. Liu, B. Yang, Y. Wang, and G. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Appl. Phys. Lett. 113(13), 131105 (2018).
[Crossref]

Huck, A.

A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, and U. L. Andersen, “Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 113(1), 013502 (2018).
[Crossref]

Inada, N.

K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, “Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy,” Nat. Commun. 3(1), 705 (2012).
[Crossref]

Isoya, J.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

Jacques, V.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77(5), 056503 (2014).
[Crossref]

J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC magnetic field sensitivity,” Phys. Rev. B 84(19), 195204 (2011).
[Crossref]

Jankuhn, S.

A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, and U. L. Andersen, “Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 113(1), 013502 (2018).
[Crossref]

Jaque, J. A.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodrguez, L. Martinez Maestro, E. Rodriguez, and J. A. Jaque, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Jarmola, A.

K. Jensen, V. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond,” Phys. Rev. B 87(1), 014115 (2013).
[Crossref]

Jayich, A. C. B.

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5(1), 4429 (2014).
[Crossref]

Jelezko, F.

A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, and U. L. Andersen, “Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 113(1), 013502 (2018).
[Crossref]

D. Suter and F. Jelezko, “Single-spin magnetic resonance in the nitrogen-vacancy center of diamond,” Prog. Nucl. Magn. Reson. Spectrosc. 98-99, 50–62 (2017).
[Crossref]

M. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. Manson, and L. Hollenberg, “Theory of the ground-state spin of the NV- center in diamond,” Phys. Rev. B 85(20), 205203 (2012).
[Crossref]

Jensen, K.

K. Jensen, V. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond,” Phys. Rev. B 87(1), 014115 (2013).
[Crossref]

Jeon, M. K.

S. H. Kim, J. Noh, M. K. Jeon, K. W. Kim, L. P. Lee, and S. I. Woo, “Micro-raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip,” J. Micromech. Microeng. 16(3), 526–530 (2006).
[Crossref]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodrguez, L. Martinez Maestro, E. Rodriguez, and J. A. Jaque, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Karadas, M.

A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, and U. L. Andersen, “Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 113(1), 013502 (2018).
[Crossref]

Karle, T. J.

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Kato, H.

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

Kavatamane, V. K.

D. Duan, G. Du, V. K. Kavatamane, S. Arumugam, Y.-K. Tzeng, H.-C. Chang, and G. Balasubramanian, “Efficient nitrogen-vacancy centers’ fluorescence excitation and collection from micrometer-sized diamond by a tapered optical fiber in endoscope-type configuration,” Opt. Express 27(5), 6734–6745 (2019).
[Crossref]

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

Kilin, S. Y.

Kim, K. W.

S. H. Kim, J. Noh, M. K. Jeon, K. W. Kim, L. P. Lee, and S. I. Woo, “Micro-raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip,” J. Micromech. Microeng. 16(3), 526–530 (2006).
[Crossref]

Kim, S. H.

S. H. Kim, J. Noh, M. K. Jeon, K. W. Kim, L. P. Lee, and S. I. Woo, “Micro-raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip,” J. Micromech. Microeng. 16(3), 526–530 (2006).
[Crossref]

Krenke, T.

T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Ma nosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4(6), 450–454 (2005).
[Crossref]

Krusin-Elbaum, L.

L. Krusin-Elbaum, D. Newns, H. Zeng, V. Derycke, J. Sun, and R. Sandstrom, “Room-temperature ferromagnetic nanotubes controlled by electron or hole doping,” Nature 431(7009), 672–676 (2004).
[Crossref]

Kubo, M.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500(7460), 54–58 (2013).
[Crossref]

Kucsko, G.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500(7460), 54–58 (2013).
[Crossref]

Ledbetter, M. P.

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett. 104(7), 070801 (2010).
[Crossref]

Lee, D.

G. Yan, R. Chen, Y. Ding, S. Guo, D. Lee, and A. Yan, “The preparation of sintered ndfeb magnet with high-coercivity and high temperature-stability,” in J. Phys.: Conf. Ser., (IOP Publishing, 2011), 1, p. 012052.

Lee, K. W.

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5(1), 4429 (2014).
[Crossref]

Lee, L. P.

S. H. Kim, J. Noh, M. K. Jeon, K. W. Kim, L. P. Lee, and S. I. Woo, “Micro-raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip,” J. Micromech. Microeng. 16(3), 526–530 (2006).
[Crossref]

Leong, W.-H.

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

Lesik, M.

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC magnetic field sensitivity,” Phys. Rev. B 84(19), 195204 (2011).
[Crossref]

Levchenko, A.

A. Levchenko, V. Vasil’ev, S. Zibrov, A. Zibrov, A. Sivak, and I. Fedotov, “Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms,” Appl. Phys. Lett. 106(10), 102402 (2015).
[Crossref]

Li, C.-C.

Y. Dong, Y. Zheng, S. Li, C.-C. Li, X.-D. Chen, G.-C. Guo, and F.-W. Sun, “Non-markovianity-assisted high-fidelity deutsch–jozsa algorithm in diamond,” npj Quantum Inf. 4(1), 3 (2018).
[Crossref]

C.-C. Li, M. Gong, X.-D. Chen, S. Li, B.-W. Zhao, Y. Dong, G.-C. Guo, and F.-W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Li, C.-F.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
[Crossref]

Li, Q.

G.-Q. Liu, X. Feng, N. Wang, Q. Li, and R.-B. Liu, “Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin,” Nat. Commun. 10(1), 1344 (2019).
[Crossref]

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
[Crossref]

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

Li, S.

Y. Dong, Y. Zheng, S. Li, C.-C. Li, X.-D. Chen, G.-C. Guo, and F.-W. Sun, “Non-markovianity-assisted high-fidelity deutsch–jozsa algorithm in diamond,” npj Quantum Inf. 4(1), 3 (2018).
[Crossref]

C.-C. Li, M. Gong, X.-D. Chen, S. Li, B.-W. Zhao, Y. Dong, G.-C. Guo, and F.-W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Li, S.-H.

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

Lillie, S. E.

D. A. Broadway, S. E. Lillie, N. Dontschuk, A. Stacey, L. T. Hall, J.-P. Tetienne, and L. C. Hollenberg, “High precision single qubit tuning via thermo-magnetic field control,” Appl. Phys. Lett. 112(10), 103103 (2018).
[Crossref]

Liu, G.-Q.

G.-Q. Liu, X. Feng, N. Wang, Q. Li, and R.-B. Liu, “Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin,” Nat. Commun. 10(1), 1344 (2019).
[Crossref]

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

Liu, R.-B.

G.-Q. Liu, X. Feng, N. Wang, Q. Li, and R.-B. Liu, “Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin,” Nat. Commun. 10(1), 1344 (2019).
[Crossref]

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

Liu, W.-Z.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
[Crossref]

Liu, X.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
[Crossref]

Liu, Y.

M. Dong, Z. Hu, Y. Liu, B. Yang, Y. Wang, and G. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Appl. Phys. Lett. 113(13), 131105 (2018).
[Crossref]

Lo, P. K.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500(7460), 54–58 (2013).
[Crossref]

Loretz, M.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65(1), 83–105 (2014).
[Crossref]

Lou, L.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
[Crossref]

Lukin, M. D.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500(7460), 54–58 (2013).
[Crossref]

Ma nosa, L.

T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Ma nosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4(6), 450–454 (2005).
[Crossref]

Makino, T.

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

Maletinsky, P.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77(5), 056503 (2014).
[Crossref]

Manson, N.

M. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. Manson, and L. Hollenberg, “Theory of the ground-state spin of the NV- center in diamond,” Phys. Rev. B 85(20), 205203 (2012).
[Crossref]

Manson, N. B.

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Martinez Maestro, L.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodrguez, L. Martinez Maestro, E. Rodriguez, and J. A. Jaque, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Matlashov, M.

N. Safronov, I. Fedotov, Y. G. Ermakova, M. Matlashov, D. Sidorov-Biryukov, A. Fedotov, V. Belousov, and A. Zheltikov, “Microwave-induced thermogenetic activation of single cells,” Appl. Phys. Lett. 106(16), 163702 (2015).
[Crossref]

Matsumoto, T.

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

Matsuzaki, Y.

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

Maurer, P. C.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500(7460), 54–58 (2013).
[Crossref]

McGuinness, L. P.

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Meijer, J.

A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, and U. L. Andersen, “Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 113(1), 013502 (2018).
[Crossref]

Meng, Y.

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Miyamoto, Y.

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

Miyazaki, T.

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

Mizuochi, N.

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

Morimoto, R.

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

Morishita, H.

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

Moya, X.

T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Ma nosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4(6), 450–454 (2005).
[Crossref]

Myers, B. A.

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5(1), 4429 (2014).
[Crossref]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodrguez, L. Martinez Maestro, E. Rodriguez, and J. A. Jaque, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Nakamura, I.

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

Newns, D.

L. Krusin-Elbaum, D. Newns, H. Zeng, V. Derycke, J. Sun, and R. Sandstrom, “Room-temperature ferromagnetic nanotubes controlled by electron or hole doping,” Nature 431(7009), 672–676 (2004).
[Crossref]

Noh, H. J.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500(7460), 54–58 (2013).
[Crossref]

Noh, J.

S. H. Kim, J. Noh, M. K. Jeon, K. W. Kim, L. P. Lee, and S. I. Woo, “Micro-raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip,” J. Micromech. Microeng. 16(3), 526–530 (2006).
[Crossref]

Ohshima, T.

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

Okabe, K.

K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, “Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy,” Nat. Commun. 3(1), 705 (2012).
[Crossref]

Onoda, S.

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

Osterkamp, C.

A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, and U. L. Andersen, “Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 113(1), 013502 (2018).
[Crossref]

Ovartchaiyapong, P.

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5(1), 4429 (2014).
[Crossref]

Park, H.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500(7460), 54–58 (2013).
[Crossref]

Perez, H.

Pham, L. M.

J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, “Sensitivity optimization for NV-diamond magnetometry,” arXiv preprint arXiv:1903.08176 (2019).

Planes, A.

T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Ma nosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4(6), 450–454 (2005).
[Crossref]

Prawer, S.

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Rahane, G.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

Reinhard, F.

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89(3), 035002 (2017).
[Crossref]

Roch, J.

J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Roch, J.-F.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77(5), 056503 (2014).
[Crossref]

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC magnetic field sensitivity,” Phys. Rev. B 84(19), 195204 (2011).
[Crossref]

Rodriguez, E.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodrguez, L. Martinez Maestro, E. Rodriguez, and J. A. Jaque, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Rondin, L.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77(5), 056503 (2014).
[Crossref]

J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC magnetic field sensitivity,” Phys. Rev. B 84(19), 195204 (2011).
[Crossref]

Safronov, N.

N. Safronov, I. Fedotov, Y. G. Ermakova, M. Matlashov, D. Sidorov-Biryukov, A. Fedotov, V. Belousov, and A. Zheltikov, “Microwave-induced thermogenetic activation of single cells,” Appl. Phys. Lett. 106(16), 163702 (2015).
[Crossref]

I. Fedotov, S. Blakley, E. Serebryannikov, N. Safronov, V. Velichansky, M. Scully, and A. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105(26), 261109 (2014).
[Crossref]

Saito, S.

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

Sandstrom, R.

L. Krusin-Elbaum, D. Newns, H. Zeng, V. Derycke, J. Sun, and R. Sandstrom, “Room-temperature ferromagnetic nanotubes controlled by electron or hole doping,” Nature 431(7009), 672–676 (2004).
[Crossref]

Sanz-Rodrguez, F.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodrguez, L. Martinez Maestro, E. Rodriguez, and J. A. Jaque, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Schirhagl, R.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65(1), 83–105 (2014).
[Crossref]

Schloss, J. M.

J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, “Sensitivity optimization for NV-diamond magnetometry,” arXiv preprint arXiv:1903.08176 (2019).

Scully, M.

S. Blakley, A. Fedotov, J. Becker, N. Altangerel, I. Fedotov, P. Hemmer, M. Scully, and A. Zheltikov, “Stimulated fluorescence quenching in nitrogen–vacancy centers of diamond: temperature effects,” Opt. Lett. 41(9), 2077–2080 (2016).
[Crossref]

I. Fedotov, S. Blakley, E. Serebryannikov, N. Safronov, V. Velichansky, M. Scully, and A. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105(26), 261109 (2014).
[Crossref]

Sebastian, T.

T. Sebastian, “Temperature effects on torque production and efficiency of pm motors using ndfeb magnets,” IEEE Trans. Ind. Appl. 31(2), 353–357 (1995).
[Crossref]

Serebryannikov, E.

S. Blakley, I. Fedotov, L. Amitonova, E. Serebryannikov, H. Perez, S. Y. Kilin, and A. Zheltikov, “Fiber-optic vectorial magnetic-field gradiometry by a spatiotemporal differential optical detection of magnetic resonance in nitrogen–vacancy centers in diamond,” Opt. Lett. 41(9), 2057–2060 (2016).
[Crossref]

I. Fedotov, S. Blakley, E. Serebryannikov, N. Safronov, V. Velichansky, M. Scully, and A. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105(26), 261109 (2014).
[Crossref]

Shimo-Oka, T.

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

Sidorov-Biryukov, D.

N. Safronov, I. Fedotov, Y. G. Ermakova, M. Matlashov, D. Sidorov-Biryukov, A. Fedotov, V. Belousov, and A. Zheltikov, “Microwave-induced thermogenetic activation of single cells,” Appl. Phys. Lett. 106(16), 163702 (2015).
[Crossref]

Simpson, D. A.

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Sivak, A.

A. Levchenko, V. Vasil’ev, S. Zibrov, A. Zibrov, A. Sivak, and I. Fedotov, “Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms,” Appl. Phys. Lett. 106(10), 102402 (2015).
[Crossref]

Song, X.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
[Crossref]

Spinicelli, P.

J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC magnetic field sensitivity,” Phys. Rev. B 84(19), 195204 (2011).
[Crossref]

Stacey, A.

D. A. Broadway, S. E. Lillie, N. Dontschuk, A. Stacey, L. T. Hall, J.-P. Tetienne, and L. C. Hollenberg, “High precision single qubit tuning via thermo-magnetic field control,” Appl. Phys. Lett. 112(10), 103103 (2018).
[Crossref]

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Struzhkin, V. V.

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Sumiya, H.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

Sun, F.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
[Crossref]

Sun, F.-W.

Y. Dong, Y. Zheng, S. Li, C.-C. Li, X.-D. Chen, G.-C. Guo, and F.-W. Sun, “Non-markovianity-assisted high-fidelity deutsch–jozsa algorithm in diamond,” npj Quantum Inf. 4(1), 3 (2018).
[Crossref]

Y. Dong, B. Du, S.-C. Zhang, X.-D. Chen, and F.-W. Sun, “Solid quantum sensor based on nitrogen-vacancy center in diamond,” Acta Phys. Sin. 67(16), 160301 (2018).
[Crossref]

C.-C. Li, M. Gong, X.-D. Chen, S. Li, B.-W. Zhao, Y. Dong, G.-C. Guo, and F.-W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

X.-D. Chen, F.-W. Sun, C.-L. Zou, J.-M. Cui, L.-M. Zhou, and G.-C. Guo, “Vector magnetic field sensing by a single nitrogen vacancy center in diamond,” EPL 101(6), 67003 (2013).
[Crossref]

X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 99(16), 161903 (2011).
[Crossref]

J.-Y. Xu, Y. Dong, S.-C. Zhang, Y. Zheng, X.-D. Chen, W. Zhu, G.-Z. Wang, G.-C. Guo, and F.-W. Sun, “Room-temperature composite-pulses for robust diamond magnetometry,” arXiv preprint arXiv:1811.00191 (2018).

Sun, J.

L. Krusin-Elbaum, D. Newns, H. Zeng, V. Derycke, J. Sun, and R. Sandstrom, “Room-temperature ferromagnetic nanotubes controlled by electron or hole doping,” Nature 431(7009), 672–676 (2004).
[Crossref]

Suter, D.

D. Suter and F. Jelezko, “Single-spin magnetic resonance in the nitrogen-vacancy center of diamond,” Prog. Nucl. Magn. Reson. Spectrosc. 98-99, 50–62 (2017).
[Crossref]

Taniguchi, T.

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

Tetienne, J.

J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

Tetienne, J.-P.

D. A. Broadway, S. E. Lillie, N. Dontschuk, A. Stacey, L. T. Hall, J.-P. Tetienne, and L. C. Hollenberg, “High precision single qubit tuning via thermo-magnetic field control,” Appl. Phys. Lett. 112(10), 103103 (2018).
[Crossref]

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77(5), 056503 (2014).
[Crossref]

Tokuda, N.

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

Toyli, D. M.

D. M. Toyli, F. Charles, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” Proc. Natl. Acad. Sci. 110(21), 8417–8421 (2013).
[Crossref]

Turner, M. J.

J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, “Sensitivity optimization for NV-diamond magnetometry,” arXiv preprint arXiv:1903.08176 (2019).

Tzeng, Y.-K.

D. Duan, G. Du, V. K. Kavatamane, S. Arumugam, Y.-K. Tzeng, H.-C. Chang, and G. Balasubramanian, “Efficient nitrogen-vacancy centers’ fluorescence excitation and collection from micrometer-sized diamond by a tapered optical fiber in endoscope-type configuration,” Opt. Express 27(5), 6734–6745 (2019).
[Crossref]

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

Uchiyama, S.

K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, “Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy,” Nat. Commun. 3(1), 705 (2012).
[Crossref]

Vasil’ev, V.

A. Levchenko, V. Vasil’ev, S. Zibrov, A. Zibrov, A. Sivak, and I. Fedotov, “Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms,” Appl. Phys. Lett. 106(10), 102402 (2015).
[Crossref]

Velichansky, V.

I. Fedotov, S. Blakley, E. Serebryannikov, N. Safronov, V. Velichansky, M. Scully, and A. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105(26), 261109 (2014).
[Crossref]

Vetrone, F.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodrguez, L. Martinez Maestro, E. Rodriguez, and J. A. Jaque, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Walsworth, R. L.

J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, “Sensitivity optimization for NV-diamond magnetometry,” arXiv preprint arXiv:1903.08176 (2019).

Wang, G.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
[Crossref]

Wang, G.-Z.

J.-Y. Xu, Y. Dong, S.-C. Zhang, Y. Zheng, X.-D. Chen, W. Zhu, G.-Z. Wang, G.-C. Guo, and F.-W. Sun, “Room-temperature composite-pulses for robust diamond magnetometry,” arXiv preprint arXiv:1811.00191 (2018).

Wang, J.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
[Crossref]

Wang, J.-F.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
[Crossref]

Wang, N.

G.-Q. Liu, X. Feng, N. Wang, Q. Li, and R.-B. Liu, “Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin,” Nat. Commun. 10(1), 1344 (2019).
[Crossref]

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

Wang, X.

Y. Yue and X. Wang, “Nanoscale thermal probing,” Nano Rev. 3(1), 11586 (2012).
[Crossref]

Wang, Y.

M. Dong, Z. Hu, Y. Liu, B. Yang, Y. Wang, and G. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Appl. Phys. Lett. 113(13), 131105 (2018).
[Crossref]

Wassermann, E. F.

T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Ma nosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4(6), 450–454 (2005).
[Crossref]

Waxman, A.

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett. 104(7), 070801 (2010).
[Crossref]

Wojciechowski, A. M.

A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, and U. L. Andersen, “Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 113(1), 013502 (2018).
[Crossref]

Woo, S. I.

S. H. Kim, J. Noh, M. K. Jeon, K. W. Kim, L. P. Lee, and S. I. Woo, “Micro-raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip,” J. Micromech. Microeng. 16(3), 526–530 (2006).
[Crossref]

Wrachtrup, J.

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

M. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. Manson, and L. Hollenberg, “Theory of the ground-state spin of the NV- center in diamond,” Phys. Rev. B 85(20), 205203 (2012).
[Crossref]

Xu, J.-S.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
[Crossref]

Xu, J.-Y.

J.-Y. Xu, Y. Dong, S.-C. Zhang, Y. Zheng, X.-D. Chen, W. Zhu, G.-Z. Wang, G.-C. Guo, and F.-W. Sun, “Room-temperature composite-pulses for robust diamond magnetometry,” arXiv preprint arXiv:1811.00191 (2018).

Yamasaki, S.

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

Yan, A.

G. Yan, R. Chen, Y. Ding, S. Guo, D. Lee, and A. Yan, “The preparation of sintered ndfeb magnet with high-coercivity and high temperature-stability,” in J. Phys.: Conf. Ser., (IOP Publishing, 2011), 1, p. 012052.

Yan, F.-F.

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
[Crossref]

Yan, G.

G. Yan, R. Chen, Y. Ding, S. Guo, D. Lee, and A. Yan, “The preparation of sintered ndfeb magnet with high-coercivity and high temperature-stability,” in J. Phys.: Conf. Ser., (IOP Publishing, 2011), 1, p. 012052.

Yang, B.

M. Dong, Z. Hu, Y. Liu, B. Yang, Y. Wang, and G. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Appl. Phys. Lett. 113(13), 131105 (2018).
[Crossref]

Yang, S.

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

Yao, N. Y.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500(7460), 54–58 (2013).
[Crossref]

Yue, Y.

Y. Yue and X. Wang, “Nanoscale thermal probing,” Nano Rev. 3(1), 11586 (2012).
[Crossref]

Zamarron, A.

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodrguez, L. Martinez Maestro, E. Rodriguez, and J. A. Jaque, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Zeng, H.

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

L. Krusin-Elbaum, D. Newns, H. Zeng, V. Derycke, J. Sun, and R. Sandstrom, “Room-temperature ferromagnetic nanotubes controlled by electron or hole doping,” Nature 431(7009), 672–676 (2004).
[Crossref]

Zhang, J.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

Zhang, S.-C.

Y. Dong, B. Du, S.-C. Zhang, X.-D. Chen, and F.-W. Sun, “Solid quantum sensor based on nitrogen-vacancy center in diamond,” Acta Phys. Sin. 67(16), 160301 (2018).
[Crossref]

J.-Y. Xu, Y. Dong, S.-C. Zhang, Y. Zheng, X.-D. Chen, W. Zhu, G.-Z. Wang, G.-C. Guo, and F.-W. Sun, “Room-temperature composite-pulses for robust diamond magnetometry,” arXiv preprint arXiv:1811.00191 (2018).

Zhang, W.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

Zhao, B.-W.

C.-C. Li, M. Gong, X.-D. Chen, S. Li, B.-W. Zhao, Y. Dong, G.-C. Guo, and F.-W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

Zheltikov, A.

S. Blakley, I. Fedotov, L. Amitonova, E. Serebryannikov, H. Perez, S. Y. Kilin, and A. Zheltikov, “Fiber-optic vectorial magnetic-field gradiometry by a spatiotemporal differential optical detection of magnetic resonance in nitrogen–vacancy centers in diamond,” Opt. Lett. 41(9), 2057–2060 (2016).
[Crossref]

S. Blakley, A. Fedotov, J. Becker, N. Altangerel, I. Fedotov, P. Hemmer, M. Scully, and A. Zheltikov, “Stimulated fluorescence quenching in nitrogen–vacancy centers of diamond: temperature effects,” Opt. Lett. 41(9), 2077–2080 (2016).
[Crossref]

N. Safronov, I. Fedotov, Y. G. Ermakova, M. Matlashov, D. Sidorov-Biryukov, A. Fedotov, V. Belousov, and A. Zheltikov, “Microwave-induced thermogenetic activation of single cells,” Appl. Phys. Lett. 106(16), 163702 (2015).
[Crossref]

I. Fedotov, S. Blakley, E. Serebryannikov, N. Safronov, V. Velichansky, M. Scully, and A. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105(26), 261109 (2014).
[Crossref]

Zheng, Y.

Y. Dong, Y. Zheng, S. Li, C.-C. Li, X.-D. Chen, G.-C. Guo, and F.-W. Sun, “Non-markovianity-assisted high-fidelity deutsch–jozsa algorithm in diamond,” npj Quantum Inf. 4(1), 3 (2018).
[Crossref]

J.-Y. Xu, Y. Dong, S.-C. Zhang, Y. Zheng, X.-D. Chen, W. Zhu, G.-Z. Wang, G.-C. Guo, and F.-W. Sun, “Room-temperature composite-pulses for robust diamond magnetometry,” arXiv preprint arXiv:1811.00191 (2018).

Zheng, Z.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

Zhou, L.-M.

X.-D. Chen, F.-W. Sun, C.-L. Zou, J.-M. Cui, L.-M. Zhou, and G.-C. Guo, “Vector magnetic field sensing by a single nitrogen vacancy center in diamond,” EPL 101(6), 67003 (2013).
[Crossref]

Zhu, W.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
[Crossref]

J.-Y. Xu, Y. Dong, S.-C. Zhang, Y. Zheng, X.-D. Chen, W. Zhu, G.-Z. Wang, G.-C. Guo, and F.-W. Sun, “Room-temperature composite-pulses for robust diamond magnetometry,” arXiv preprint arXiv:1811.00191 (2018).

Zibrov, A.

A. Levchenko, V. Vasil’ev, S. Zibrov, A. Zibrov, A. Sivak, and I. Fedotov, “Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms,” Appl. Phys. Lett. 106(10), 102402 (2015).
[Crossref]

Zibrov, S.

A. Levchenko, V. Vasil’ev, S. Zibrov, A. Zibrov, A. Sivak, and I. Fedotov, “Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms,” Appl. Phys. Lett. 106(10), 102402 (2015).
[Crossref]

Zou, C.

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

Zou, C.-L.

X.-D. Chen, F.-W. Sun, C.-L. Zou, J.-M. Cui, L.-M. Zhou, and G.-C. Guo, “Vector magnetic field sensing by a single nitrogen vacancy center in diamond,” EPL 101(6), 67003 (2013).
[Crossref]

X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 99(16), 161903 (2011).
[Crossref]

ACS Nano (1)

F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodrguez, L. Martinez Maestro, E. Rodriguez, and J. A. Jaque, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4(6), 3254–3258 (2010).
[Crossref]

Acta Phys. Sin. (1)

Y. Dong, B. Du, S.-C. Zhang, X.-D. Chen, and F.-W. Sun, “Solid quantum sensor based on nitrogen-vacancy center in diamond,” Acta Phys. Sin. 67(16), 160301 (2018).
[Crossref]

Annu. Rev. Phys. Chem. (1)

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, “Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology,” Annu. Rev. Phys. Chem. 65(1), 83–105 (2014).
[Crossref]

Appl. Phys. Express (1)

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto, T. Makino, S. Yamasaki, R. Morimoto, and N. Tokuda, “Perfect selective alignment of nitrogen-vacancy centers in diamond,” Appl. Phys. Express 7(5), 055201 (2014).
[Crossref]

Appl. Phys. Lett. (9)

D. A. Broadway, S. E. Lillie, N. Dontschuk, A. Stacey, L. T. Hall, J.-P. Tetienne, and L. C. Hollenberg, “High precision single qubit tuning via thermo-magnetic field control,” Appl. Phys. Lett. 112(10), 103103 (2018).
[Crossref]

A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J. Meijer, F. Jelezko, A. Huck, and U. L. Andersen, “Precision temperature sensing in the presence of magnetic field noise and vice-versa using nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 113(1), 013502 (2018).
[Crossref]

I. Fedotov, S. Blakley, E. Serebryannikov, N. Safronov, V. Velichansky, M. Scully, and A. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Appl. Phys. Lett. 105(26), 261109 (2014).
[Crossref]

N. Safronov, I. Fedotov, Y. G. Ermakova, M. Matlashov, D. Sidorov-Biryukov, A. Fedotov, V. Belousov, and A. Zheltikov, “Microwave-induced thermogenetic activation of single cells,” Appl. Phys. Lett. 106(16), 163702 (2015).
[Crossref]

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Appl. Phys. Lett. 113(4), 041107 (2018).
[Crossref]

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103(14), 143105 (2013).
[Crossref]

M. Dong, Z. Hu, Y. Liu, B. Yang, Y. Wang, and G. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Appl. Phys. Lett. 113(13), 131105 (2018).
[Crossref]

X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond,” Appl. Phys. Lett. 99(16), 161903 (2011).
[Crossref]

A. Levchenko, V. Vasil’ev, S. Zibrov, A. Zibrov, A. Sivak, and I. Fedotov, “Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms,” Appl. Phys. Lett. 106(10), 102402 (2015).
[Crossref]

Diamond Relat. Mater. (1)

C.-C. Li, M. Gong, X.-D. Chen, S. Li, B.-W. Zhao, Y. Dong, G.-C. Guo, and F.-W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diamond Relat. Mater. 74, 119–124 (2017).
[Crossref]

EPL (1)

X.-D. Chen, F.-W. Sun, C.-L. Zou, J.-M. Cui, L.-M. Zhou, and G.-C. Guo, “Vector magnetic field sensing by a single nitrogen vacancy center in diamond,” EPL 101(6), 67003 (2013).
[Crossref]

IEEE Trans. Ind. Appl. (1)

T. Sebastian, “Temperature effects on torque production and efficiency of pm motors using ndfeb magnets,” IEEE Trans. Ind. Appl. 31(2), 353–357 (1995).
[Crossref]

J. Micromech. Microeng. (1)

S. H. Kim, J. Noh, M. K. Jeon, K. W. Kim, L. P. Lee, and S. I. Woo, “Micro-raman thermometry for measuring the temperature distribution inside the microchannel of a polymerase chain reaction chip,” J. Micromech. Microeng. 16(3), 526–530 (2006).
[Crossref]

Nano Rev. (1)

Y. Yue and X. Wang, “Nanoscale thermal probing,” Nano Rev. 3(1), 11586 (2012).
[Crossref]

Nat. Commun. (3)

K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, “Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy,” Nat. Commun. 3(1), 705 (2012).
[Crossref]

G.-Q. Liu, X. Feng, N. Wang, Q. Li, and R.-B. Liu, “Coherent quantum control of nitrogen-vacancy center spins near 1000 kelvin,” Nat. Commun. 10(1), 1344 (2019).
[Crossref]

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5(1), 4429 (2014).
[Crossref]

Nat. Mater. (1)

T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Ma nosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4(6), 450–454 (2005).
[Crossref]

Nature (2)

L. Krusin-Elbaum, D. Newns, H. Zeng, V. Derycke, J. Sun, and R. Sandstrom, “Room-temperature ferromagnetic nanotubes controlled by electron or hole doping,” Nature 431(7009), 672–676 (2004).
[Crossref]

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500(7460), 54–58 (2013).
[Crossref]

New J. Phys. (1)

J. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J. Roch, and V. Jacques, “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New J. Phys. 14(10), 103033 (2012).
[Crossref]

npj Quantum Inf. (1)

Y. Dong, Y. Zheng, S. Li, C.-C. Li, X.-D. Chen, G.-C. Guo, and F.-W. Sun, “Non-markovianity-assisted high-fidelity deutsch–jozsa algorithm in diamond,” npj Quantum Inf. 4(1), 3 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Appl. (2)

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura, S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi, “Optimization of temperature sensitivity using the optically detected magnetic-resonance spectrum of a nitrogen-vacancy center ensemble,” Phys. Rev. Appl. 10(3), 034009 (2018).
[Crossref]

F.-F. Yan, J.-F. Wang, Q. Li, Z.-D. Cheng, J.-M. Cui, W.-Z. Liu, J.-S. Xu, C.-F. Li, and G.-C. Guo, “Coherent control of defect spins in silicon carbide above 550 k,” Phys. Rev. Appl. 10(4), 044042 (2018).
[Crossref]

Phys. Rev. B (4)

M. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N. Manson, and L. Hollenberg, “Theory of the ground-state spin of the NV- center in diamond,” Phys. Rev. B 85(20), 205203 (2012).
[Crossref]

K. Jensen, V. Acosta, A. Jarmola, and D. Budker, “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond,” Phys. Rev. B 87(1), 014115 (2013).
[Crossref]

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and V. Jacques, “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced DC magnetic field sensitivity,” Phys. Rev. B 84(19), 195204 (2011).
[Crossref]

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, “High-sensitivity temperature sensing using an implanted single nitrogen-vacancy center array in diamond,” Phys. Rev. B 91(15), 155404 (2015).
[Crossref]

Phys. Rev. Lett. (2)

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and D. Budker, “Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond,” Phys. Rev. Lett. 104(7), 070801 (2010).
[Crossref]

M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg, and S. Prawer, “Electronic properties and metrology applications of the diamond NV- center under pressure,” Phys. Rev. Lett. 112(4), 047601 (2014).
[Crossref]

Phys. Rev. X (1)

N. Wang, G.-Q. Liu, W.-H. Leong, H. Zeng, X. Feng, S.-H. Li, F. Dolde, H. Fedder, J. Wrachtrup, X.-D. Cui, S. Yang, Q. Li, and R.-B. Liu, “Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions,” Phys. Rev. X 8(1), 011042 (2018).
[Crossref]

Proc. Natl. Acad. Sci. (1)

D. M. Toyli, F. Charles, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” Proc. Natl. Acad. Sci. 110(21), 8417–8421 (2013).
[Crossref]

Prog. Nucl. Magn. Reson. Spectrosc. (1)

D. Suter and F. Jelezko, “Single-spin magnetic resonance in the nitrogen-vacancy center of diamond,” Prog. Nucl. Magn. Reson. Spectrosc. 98-99, 50–62 (2017).
[Crossref]

Rep. Prog. Phys. (1)

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Rep. Prog. Phys. 77(5), 056503 (2014).
[Crossref]

Rev. Mod. Phys. (1)

C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89(3), 035002 (2017).
[Crossref]

Other (4)

M.-D. Calin and E. Helerea, “Temperature influence on magnetic characteristics of NDFEB permanent magnets,” in 2011 7th international symposium on advanced topics in electrical engineering (ATEE), (IEEE, 2011), pp. 1–6.

G. Yan, R. Chen, Y. Ding, S. Guo, D. Lee, and A. Yan, “The preparation of sintered ndfeb magnet with high-coercivity and high temperature-stability,” in J. Phys.: Conf. Ser., (IOP Publishing, 2011), 1, p. 012052.

J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, “Sensitivity optimization for NV-diamond magnetometry,” arXiv preprint arXiv:1903.08176 (2019).

J.-Y. Xu, Y. Dong, S.-C. Zhang, Y. Zheng, X.-D. Chen, W. Zhu, G.-Z. Wang, G.-C. Guo, and F.-W. Sun, “Room-temperature composite-pulses for robust diamond magnetometry,” arXiv preprint arXiv:1811.00191 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The schematic of hybrid fiber-optical thermometer setup. SPCM, single photon counting module; DM, long pass dichroic mirrors with edge wavelength of $536.8$ nm. (b) A single crystal bulk diamond was attached on the tip of a multi-mode optical fiber. The cylindrical permanent magnet provided a magnetic field along [100] crystallographic direction. (c) Picture of the bulk diamond attached to the tip of a multi-mode optical fiber.
Fig. 2.
Fig. 2. Measured fluorescence $P_{\textrm fl}$ as a function of pump power $P$. Solid line is a fit to the function of $P_{\textrm fl} = kP/(1+P/P_{\textrm sat})$, with $k=0.150(1)/(s\cdot$W) and $P_{\textrm sat}=1595(115)$ mW
Fig. 3.
Fig. 3. Examples of ODMR signals and the resonant frequency resolution. (a) ODMR signals with different settings of the microwave powers. The pump laser power was fixed to $7$ mW. (b) The resonant frequency resolution as a function of the microwave power. (c) ODMR signals with different settings of pump laser power. Microwave power was fixed to $30$ dbm. (d) The resonant frequency resolution as a function of pump laser power.
Fig. 4.
Fig. 4. The resonant frequency shifts resulting from the temperature. (a) The measured ZFS parameter $D$ as a function of temperature ranging from room temperature to 373K in the absence of the bias magnetic field. The red line is the theoretical fit with a function from Refs. [38,39]. (b) The resonant frequency of the ODMR as a function of the temperature of permanent magnet by keeping the diamond with constant temperature. Both heating (red dots) and cooling (cyan dots) processes were measured. With linear fit, the two slops were estimated to be $k_1 = -155(2)$ $\rm {kHz}/\rm {K}$ and $k_2 = 90(1) \rm {kHz}/\rm {K}$, respectively.
Fig. 5.
Fig. 5. (a) Examples of ODMR with different settings of bias magnetic field $B$. (b) The resonant frequency extracted from (a) as a function of magnetic field $B$. Solid line is the fit using Eq. (2). (c) The estimated resonant frequency resolution $\delta$f as a function of $B$. (d) Plot of the temperature sensitivity with bias magnetic field. The optimal sensitivity of this hybrid thermometer demonstrates an almost $6$-fold improvement compared with conventional technique with bare diamond (dashed green line). (e) The temperature sensitivity enhancement via the improvement of photon counts $I_0$ and temperature coefficient $\alpha _0$ of the permanent magnet.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α 0 = 1 M ( T ) M ( T ) T 1 B ( T ) B ( T ) T ,
H N V D ( T ) S z 2 + E ( S x 2 S y 2 ) + γ e B ( T ) S ,
f D ( T ) ± E ± γ e B ( T ) cos ( θ ) + 3 [ γ e B ( T ) sin ( θ ) ] 2 2 D ( T ) δ f { D ( T ) T + [ 3 ( γ e sin ( θ ) ) 2 B ( T ) D ( T ) ± γ e cos ( θ ) ] B ( T ) T } δ T ,
δ f P F Δ ν C I 0 ,

Metrics