Abstract

Optical waveplates play an essential role in controlling polarization in various applications. We show the feasibility of facile production of optical waveplates from plant-based cellulose nanocrystal (CNC) nematics. We align CNC nematic liquid crystals doped with polyethylene glycol on periodically patterned polydimethylsiloxane substrates on large scale by shearing forces and prepare a 1/4 λ and a 1/2 λ CNC waveplates for 530 nm by bonding two slices of CNC nematic films with half-period displacement. The optical performance of the CNC waveplates is investigated by Mueller matrix analysis and is examined by measuring the transmission spectra of the waveplate between two polarizers, and optical extinction and birefringence of CNCs are extracted from the measured spectra. Our CNC waveplates of arbitrary phase difference are flexible and can be tailored into any desirable shape conveniently.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photo-stimulated phase and anchoring transitions of chiral azo-dye doped nematic liquid crystals

Sudarshan Kundu and Shin-Woong Kang
Opt. Express 21(25) 31324-31329 (2013)

Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface

Atefeh Habibpourmoghadam, Liana Lucchetti, Dean R. Evans, Victor Y. Reshetnyak, Faissal Omairat, Samuel L. Schafforz, and Alexander Lorenz
Opt. Express 25(21) 26148-26159 (2017)

Diffractive waveplate arrays [Invited]

Svetlana V. Serak, David E. Roberts, Jeoung-Yeon Hwang, Sarik R. Nersisyan, Nelson V. Tabiryan, Timothy J. Bunning, Diane M. Steeves, and Brian R. Kimball
J. Opt. Soc. Am. B 34(5) B56-B63 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Lammers, M. Ehrhardt, T. Malendevych, X. Xu, C. Vetter, A. Alberucci, A. Szameit, and S. Nolte, “Embedded nanograting-based waveplates for polarization control in integrated photonic circuits,” Opt. Mater. Express 9(6), 2560 (2019).
    [Crossref]
  2. L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Tunable reflective liquid crystal terahertz waveplates,” Opt. Mater. Express 7(6), 2023 (2017).
    [Crossref]
  3. C.-L. Chu, C.-H. Lin, and K.-C. Fan, “Two-dimensional optical accelerometer based on commercial DVD pick-up head,” Meas. Sci. Technol. 18(1), 265–274 (2007).
    [Crossref]
  4. H. Chen, F. Gou, and S. T. Wu, “Submillisecond-response nematic liquid crystals for augmented reality displays,” Opt. Mater. Express 7(1), 195 (2017).
    [Crossref]
  5. Q. Y. Yue, Z. J. Cheng, L. Han, Y. Yang, and C. S. Guo, “One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena,” Opt. Express 25(13), 14182–14191 (2017).
    [Crossref]
  6. B. T. Miles, X. Hong, and H. Gersen, “On the complex point spread function in interferometric cross-polarisation microscopy,” Opt. Express 23(2), 1232–1239 (2015).
    [Crossref]
  7. S. Ando, T. Sawada, and Y. Inoue, “Thin, flexible waveplate of fluorinated polyimide,” Electron. Lett. 29(24), 2143–2145 (1993).
    [Crossref]
  8. Y. J. Jen, A. Lakhtakia, C. W. Yu, C. F. Lin, M. J. Lin, S. H. Wang, and J. R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2(1), 363 (2011).
    [Crossref]
  9. H. Yang, H. Jussila, A. Autere, H. P. Komsa, G. Ye, X. Chen, T. Hasan, and Z. Sun, “Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials,” ACS Photonics 4(12), 3023–3030 (2017).
    [Crossref]
  10. G. Shao, S. Ge, Y. Shi, W. Hu, and Y. Lu, “Extended Cauchy equations of congruent LiNbO3 in the terahertz band and their applications,” Opt. Mater. Express 6(12), 3766 (2016).
    [Crossref]
  11. G. Guidetti, S. Atifi, S. Vignolini, and W. Y. Hamad, “Flexible Photonic Cellulose Nanocrystal Films,” Adv. Mater. 28(45), 10042–10047 (2016).
    [Crossref]
  12. K. Yao, Q. Meng, V. Bulone, and Q. Zhou, “Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color,” Adv. Mater. 29(28), 1701323 (2017).
    [Crossref]
  13. T. H. Zhao, R. M. Parker, C. A. Williams, K. T. P. Lim, B. Frka-Petesic, and S. Vignolini, “Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays,” Adv. Funct. Mater. 29(21), 1804531 (2019).
    [Crossref]
  14. D. Wenzlik, A. Varanytsia, A. Munoz, T. Kosa, B. Taheri, R. Zentel, and P. Palffy-Muhoray, “Distributed feedback lasing in cellulose films,” Opt. Mater. Express 4(1), 162–171 (2014).
    [Crossref]
  15. B. Frka-Petesic and S. Vignolini, “So much more than paper,” Nat. Photonics 13(6), 365–367 (2019).
    [Crossref]
  16. Y. Habibi, L. A. Lucia, and O. J. Rojas, “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications,” Chem. Rev. 110(6), 3479–3500 (2010).
    [Crossref]
  17. J. Araki, M. Wada, S. Kuga, and T. Okano, “Birefringent Glassy Phase of a Cellulose Microcrystal Suspension,” Langmuir 16(6), 2413–2415 (2000).
    [Crossref]
  18. X. M. Dong, J. F. Revol, and D. G. Gray, “Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose,” Cellulose 5(1), 19–32 (1998).
    [Crossref]
  19. J. Araki, M. Wada, S. Kuga, and T. Okano, “Influence of surface charge on viscosity behavior of cellulose microcrystal suspension,” J. Wood Sci. 45(3), 258–261 (1999).
    [Crossref]
  20. X. M. Dong, T. Kimura, J. F. Revol, and D. G. Gray, “Effects of Ionic Strength on the Isotropic-Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites,” Langmuir 12(8), 2076–2082 (1996).
    [Crossref]
  21. J. Araki and S. Kuga, “Effect of Trace Electrolyte on Liquid Crystal Type of Cellulose Microcrystals,” Langmuir 17(15), 4493–4496 (2001).
    [Crossref]
  22. S. Elazzouzi-Hafraoui, Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil, and C. Rochas, “The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose,” Biomacromolecules 9(1), 57–65 (2008).
    [Crossref]
  23. Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
    [Crossref]
  24. J. H. Park, J. Noh, C. Schutz, G. Salazar-Alvarez, G. Scalia, L. Bergstrom, and J. P. Lagerwall, “Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions,” ChemPhysChem 15(7), 1477–1484 (2014).
    [Crossref]
  25. D. Qu, H. Zheng, H. Jiang, Y. Xu, and Z. Tang, “Chiral Photonic Cellulose Films Enabling Mechano/Chemo Responsive Selective Reflection of Circularly Polarized Light,” Adv. Opt. Mater. 7(7), 1801395 (2019).
    [Crossref]
  26. B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
    [Crossref]
  27. R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka-Petesic, “The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance,” Adv. Mater. 30(19), 1704477 (2018).
    [Crossref]
  28. E. D. Cranston and D. G. Gray, “Birefringence in spin-coated films containing cellulose nanocrystals,” Colloids Surf., A 325(1-2), 44–51 (2008).
    [Crossref]
  29. I. Hoeger, O. J. Rojas, K. Efimenko, O. D. Velev, and S. S. Kelley, “Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties,” Soft Matter 7(5), 1957 (2011).
    [Crossref]
  30. A. D. Haywood and V. A. Davis, “Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films,” Cellulose 24(2), 705–716 (2017).
    [Crossref]
  31. A. Mendoza-Galván, T. Tejeda-Galán, A. B. Domínguez-Gómez, R. A. Mauricio-Sánchez, K. Järrendahl, and H. Arwin, “Linear Birefringent Films of Cellulose Nanocrystals Produced by Dip-Coating,” Nanomaterials 9(1), 45 (2018).
    [Crossref]
  32. J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park, G. Scalia, and L. Bergström, “Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films,” NPG Asia Mater. 6(1), e80 (2014).
    [Crossref]
  33. Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26(42), 7178–7184 (2014).
    [Crossref]
  34. C. Li, J. Evans, N. Wang, T. Guo, and S. He, “pH dependence of the chirality of nematic cellulose nanocrystals,” Sci. Rep. 9(1), 11290 (2019).
    [Crossref]
  35. M. G. Campbell, Q. Liu, A. Sanders, J. S. Evans, and I. I. Smalyukh, “Preparation of Nanocomposite Plasmonic Films Made from Cellulose Nanocrystals or Mesoporous Silica Decorated with Unidirectionally Aligned Gold Nanorods,” Materials 7(4), 3021–3033 (2014).
    [Crossref]
  36. J. A. De La Cruz, Q. Liu, B. Senyuk, A. W. Frazier, K. Peddireddy, and I. I. Smalyukh, “Cellulose-Based Reflective Liquid Crystal Films as Optical Filters and Solar Gain Regulators,” ACS Photonics 5(6), 2468–2477 (2018).
    [Crossref]

2019 (6)

K. Lammers, M. Ehrhardt, T. Malendevych, X. Xu, C. Vetter, A. Alberucci, A. Szameit, and S. Nolte, “Embedded nanograting-based waveplates for polarization control in integrated photonic circuits,” Opt. Mater. Express 9(6), 2560 (2019).
[Crossref]

T. H. Zhao, R. M. Parker, C. A. Williams, K. T. P. Lim, B. Frka-Petesic, and S. Vignolini, “Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays,” Adv. Funct. Mater. 29(21), 1804531 (2019).
[Crossref]

B. Frka-Petesic and S. Vignolini, “So much more than paper,” Nat. Photonics 13(6), 365–367 (2019).
[Crossref]

D. Qu, H. Zheng, H. Jiang, Y. Xu, and Z. Tang, “Chiral Photonic Cellulose Films Enabling Mechano/Chemo Responsive Selective Reflection of Circularly Polarized Light,” Adv. Opt. Mater. 7(7), 1801395 (2019).
[Crossref]

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

C. Li, J. Evans, N. Wang, T. Guo, and S. He, “pH dependence of the chirality of nematic cellulose nanocrystals,” Sci. Rep. 9(1), 11290 (2019).
[Crossref]

2018 (4)

A. Mendoza-Galván, T. Tejeda-Galán, A. B. Domínguez-Gómez, R. A. Mauricio-Sánchez, K. Järrendahl, and H. Arwin, “Linear Birefringent Films of Cellulose Nanocrystals Produced by Dip-Coating,” Nanomaterials 9(1), 45 (2018).
[Crossref]

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka-Petesic, “The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance,” Adv. Mater. 30(19), 1704477 (2018).
[Crossref]

J. A. De La Cruz, Q. Liu, B. Senyuk, A. W. Frazier, K. Peddireddy, and I. I. Smalyukh, “Cellulose-Based Reflective Liquid Crystal Films as Optical Filters and Solar Gain Regulators,” ACS Photonics 5(6), 2468–2477 (2018).
[Crossref]

2017 (6)

A. D. Haywood and V. A. Davis, “Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films,” Cellulose 24(2), 705–716 (2017).
[Crossref]

K. Yao, Q. Meng, V. Bulone, and Q. Zhou, “Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color,” Adv. Mater. 29(28), 1701323 (2017).
[Crossref]

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Tunable reflective liquid crystal terahertz waveplates,” Opt. Mater. Express 7(6), 2023 (2017).
[Crossref]

H. Yang, H. Jussila, A. Autere, H. P. Komsa, G. Ye, X. Chen, T. Hasan, and Z. Sun, “Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials,” ACS Photonics 4(12), 3023–3030 (2017).
[Crossref]

H. Chen, F. Gou, and S. T. Wu, “Submillisecond-response nematic liquid crystals for augmented reality displays,” Opt. Mater. Express 7(1), 195 (2017).
[Crossref]

Q. Y. Yue, Z. J. Cheng, L. Han, Y. Yang, and C. S. Guo, “One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena,” Opt. Express 25(13), 14182–14191 (2017).
[Crossref]

2016 (2)

G. Shao, S. Ge, Y. Shi, W. Hu, and Y. Lu, “Extended Cauchy equations of congruent LiNbO3 in the terahertz band and their applications,” Opt. Mater. Express 6(12), 3766 (2016).
[Crossref]

G. Guidetti, S. Atifi, S. Vignolini, and W. Y. Hamad, “Flexible Photonic Cellulose Nanocrystal Films,” Adv. Mater. 28(45), 10042–10047 (2016).
[Crossref]

2015 (1)

2014 (5)

D. Wenzlik, A. Varanytsia, A. Munoz, T. Kosa, B. Taheri, R. Zentel, and P. Palffy-Muhoray, “Distributed feedback lasing in cellulose films,” Opt. Mater. Express 4(1), 162–171 (2014).
[Crossref]

J. H. Park, J. Noh, C. Schutz, G. Salazar-Alvarez, G. Scalia, L. Bergstrom, and J. P. Lagerwall, “Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions,” ChemPhysChem 15(7), 1477–1484 (2014).
[Crossref]

J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park, G. Scalia, and L. Bergström, “Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films,” NPG Asia Mater. 6(1), e80 (2014).
[Crossref]

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26(42), 7178–7184 (2014).
[Crossref]

M. G. Campbell, Q. Liu, A. Sanders, J. S. Evans, and I. I. Smalyukh, “Preparation of Nanocomposite Plasmonic Films Made from Cellulose Nanocrystals or Mesoporous Silica Decorated with Unidirectionally Aligned Gold Nanorods,” Materials 7(4), 3021–3033 (2014).
[Crossref]

2011 (2)

I. Hoeger, O. J. Rojas, K. Efimenko, O. D. Velev, and S. S. Kelley, “Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties,” Soft Matter 7(5), 1957 (2011).
[Crossref]

Y. J. Jen, A. Lakhtakia, C. W. Yu, C. F. Lin, M. J. Lin, S. H. Wang, and J. R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2(1), 363 (2011).
[Crossref]

2010 (1)

Y. Habibi, L. A. Lucia, and O. J. Rojas, “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications,” Chem. Rev. 110(6), 3479–3500 (2010).
[Crossref]

2008 (2)

E. D. Cranston and D. G. Gray, “Birefringence in spin-coated films containing cellulose nanocrystals,” Colloids Surf., A 325(1-2), 44–51 (2008).
[Crossref]

S. Elazzouzi-Hafraoui, Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil, and C. Rochas, “The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose,” Biomacromolecules 9(1), 57–65 (2008).
[Crossref]

2007 (1)

C.-L. Chu, C.-H. Lin, and K.-C. Fan, “Two-dimensional optical accelerometer based on commercial DVD pick-up head,” Meas. Sci. Technol. 18(1), 265–274 (2007).
[Crossref]

2001 (1)

J. Araki and S. Kuga, “Effect of Trace Electrolyte on Liquid Crystal Type of Cellulose Microcrystals,” Langmuir 17(15), 4493–4496 (2001).
[Crossref]

2000 (1)

J. Araki, M. Wada, S. Kuga, and T. Okano, “Birefringent Glassy Phase of a Cellulose Microcrystal Suspension,” Langmuir 16(6), 2413–2415 (2000).
[Crossref]

1999 (1)

J. Araki, M. Wada, S. Kuga, and T. Okano, “Influence of surface charge on viscosity behavior of cellulose microcrystal suspension,” J. Wood Sci. 45(3), 258–261 (1999).
[Crossref]

1998 (1)

X. M. Dong, J. F. Revol, and D. G. Gray, “Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose,” Cellulose 5(1), 19–32 (1998).
[Crossref]

1996 (1)

X. M. Dong, T. Kimura, J. F. Revol, and D. G. Gray, “Effects of Ionic Strength on the Isotropic-Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites,” Langmuir 12(8), 2076–2082 (1996).
[Crossref]

1993 (1)

S. Ando, T. Sawada, and Y. Inoue, “Thin, flexible waveplate of fluorinated polyimide,” Electron. Lett. 29(24), 2143–2145 (1993).
[Crossref]

Alberucci, A.

Ando, S.

S. Ando, T. Sawada, and Y. Inoue, “Thin, flexible waveplate of fluorinated polyimide,” Electron. Lett. 29(24), 2143–2145 (1993).
[Crossref]

Araki, J.

J. Araki and S. Kuga, “Effect of Trace Electrolyte on Liquid Crystal Type of Cellulose Microcrystals,” Langmuir 17(15), 4493–4496 (2001).
[Crossref]

J. Araki, M. Wada, S. Kuga, and T. Okano, “Birefringent Glassy Phase of a Cellulose Microcrystal Suspension,” Langmuir 16(6), 2413–2415 (2000).
[Crossref]

J. Araki, M. Wada, S. Kuga, and T. Okano, “Influence of surface charge on viscosity behavior of cellulose microcrystal suspension,” J. Wood Sci. 45(3), 258–261 (1999).
[Crossref]

Arwin, H.

A. Mendoza-Galván, T. Tejeda-Galán, A. B. Domínguez-Gómez, R. A. Mauricio-Sánchez, K. Järrendahl, and H. Arwin, “Linear Birefringent Films of Cellulose Nanocrystals Produced by Dip-Coating,” Nanomaterials 9(1), 45 (2018).
[Crossref]

Atifi, S.

G. Guidetti, S. Atifi, S. Vignolini, and W. Y. Hamad, “Flexible Photonic Cellulose Nanocrystal Films,” Adv. Mater. 28(45), 10042–10047 (2016).
[Crossref]

Autere, A.

H. Yang, H. Jussila, A. Autere, H. P. Komsa, G. Ye, X. Chen, T. Hasan, and Z. Sun, “Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials,” ACS Photonics 4(12), 3023–3030 (2017).
[Crossref]

Bergstrom, L.

J. H. Park, J. Noh, C. Schutz, G. Salazar-Alvarez, G. Scalia, L. Bergstrom, and J. P. Lagerwall, “Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions,” ChemPhysChem 15(7), 1477–1484 (2014).
[Crossref]

Bergström, L.

J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park, G. Scalia, and L. Bergström, “Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films,” NPG Asia Mater. 6(1), e80 (2014).
[Crossref]

Bulone, V.

K. Yao, Q. Meng, V. Bulone, and Q. Zhou, “Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color,” Adv. Mater. 29(28), 1701323 (2017).
[Crossref]

Campbell, M. G.

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26(42), 7178–7184 (2014).
[Crossref]

M. G. Campbell, Q. Liu, A. Sanders, J. S. Evans, and I. I. Smalyukh, “Preparation of Nanocomposite Plasmonic Films Made from Cellulose Nanocrystals or Mesoporous Silica Decorated with Unidirectionally Aligned Gold Nanorods,” Materials 7(4), 3021–3033 (2014).
[Crossref]

Cao, D.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Chen, H.

Chen, X.

H. Yang, H. Jussila, A. Autere, H. P. Komsa, G. Ye, X. Chen, T. Hasan, and Z. Sun, “Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials,” ACS Photonics 4(12), 3023–3030 (2017).
[Crossref]

Chen, Y.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Cheng, F.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Cheng, Z.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Cheng, Z. J.

Chu, C.-L.

C.-L. Chu, C.-H. Lin, and K.-C. Fan, “Two-dimensional optical accelerometer based on commercial DVD pick-up head,” Meas. Sci. Technol. 18(1), 265–274 (2007).
[Crossref]

Cranston, E. D.

E. D. Cranston and D. G. Gray, “Birefringence in spin-coated films containing cellulose nanocrystals,” Colloids Surf., A 325(1-2), 44–51 (2008).
[Crossref]

Davis, V. A.

A. D. Haywood and V. A. Davis, “Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films,” Cellulose 24(2), 705–716 (2017).
[Crossref]

De La Cruz, J. A.

J. A. De La Cruz, Q. Liu, B. Senyuk, A. W. Frazier, K. Peddireddy, and I. I. Smalyukh, “Cellulose-Based Reflective Liquid Crystal Films as Optical Filters and Solar Gain Regulators,” ACS Photonics 5(6), 2468–2477 (2018).
[Crossref]

Domínguez-Gómez, A. B.

A. Mendoza-Galván, T. Tejeda-Galán, A. B. Domínguez-Gómez, R. A. Mauricio-Sánchez, K. Järrendahl, and H. Arwin, “Linear Birefringent Films of Cellulose Nanocrystals Produced by Dip-Coating,” Nanomaterials 9(1), 45 (2018).
[Crossref]

Dong, X. M.

X. M. Dong, J. F. Revol, and D. G. Gray, “Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose,” Cellulose 5(1), 19–32 (1998).
[Crossref]

X. M. Dong, T. Kimura, J. F. Revol, and D. G. Gray, “Effects of Ionic Strength on the Isotropic-Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites,” Langmuir 12(8), 2076–2082 (1996).
[Crossref]

Dubreuil, F.

S. Elazzouzi-Hafraoui, Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil, and C. Rochas, “The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose,” Biomacromolecules 9(1), 57–65 (2008).
[Crossref]

Efimenko, K.

I. Hoeger, O. J. Rojas, K. Efimenko, O. D. Velev, and S. S. Kelley, “Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties,” Soft Matter 7(5), 1957 (2011).
[Crossref]

Ehrhardt, M.

Elazzouzi-Hafraoui, S.

S. Elazzouzi-Hafraoui, Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil, and C. Rochas, “The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose,” Biomacromolecules 9(1), 57–65 (2008).
[Crossref]

Emiroglu, C. D.

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Evans, J.

C. Li, J. Evans, N. Wang, T. Guo, and S. He, “pH dependence of the chirality of nematic cellulose nanocrystals,” Sci. Rep. 9(1), 11290 (2019).
[Crossref]

Evans, J. S.

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26(42), 7178–7184 (2014).
[Crossref]

M. G. Campbell, Q. Liu, A. Sanders, J. S. Evans, and I. I. Smalyukh, “Preparation of Nanocomposite Plasmonic Films Made from Cellulose Nanocrystals or Mesoporous Silica Decorated with Unidirectionally Aligned Gold Nanorods,” Materials 7(4), 3021–3033 (2014).
[Crossref]

Fan, K.-C.

C.-L. Chu, C.-H. Lin, and K.-C. Fan, “Two-dimensional optical accelerometer based on commercial DVD pick-up head,” Meas. Sci. Technol. 18(1), 265–274 (2007).
[Crossref]

Forster, A.

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Foster, E. J.

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Fox, D. M.

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Frazier, A. W.

J. A. De La Cruz, Q. Liu, B. Senyuk, A. W. Frazier, K. Peddireddy, and I. I. Smalyukh, “Cellulose-Based Reflective Liquid Crystal Films as Optical Filters and Solar Gain Regulators,” ACS Photonics 5(6), 2468–2477 (2018).
[Crossref]

Frka-Petesic, B.

T. H. Zhao, R. M. Parker, C. A. Williams, K. T. P. Lim, B. Frka-Petesic, and S. Vignolini, “Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays,” Adv. Funct. Mater. 29(21), 1804531 (2019).
[Crossref]

B. Frka-Petesic and S. Vignolini, “So much more than paper,” Nat. Photonics 13(6), 365–367 (2019).
[Crossref]

R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka-Petesic, “The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance,” Adv. Mater. 30(19), 1704477 (2018).
[Crossref]

Ge, S.

Gersen, H.

Gilman, J. W.

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Gou, F.

Gray, D. G.

E. D. Cranston and D. G. Gray, “Birefringence in spin-coated films containing cellulose nanocrystals,” Colloids Surf., A 325(1-2), 44–51 (2008).
[Crossref]

X. M. Dong, J. F. Revol, and D. G. Gray, “Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose,” Cellulose 5(1), 19–32 (1998).
[Crossref]

X. M. Dong, T. Kimura, J. F. Revol, and D. G. Gray, “Effects of Ionic Strength on the Isotropic-Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites,” Langmuir 12(8), 2076–2082 (1996).
[Crossref]

Guidetti, G.

R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka-Petesic, “The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance,” Adv. Mater. 30(19), 1704477 (2018).
[Crossref]

G. Guidetti, S. Atifi, S. Vignolini, and W. Y. Hamad, “Flexible Photonic Cellulose Nanocrystal Films,” Adv. Mater. 28(45), 10042–10047 (2016).
[Crossref]

Guo, C. S.

Guo, T.

C. Li, J. Evans, N. Wang, T. Guo, and S. He, “pH dependence of the chirality of nematic cellulose nanocrystals,” Sci. Rep. 9(1), 11290 (2019).
[Crossref]

Habibi, Y.

Y. Habibi, L. A. Lucia, and O. J. Rojas, “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications,” Chem. Rev. 110(6), 3479–3500 (2010).
[Crossref]

Hamad, W. Y.

G. Guidetti, S. Atifi, S. Vignolini, and W. Y. Hamad, “Flexible Photonic Cellulose Nanocrystal Films,” Adv. Mater. 28(45), 10042–10047 (2016).
[Crossref]

Han, L.

Hasan, T.

H. Yang, H. Jussila, A. Autere, H. P. Komsa, G. Ye, X. Chen, T. Hasan, and Z. Sun, “Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials,” ACS Photonics 4(12), 3023–3030 (2017).
[Crossref]

Haywood, A. D.

A. D. Haywood and V. A. Davis, “Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films,” Cellulose 24(2), 705–716 (2017).
[Crossref]

He, S.

C. Li, J. Evans, N. Wang, T. Guo, and S. He, “pH dependence of the chirality of nematic cellulose nanocrystals,” Sci. Rep. 9(1), 11290 (2019).
[Crossref]

Heux, L.

S. Elazzouzi-Hafraoui, Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil, and C. Rochas, “The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose,” Biomacromolecules 9(1), 57–65 (2008).
[Crossref]

Hoeger, I.

I. Hoeger, O. J. Rojas, K. Efimenko, O. D. Velev, and S. S. Kelley, “Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties,” Soft Matter 7(5), 1957 (2011).
[Crossref]

Hong, X.

Hu, W.

Huang, Z.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Hyun Park, J.

J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park, G. Scalia, and L. Bergström, “Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films,” NPG Asia Mater. 6(1), e80 (2014).
[Crossref]

Inoue, Y.

S. Ando, T. Sawada, and Y. Inoue, “Thin, flexible waveplate of fluorinated polyimide,” Electron. Lett. 29(24), 2143–2145 (1993).
[Crossref]

Järrendahl, K.

A. Mendoza-Galván, T. Tejeda-Galán, A. B. Domínguez-Gómez, R. A. Mauricio-Sánchez, K. Järrendahl, and H. Arwin, “Linear Birefringent Films of Cellulose Nanocrystals Produced by Dip-Coating,” Nanomaterials 9(1), 45 (2018).
[Crossref]

Jen, Y. J.

Y. J. Jen, A. Lakhtakia, C. W. Yu, C. F. Lin, M. J. Lin, S. H. Wang, and J. R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2(1), 363 (2011).
[Crossref]

Jiang, H.

D. Qu, H. Zheng, H. Jiang, Y. Xu, and Z. Tang, “Chiral Photonic Cellulose Films Enabling Mechano/Chemo Responsive Selective Reflection of Circularly Polarized Light,” Adv. Opt. Mater. 7(7), 1801395 (2019).
[Crossref]

Jussila, H.

H. Yang, H. Jussila, A. Autere, H. P. Komsa, G. Ye, X. Chen, T. Hasan, and Z. Sun, “Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials,” ACS Photonics 4(12), 3023–3030 (2017).
[Crossref]

Kelley, S. S.

I. Hoeger, O. J. Rojas, K. Efimenko, O. D. Velev, and S. S. Kelley, “Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties,” Soft Matter 7(5), 1957 (2011).
[Crossref]

Keten, S.

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Kimura, T.

X. M. Dong, T. Kimura, J. F. Revol, and D. G. Gray, “Effects of Ionic Strength on the Isotropic-Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites,” Langmuir 12(8), 2076–2082 (1996).
[Crossref]

Komsa, H. P.

H. Yang, H. Jussila, A. Autere, H. P. Komsa, G. Ye, X. Chen, T. Hasan, and Z. Sun, “Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials,” ACS Photonics 4(12), 3023–3030 (2017).
[Crossref]

Kosa, T.

Krishnamurthy, A.

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Kuga, S.

J. Araki and S. Kuga, “Effect of Trace Electrolyte on Liquid Crystal Type of Cellulose Microcrystals,” Langmuir 17(15), 4493–4496 (2001).
[Crossref]

J. Araki, M. Wada, S. Kuga, and T. Okano, “Birefringent Glassy Phase of a Cellulose Microcrystal Suspension,” Langmuir 16(6), 2413–2415 (2000).
[Crossref]

J. Araki, M. Wada, S. Kuga, and T. Okano, “Influence of surface charge on viscosity behavior of cellulose microcrystal suspension,” J. Wood Sci. 45(3), 258–261 (1999).
[Crossref]

Lagerwall, J. P.

J. H. Park, J. Noh, C. Schutz, G. Salazar-Alvarez, G. Scalia, L. Bergstrom, and J. P. Lagerwall, “Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions,” ChemPhysChem 15(7), 1477–1484 (2014).
[Crossref]

Lagerwall, J. P. F.

J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park, G. Scalia, and L. Bergström, “Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films,” NPG Asia Mater. 6(1), e80 (2014).
[Crossref]

Lai, J. R.

Y. J. Jen, A. Lakhtakia, C. W. Yu, C. F. Lin, M. J. Lin, S. H. Wang, and J. R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2(1), 363 (2011).
[Crossref]

Lakhtakia, A.

Y. J. Jen, A. Lakhtakia, C. W. Yu, C. F. Lin, M. J. Lin, S. H. Wang, and J. R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2(1), 363 (2011).
[Crossref]

Lammers, K.

Li, C.

C. Li, J. Evans, N. Wang, T. Guo, and S. He, “pH dependence of the chirality of nematic cellulose nanocrystals,” Sci. Rep. 9(1), 11290 (2019).
[Crossref]

Li, H.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Lim, K. T. P.

T. H. Zhao, R. M. Parker, C. A. Williams, K. T. P. Lim, B. Frka-Petesic, and S. Vignolini, “Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays,” Adv. Funct. Mater. 29(21), 1804531 (2019).
[Crossref]

Lin, C. F.

Y. J. Jen, A. Lakhtakia, C. W. Yu, C. F. Lin, M. J. Lin, S. H. Wang, and J. R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2(1), 363 (2011).
[Crossref]

Lin, C.-H.

C.-L. Chu, C.-H. Lin, and K.-C. Fan, “Two-dimensional optical accelerometer based on commercial DVD pick-up head,” Meas. Sci. Technol. 18(1), 265–274 (2007).
[Crossref]

Lin, M. J.

Y. J. Jen, A. Lakhtakia, C. W. Yu, C. F. Lin, M. J. Lin, S. H. Wang, and J. R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2(1), 363 (2011).
[Crossref]

Liu, Q.

J. A. De La Cruz, Q. Liu, B. Senyuk, A. W. Frazier, K. Peddireddy, and I. I. Smalyukh, “Cellulose-Based Reflective Liquid Crystal Films as Optical Filters and Solar Gain Regulators,” ACS Photonics 5(6), 2468–2477 (2018).
[Crossref]

M. G. Campbell, Q. Liu, A. Sanders, J. S. Evans, and I. I. Smalyukh, “Preparation of Nanocomposite Plasmonic Films Made from Cellulose Nanocrystals or Mesoporous Silica Decorated with Unidirectionally Aligned Gold Nanorods,” Materials 7(4), 3021–3033 (2014).
[Crossref]

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26(42), 7178–7184 (2014).
[Crossref]

Liu, Y.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Lu, Y.

Lucia, L. A.

Y. Habibi, L. A. Lucia, and O. J. Rojas, “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications,” Chem. Rev. 110(6), 3479–3500 (2010).
[Crossref]

Ma, Y.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Malendevych, T.

Mauricio-Sánchez, R. A.

A. Mendoza-Galván, T. Tejeda-Galán, A. B. Domínguez-Gómez, R. A. Mauricio-Sánchez, K. Järrendahl, and H. Arwin, “Linear Birefringent Films of Cellulose Nanocrystals Produced by Dip-Coating,” Nanomaterials 9(1), 45 (2018).
[Crossref]

Mendoza-Galván, A.

A. Mendoza-Galván, T. Tejeda-Galán, A. B. Domínguez-Gómez, R. A. Mauricio-Sánchez, K. Järrendahl, and H. Arwin, “Linear Birefringent Films of Cellulose Nanocrystals Produced by Dip-Coating,” Nanomaterials 9(1), 45 (2018).
[Crossref]

Meng, Q.

K. Yao, Q. Meng, V. Bulone, and Q. Zhou, “Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color,” Adv. Mater. 29(28), 1701323 (2017).
[Crossref]

Miles, B. T.

Munoz, A.

Nakajima, M.

Narkevicius, A.

R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka-Petesic, “The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance,” Adv. Mater. 30(19), 1704477 (2018).
[Crossref]

Natan, A.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Natarajan, B.

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Nishiyama, Y.

S. Elazzouzi-Hafraoui, Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil, and C. Rochas, “The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose,” Biomacromolecules 9(1), 57–65 (2008).
[Crossref]

Noh, J.

J. H. Park, J. Noh, C. Schutz, G. Salazar-Alvarez, G. Scalia, L. Bergstrom, and J. P. Lagerwall, “Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions,” ChemPhysChem 15(7), 1477–1484 (2014).
[Crossref]

J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park, G. Scalia, and L. Bergström, “Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films,” NPG Asia Mater. 6(1), e80 (2014).
[Crossref]

Nolte, S.

Obrzut, J.

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Okano, T.

J. Araki, M. Wada, S. Kuga, and T. Okano, “Birefringent Glassy Phase of a Cellulose Microcrystal Suspension,” Langmuir 16(6), 2413–2415 (2000).
[Crossref]

J. Araki, M. Wada, S. Kuga, and T. Okano, “Influence of surface charge on viscosity behavior of cellulose microcrystal suspension,” J. Wood Sci. 45(3), 258–261 (1999).
[Crossref]

Palffy-Muhoray, P.

Park, J. H.

J. H. Park, J. Noh, C. Schutz, G. Salazar-Alvarez, G. Scalia, L. Bergstrom, and J. P. Lagerwall, “Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions,” ChemPhysChem 15(7), 1477–1484 (2014).
[Crossref]

Parker, R. M.

T. H. Zhao, R. M. Parker, C. A. Williams, K. T. P. Lim, B. Frka-Petesic, and S. Vignolini, “Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays,” Adv. Funct. Mater. 29(21), 1804531 (2019).
[Crossref]

R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka-Petesic, “The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance,” Adv. Mater. 30(19), 1704477 (2018).
[Crossref]

Peddireddy, K.

J. A. De La Cruz, Q. Liu, B. Senyuk, A. W. Frazier, K. Peddireddy, and I. I. Smalyukh, “Cellulose-Based Reflective Liquid Crystal Films as Optical Filters and Solar Gain Regulators,” ACS Photonics 5(6), 2468–2477 (2018).
[Crossref]

Putaux, J. L.

S. Elazzouzi-Hafraoui, Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil, and C. Rochas, “The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose,” Biomacromolecules 9(1), 57–65 (2008).
[Crossref]

Qin, X.

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Qu, D.

D. Qu, H. Zheng, H. Jiang, Y. Xu, and Z. Tang, “Chiral Photonic Cellulose Films Enabling Mechano/Chemo Responsive Selective Reflection of Circularly Polarized Light,” Adv. Opt. Mater. 7(7), 1801395 (2019).
[Crossref]

Revol, J. F.

X. M. Dong, J. F. Revol, and D. G. Gray, “Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose,” Cellulose 5(1), 19–32 (1998).
[Crossref]

X. M. Dong, T. Kimura, J. F. Revol, and D. G. Gray, “Effects of Ionic Strength on the Isotropic-Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites,” Langmuir 12(8), 2076–2082 (1996).
[Crossref]

Rochas, C.

S. Elazzouzi-Hafraoui, Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil, and C. Rochas, “The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose,” Biomacromolecules 9(1), 57–65 (2008).
[Crossref]

Rojas, O. J.

I. Hoeger, O. J. Rojas, K. Efimenko, O. D. Velev, and S. S. Kelley, “Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties,” Soft Matter 7(5), 1957 (2011).
[Crossref]

Y. Habibi, L. A. Lucia, and O. J. Rojas, “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications,” Chem. Rev. 110(6), 3479–3500 (2010).
[Crossref]

Salajkova, M.

J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park, G. Scalia, and L. Bergström, “Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films,” NPG Asia Mater. 6(1), e80 (2014).
[Crossref]

Salazar-Alvarez, G.

J. H. Park, J. Noh, C. Schutz, G. Salazar-Alvarez, G. Scalia, L. Bergstrom, and J. P. Lagerwall, “Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions,” ChemPhysChem 15(7), 1477–1484 (2014).
[Crossref]

Sanders, A.

M. G. Campbell, Q. Liu, A. Sanders, J. S. Evans, and I. I. Smalyukh, “Preparation of Nanocomposite Plasmonic Films Made from Cellulose Nanocrystals or Mesoporous Silica Decorated with Unidirectionally Aligned Gold Nanorods,” Materials 7(4), 3021–3033 (2014).
[Crossref]

Sawada, T.

S. Ando, T. Sawada, and Y. Inoue, “Thin, flexible waveplate of fluorinated polyimide,” Electron. Lett. 29(24), 2143–2145 (1993).
[Crossref]

Scalia, G.

J. H. Park, J. Noh, C. Schutz, G. Salazar-Alvarez, G. Scalia, L. Bergstrom, and J. P. Lagerwall, “Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions,” ChemPhysChem 15(7), 1477–1484 (2014).
[Crossref]

J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park, G. Scalia, and L. Bergström, “Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films,” NPG Asia Mater. 6(1), e80 (2014).
[Crossref]

Schutz, C.

J. H. Park, J. Noh, C. Schutz, G. Salazar-Alvarez, G. Scalia, L. Bergstrom, and J. P. Lagerwall, “Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions,” ChemPhysChem 15(7), 1477–1484 (2014).
[Crossref]

Schütz, C.

J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park, G. Scalia, and L. Bergström, “Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films,” NPG Asia Mater. 6(1), e80 (2014).
[Crossref]

Senyuk, B.

J. A. De La Cruz, Q. Liu, B. Senyuk, A. W. Frazier, K. Peddireddy, and I. I. Smalyukh, “Cellulose-Based Reflective Liquid Crystal Films as Optical Filters and Solar Gain Regulators,” ACS Photonics 5(6), 2468–2477 (2018).
[Crossref]

Shao, G.

Shi, Y.

Smalyukh, I. I.

J. A. De La Cruz, Q. Liu, B. Senyuk, A. W. Frazier, K. Peddireddy, and I. I. Smalyukh, “Cellulose-Based Reflective Liquid Crystal Films as Optical Filters and Solar Gain Regulators,” ACS Photonics 5(6), 2468–2477 (2018).
[Crossref]

M. G. Campbell, Q. Liu, A. Sanders, J. S. Evans, and I. I. Smalyukh, “Preparation of Nanocomposite Plasmonic Films Made from Cellulose Nanocrystals or Mesoporous Silica Decorated with Unidirectionally Aligned Gold Nanorods,” Materials 7(4), 3021–3033 (2014).
[Crossref]

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26(42), 7178–7184 (2014).
[Crossref]

Sun, Z.

H. Yang, H. Jussila, A. Autere, H. P. Komsa, G. Ye, X. Chen, T. Hasan, and Z. Sun, “Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials,” ACS Photonics 4(12), 3023–3030 (2017).
[Crossref]

Szameit, A.

Taheri, B.

Tang, Z.

D. Qu, H. Zheng, H. Jiang, Y. Xu, and Z. Tang, “Chiral Photonic Cellulose Films Enabling Mechano/Chemo Responsive Selective Reflection of Circularly Polarized Light,” Adv. Opt. Mater. 7(7), 1801395 (2019).
[Crossref]

Tejeda-Galán, T.

A. Mendoza-Galván, T. Tejeda-Galán, A. B. Domínguez-Gómez, R. A. Mauricio-Sánchez, K. Järrendahl, and H. Arwin, “Linear Birefringent Films of Cellulose Nanocrystals Produced by Dip-Coating,” Nanomaterials 9(1), 45 (2018).
[Crossref]

Varanytsia, A.

Velev, O. D.

I. Hoeger, O. J. Rojas, K. Efimenko, O. D. Velev, and S. S. Kelley, “Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties,” Soft Matter 7(5), 1957 (2011).
[Crossref]

Vetter, C.

Vignolini, S.

T. H. Zhao, R. M. Parker, C. A. Williams, K. T. P. Lim, B. Frka-Petesic, and S. Vignolini, “Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays,” Adv. Funct. Mater. 29(21), 1804531 (2019).
[Crossref]

B. Frka-Petesic and S. Vignolini, “So much more than paper,” Nat. Photonics 13(6), 365–367 (2019).
[Crossref]

R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka-Petesic, “The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance,” Adv. Mater. 30(19), 1704477 (2018).
[Crossref]

G. Guidetti, S. Atifi, S. Vignolini, and W. Y. Hamad, “Flexible Photonic Cellulose Nanocrystal Films,” Adv. Mater. 28(45), 10042–10047 (2016).
[Crossref]

Wada, M.

J. Araki, M. Wada, S. Kuga, and T. Okano, “Birefringent Glassy Phase of a Cellulose Microcrystal Suspension,” Langmuir 16(6), 2413–2415 (2000).
[Crossref]

J. Araki, M. Wada, S. Kuga, and T. Okano, “Influence of surface charge on viscosity behavior of cellulose microcrystal suspension,” J. Wood Sci. 45(3), 258–261 (1999).
[Crossref]

Wang, L.

Wang, N.

C. Li, J. Evans, N. Wang, T. Guo, and S. He, “pH dependence of the chirality of nematic cellulose nanocrystals,” Sci. Rep. 9(1), 11290 (2019).
[Crossref]

Wang, S. H.

Y. J. Jen, A. Lakhtakia, C. W. Yu, C. F. Lin, M. J. Lin, S. H. Wang, and J. R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2(1), 363 (2011).
[Crossref]

Wang, Y.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Weder, C.

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Wenzlik, D.

Williams, C. A.

T. H. Zhao, R. M. Parker, C. A. Williams, K. T. P. Lim, B. Frka-Petesic, and S. Vignolini, “Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays,” Adv. Funct. Mater. 29(21), 1804531 (2019).
[Crossref]

R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka-Petesic, “The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance,” Adv. Mater. 30(19), 1704477 (2018).
[Crossref]

Wu, S. T.

Xu, X.

Xu, Y.

D. Qu, H. Zheng, H. Jiang, Y. Xu, and Z. Tang, “Chiral Photonic Cellulose Films Enabling Mechano/Chemo Responsive Selective Reflection of Circularly Polarized Light,” Adv. Opt. Mater. 7(7), 1801395 (2019).
[Crossref]

Yang, H.

H. Yang, H. Jussila, A. Autere, H. P. Komsa, G. Ye, X. Chen, T. Hasan, and Z. Sun, “Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials,” ACS Photonics 4(12), 3023–3030 (2017).
[Crossref]

Yang, L.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Yang, R.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Yang, Y.

Yao, K.

K. Yao, Q. Meng, V. Bulone, and Q. Zhou, “Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color,” Adv. Mater. 29(28), 1701323 (2017).
[Crossref]

Ye, G.

H. Yang, H. Jussila, A. Autere, H. P. Komsa, G. Ye, X. Chen, T. Hasan, and Z. Sun, “Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials,” ACS Photonics 4(12), 3023–3030 (2017).
[Crossref]

Yu, C. W.

Y. J. Jen, A. Lakhtakia, C. W. Yu, C. F. Lin, M. J. Lin, S. H. Wang, and J. R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2(1), 363 (2011).
[Crossref]

Yue, Q. Y.

Zentel, R.

Zhao, T.

R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka-Petesic, “The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance,” Adv. Mater. 30(19), 1704477 (2018).
[Crossref]

Zhao, T. H.

T. H. Zhao, R. M. Parker, C. A. Williams, K. T. P. Lim, B. Frka-Petesic, and S. Vignolini, “Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays,” Adv. Funct. Mater. 29(21), 1804531 (2019).
[Crossref]

Zheng, H.

D. Qu, H. Zheng, H. Jiang, Y. Xu, and Z. Tang, “Chiral Photonic Cellulose Films Enabling Mechano/Chemo Responsive Selective Reflection of Circularly Polarized Light,” Adv. Opt. Mater. 7(7), 1801395 (2019).
[Crossref]

Zhou, Q.

K. Yao, Q. Meng, V. Bulone, and Q. Zhou, “Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color,” Adv. Mater. 29(28), 1701323 (2017).
[Crossref]

Zhu, H.

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

ACS Photonics (2)

J. A. De La Cruz, Q. Liu, B. Senyuk, A. W. Frazier, K. Peddireddy, and I. I. Smalyukh, “Cellulose-Based Reflective Liquid Crystal Films as Optical Filters and Solar Gain Regulators,” ACS Photonics 5(6), 2468–2477 (2018).
[Crossref]

H. Yang, H. Jussila, A. Autere, H. P. Komsa, G. Ye, X. Chen, T. Hasan, and Z. Sun, “Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials,” ACS Photonics 4(12), 3023–3030 (2017).
[Crossref]

Adv. Funct. Mater. (2)

T. H. Zhao, R. M. Parker, C. A. Williams, K. T. P. Lim, B. Frka-Petesic, and S. Vignolini, “Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays,” Adv. Funct. Mater. 29(21), 1804531 (2019).
[Crossref]

B. Natarajan, A. Krishnamurthy, X. Qin, C. D. Emiroglu, A. Forster, E. J. Foster, C. Weder, D. M. Fox, S. Keten, J. Obrzut, and J. W. Gilman, “Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films,” Adv. Funct. Mater. 28(26), 1800032 (2018).
[Crossref]

Adv. Mater. (4)

R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S. Vignolini, and B. Frka-Petesic, “The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance,” Adv. Mater. 30(19), 1704477 (2018).
[Crossref]

G. Guidetti, S. Atifi, S. Vignolini, and W. Y. Hamad, “Flexible Photonic Cellulose Nanocrystal Films,” Adv. Mater. 28(45), 10042–10047 (2016).
[Crossref]

K. Yao, Q. Meng, V. Bulone, and Q. Zhou, “Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color,” Adv. Mater. 29(28), 1701323 (2017).
[Crossref]

Q. Liu, M. G. Campbell, J. S. Evans, and I. I. Smalyukh, “Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals,” Adv. Mater. 26(42), 7178–7184 (2014).
[Crossref]

Adv. Opt. Mater. (2)

D. Qu, H. Zheng, H. Jiang, Y. Xu, and Z. Tang, “Chiral Photonic Cellulose Films Enabling Mechano/Chemo Responsive Selective Reflection of Circularly Polarized Light,” Adv. Opt. Mater. 7(7), 1801395 (2019).
[Crossref]

Z. Cheng, Y. Ma, L. Yang, F. Cheng, Z. Huang, A. Natan, H. Li, Y. Chen, D. Cao, Z. Huang, Y. Wang, Y. Liu, R. Yang, and H. Zhu, “Plasmonic-Enhanced Cholesteric Films: Coassembling Anisotropic Gold Nanorods with Cellulose Nanocrystals,” Adv. Opt. Mater. 7(9), 1801816 (2019).
[Crossref]

Biomacromolecules (1)

S. Elazzouzi-Hafraoui, Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil, and C. Rochas, “The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose,” Biomacromolecules 9(1), 57–65 (2008).
[Crossref]

Cellulose (2)

X. M. Dong, J. F. Revol, and D. G. Gray, “Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose,” Cellulose 5(1), 19–32 (1998).
[Crossref]

A. D. Haywood and V. A. Davis, “Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films,” Cellulose 24(2), 705–716 (2017).
[Crossref]

Chem. Rev. (1)

Y. Habibi, L. A. Lucia, and O. J. Rojas, “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications,” Chem. Rev. 110(6), 3479–3500 (2010).
[Crossref]

ChemPhysChem (1)

J. H. Park, J. Noh, C. Schutz, G. Salazar-Alvarez, G. Scalia, L. Bergstrom, and J. P. Lagerwall, “Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions,” ChemPhysChem 15(7), 1477–1484 (2014).
[Crossref]

Colloids Surf., A (1)

E. D. Cranston and D. G. Gray, “Birefringence in spin-coated films containing cellulose nanocrystals,” Colloids Surf., A 325(1-2), 44–51 (2008).
[Crossref]

Electron. Lett. (1)

S. Ando, T. Sawada, and Y. Inoue, “Thin, flexible waveplate of fluorinated polyimide,” Electron. Lett. 29(24), 2143–2145 (1993).
[Crossref]

J. Wood Sci. (1)

J. Araki, M. Wada, S. Kuga, and T. Okano, “Influence of surface charge on viscosity behavior of cellulose microcrystal suspension,” J. Wood Sci. 45(3), 258–261 (1999).
[Crossref]

Langmuir (3)

X. M. Dong, T. Kimura, J. F. Revol, and D. G. Gray, “Effects of Ionic Strength on the Isotropic-Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites,” Langmuir 12(8), 2076–2082 (1996).
[Crossref]

J. Araki and S. Kuga, “Effect of Trace Electrolyte on Liquid Crystal Type of Cellulose Microcrystals,” Langmuir 17(15), 4493–4496 (2001).
[Crossref]

J. Araki, M. Wada, S. Kuga, and T. Okano, “Birefringent Glassy Phase of a Cellulose Microcrystal Suspension,” Langmuir 16(6), 2413–2415 (2000).
[Crossref]

Materials (1)

M. G. Campbell, Q. Liu, A. Sanders, J. S. Evans, and I. I. Smalyukh, “Preparation of Nanocomposite Plasmonic Films Made from Cellulose Nanocrystals or Mesoporous Silica Decorated with Unidirectionally Aligned Gold Nanorods,” Materials 7(4), 3021–3033 (2014).
[Crossref]

Meas. Sci. Technol. (1)

C.-L. Chu, C.-H. Lin, and K.-C. Fan, “Two-dimensional optical accelerometer based on commercial DVD pick-up head,” Meas. Sci. Technol. 18(1), 265–274 (2007).
[Crossref]

Nanomaterials (1)

A. Mendoza-Galván, T. Tejeda-Galán, A. B. Domínguez-Gómez, R. A. Mauricio-Sánchez, K. Järrendahl, and H. Arwin, “Linear Birefringent Films of Cellulose Nanocrystals Produced by Dip-Coating,” Nanomaterials 9(1), 45 (2018).
[Crossref]

Nat. Commun. (1)

Y. J. Jen, A. Lakhtakia, C. W. Yu, C. F. Lin, M. J. Lin, S. H. Wang, and J. R. Lai, “Biologically inspired achromatic waveplates for visible light,” Nat. Commun. 2(1), 363 (2011).
[Crossref]

Nat. Photonics (1)

B. Frka-Petesic and S. Vignolini, “So much more than paper,” Nat. Photonics 13(6), 365–367 (2019).
[Crossref]

NPG Asia Mater. (1)

J. P. F. Lagerwall, C. Schütz, M. Salajkova, J. Noh, J. Hyun Park, G. Scalia, and L. Bergström, “Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films,” NPG Asia Mater. 6(1), e80 (2014).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (5)

Sci. Rep. (1)

C. Li, J. Evans, N. Wang, T. Guo, and S. He, “pH dependence of the chirality of nematic cellulose nanocrystals,” Sci. Rep. 9(1), 11290 (2019).
[Crossref]

Soft Matter (1)

I. Hoeger, O. J. Rojas, K. Efimenko, O. D. Velev, and S. S. Kelley, “Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties,” Soft Matter 7(5), 1957 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The fabrication process of the CNC waveplate.
Fig. 2.
Fig. 2. (a) TEM image of the CNCs. (b) Size distribution of the CNCs measured by dynamic laser scattering meter. (c) POM images of the CNC LCs which exhibit nematic phase (left) with low pH ∼ 1.5 and chiral nematic phase (middle and right) with high pH ∼ 2 and 3 under a fixed concentration of CNCs (13wt %). (d) POM image of the film produced by drying unaligned CNC nematic LCs. (e) POM image of the same film with a phase compensator (530 nm λ-plate). P and A indicate the polarization direction of the polarizer and the analyzer; γ indicates the slow axis of the λ-plate.
Fig. 3.
Fig. 3. (a), (b) POM images of one slice of the CNC film on patterned PDMS substrate. (c) POM image of the same film with a phase compensator (530 nm λ-plate). (d), (e) POM images of the CNC waveplate with two slices of CNC films bonded together. (f) POM image of the same CNC waveplate with a phase compensator (530 nm λ-plate). k indicates the shearing direction, P and A indicate the polarization directions of the polarizer and the analyzer; γ indicates the slow axis of the λ-plate. (g) The flexible CNC waveplate can be bent easily. (h) The CNC waveplates can be tailored into square, parallelogram and triangle shapes conveniently.
Fig. 4.
Fig. 4. (a) The experimental setup for measuring the transmission spectra of the CNC waveplates. (b) Schematics for the theoretical analysis. (c) Measured ${I_{1/4 \lambda ,\textrm{exp}}}(\lambda )/{I_0}(\lambda )$ for the 1/4 λ CNC waveplate with different $\beta $. (d) Phase retardation ${\delta _{1/4 \lambda }}(\lambda )$ calculated for the 1/4 λ CNC waveplate. (e) Theoretical (black squares) and measured (red dots) ${I_{1/4 \lambda ,\textrm{exp}}}(\beta )/{I_0}(\beta )$ for the 1/4 λ CNC waveplates with $\lambda = 530\;\textrm{nm}$. (f) Measured ${I_{1/2 \lambda ,\textrm{exp}}}(\lambda )/{I_0}(\lambda )$ for the 1/2 λ CNC waveplate with different $\beta $. (g) Phase retardation ${\delta _{1/2 \lambda }}(\lambda )$ calculated for the 1/2 λ CNC waveplate. (h) Theoretical (black squares) and measured (red dots) ${I_{1/2 \lambda ,\textrm{exp}}}(\beta )/{I_0}(\beta )$ for the 1/2  λ CNC waveplate with $\lambda = 530\;\textrm{nm}$.
Fig. 5.
Fig. 5. Measured transmittance $T$ (a) and reflectance $R$ (b) of the 1/4 λ and the 1/2 λ CNC waveplates for unpolarized light. (c) Extinction $\alpha $ of CNC films deduced from the measured $T$ and $R$ of the CNC waveplates. (d) Birefringence $\Delta n(\lambda )$ of CNC films extracted from the spectrum ${I_{1/4 \lambda ,\textrm{exp}}}(\lambda )/{I_0}(\lambda )$ of the 1/4 λ CNC waveplate with $\beta = 0^\circ $.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S = I 0 [ 1 1 0 0 ] .
M ( δ , θ ) = ( 1 R) e α d [ 1 0 0 0 0 cos 2 2 θ + cos δ sin 2 2 θ ( 1 cos δ ) sin 2 θ cos 2 θ sin δ sin 2 θ 0 ( 1 cos δ ) sin 2 θ cos 2 θ sin 2 2 θ + cos δ cos 2 2 θ sin δ cos 2 θ 0 sin δ sin 2 θ sin δ cos 2 θ cos δ ] ,
M A ( β ) = 1 2 [ 1 cos 2 β sin 2 β 0 cos 2 β cos 2 2 β sin 2 β cos 2 β 0 sin 2 β sin 2 β cos 2 β sin 2 2 β 0 0 0 0 0 ] ,
S = M A ( β ) M ( δ , θ ) S = I 0 ( 1 R ) e α d 2 { 1 + cos 2 β ( cos 2 2 θ + cos δ sin 2 2 θ ) + sin 2 β [ ( 1 cos δ ) sin 2 θ cos 2 θ ] } [ 1 cos 2 β sin 2 β 0 ] .
I ( β , δ ) = I 0 ( 1 R ) e α d 2 ( 1 + cos 2 β cos δ ) ,
I ( β , λ ) = I 0 ( 1 R ) e α d 2 ( 1 + cos 2 β cos 2 π Δ n d λ ) .
δ = cos 1 [ I ( 0 , δ ) I ( 90 , δ ) I ( 0 , δ ) + I ( 90 , δ ) ] .

Metrics