Abstract

Relaxor ferroelectrics have found significant applications in various functional devices in photonics and electronics because of their extraordinary optical and dielectric properties which are directly associated with the polarization relaxation dynamics. However, the related mechanism currently remains not clearly understood, especially for the polar domain reversal in nanostructured relaxor ferroelectrics. This paper reports an observation of intriguing spontaneous superlattices formation of self-ordered nanostructures in a ferroelectric perovskite of KTN:Cu by cooling the crystal below the temperature of its dielectric maximum. More importantly, the strong diffraction induced by the spontaneously formed superlattices can be switched with an AC electric field after a pre-polarization using a DC electric field. The experimental results indicate the switching effect originates from an asymmetric reversal process of the polarization in nanoscale domains. The study not only facilitates further understanding the physics of the ferroelectric relaxation process, but also have potential applications in optical switching, imaging and display.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photorefractive effect in the relaxor ferroelectric material 0.91Pb(Zn1/3Nb2/3)O3–0.09PbTiO3

Saori Abe, Tomoyasu Fujishima, Takashi Tsubone, Ryushi Fujimura, Hidenobu Ono, Osamu Matoba, Katsuroh Oda, Tsutomu Shimura, and Kazuo Kuroda
Opt. Lett. 28(6) 420-422 (2003)

Electric-field control of the ferro-paraelectric phase transition in Cu:KTN crystals

Xin Zhang, Hongliang Liu, Zhuan Zhao, Xuping Wang, and Pengfei Wu
Opt. Express 25(23) 28776-28782 (2017)

Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment

Alexander Gumennik, Yael Kurzweil-Segev, and Aharon J. Agranat
Opt. Mater. Express 1(3) 332-343 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Takenaka, I. Grinberg, S. Liu, and A. M. Rappe, “Slush-like polar structures in single-crystal relaxors,” Nature 546(7658), 391–395 (2017).
    [Crossref]
  2. E. DelRe, F. Di Mei, J. Parravicini, G. Parravicini, A. J. Agranat, and C. Conti, “Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths,” Nat. Photonics 9(4), 228–232 (2015).
    [Crossref]
  3. F. D. Mei, P. Caramazza, D. Pierangeli, G. D. Domenico, H. Ilan, A. J. Agranat, P. Di Porto, and E. DelRe, “Intrinsic negative mass from nonlinearity,” Phys. Rev. Lett. 116(15), 153902 (2016).
    [Crossref]
  4. D. Wang, A. A. Bokov, Z. G. Ye, J. Hlinka, and L. Bellaiche, “Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics,” Nat. Commun. 7(1), 11014 (2016).
    [Crossref]
  5. F. Di Mei, L. Falsi, M. Flammini, D. Pierangeli, P. D. Porto, A. J. Agranat, and E. DelRe, “Giant broadband refraction in the visible in a ferroelectric perovskite,” Nat. Photonics 12(12), 734–738 (2018).
    [Crossref]
  6. J. Parravicini, E. DelRe, A. J. Agranatc, and G. Parravicinid, “Liquid-solid directional composites and anisotropic dipolar phases of polar nanoregions in disordered perovskite,” Nanoscale 9(27), 9572–9580 (2017).
    [Crossref]
  7. T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen, and C. Warde, “Femtosecond resolution of soft mode dynamics in structural phase transitions,” Science 258(5083), 770–774 (1992).
    [Crossref]
  8. G. Y. Xu, J. S. Wen, C. Stock, and P. M. Gehring, “Phase instability induced by polar nanoregions in a relaxor ferroelectric system,” Nat. Mater. 7(7), 562–566 (2008).
    [Crossref]
  9. W. Dmowski, S. B. Vakhrushev, I. K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, “Local lattice dynamics and the origin of the relaxor ferroelectric behavior,” Phys. Rev. Lett. 100(13), 137602 (2008).
    [Crossref]
  10. H. X. Fu and R. E. Cohen, “Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics,” Nature 403(6767), 281–283 (2000).
    [Crossref]
  11. X. B. Ren, “Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching,” Nat. Mater. 3(2), 91–94 (2004).
    [Crossref]
  12. M. Sawaki and H. Motai, “Successful preparation of KTN crystals with the highest reported electro-optic effect and the potential for providing a great improvement in optical device performance,” NTT Tech. Rev. 1(9), 56–58 (2003).
  13. E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
    [Crossref]
  14. B. Dkhil and J. M. Kiat, “Electric-field-induced polarization in the ergodic and nonergodic states of PbMg1/3Nb2/3O3 relaxor,” J. Appl. Phys. 90(9), 4676–4681 (2001).
    [Crossref]
  15. J. Toulouse, P. DiAntonio, B. E. Vugmeister, X. M. Wang, and L. A. Knauss, “Precursor effects and ferroelectric macroregions in KTa1-xNbxO3 and K1-yLiyTaO3,” Phys. Rev. Lett. 68(2), 232–235 (1992).
    [Crossref]
  16. A. Pashkin, V. Železný, J. Petzelt, and J. Phys, “Infrared spectroscopy of KTa1-xNbxO3 crystals,” J. Phys.: Condens. Matter 17(25), L265–L270 (2005).
    [Crossref]
  17. W. Kleemann, V. Schönknecht, D. Sommer, and D. Rytz, “Dissipative quantum tunneling and absence of quadrupolar freezing in glassy K0.989Li0.011TaO3,” Phys. Rev. Lett. 66(6), 762–765 (1991).
    [Crossref]
  18. P. Tan, H. Tian, C. P. Hu, X. D. Meng, C. Y. Mao, F. Huang, G. Shi, and Z. X. Zhou, “Temperature field driven polar nanoregions in KTa1-xNbxO3,” Appl. Phys. Lett. 109(25), 252904 (2016).
    [Crossref]
  19. X. Zhang, S. He, Z. Zhao, P. F. Wu, X. P. Wang, and H. L. Liu, “Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient,” Sci. Rep. 8(1), 2892 (2018).
    [Crossref]
  20. T. Imai, S. Toyoda, J. Miyazu, J. Kobayashi, and S. Kojima, “Permittivity changes induced by injected electrons and field-induced phase transition in KTa1-xNbxO3 optical beam deflectors,” Jpn. J. Appl. Phys. 53(9S), 09PB02 (2014).
    [Crossref]
  21. Y. C. Jia, M. Winkler, C. Cheng, F. Chen, L. Kirste, V. Cimalla, A. Žukauskaitė, J. Szabados, I. Breunig, and K. Buse, “Pulsed laser deposition of ferroelectric potassium tantalate-niobate optical waveguiding thin films,” Opt. Mater. Express 8(3), 541–548 (2018).
    [Crossref]
  22. Y. C. Chang, C. Wang, S. Z. Yin, R. C. Hoffman, and A. G. Mott, “Kovacs effect enhanced broadband large field of view electro-optic modulators in nanodisordered KTN crystals,” Opt. Express 21(15), 17760–17768 (2013).
    [Crossref]
  23. K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
    [Crossref]
  24. X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
    [Crossref]
  25. D. Pierangeli, M. Ferraro, F. D. Mei, G. D. Domenico, C. E. M. de Oliveira, A. J. Agranat, and E. DelRe, “Super-crystals in composite ferroelectrics,” Nat. Commun. 7(1), 10674 (2016).
    [Crossref]
  26. V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
    [Crossref]
  27. X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
    [Crossref]
  28. Y. Kabessa, A. Yativ, H. E. Ilan, and A. J. Agranat, “Electro-optical modulation with immunity to optical damage by bipolar operation in potassium lithium tantalate niobite,” Opt. Express 23(4), 4348–4356 (2015).
    [Crossref]
  29. Y. Ishibashi and Y. Takagi, “Ferroelectric domain switching,” J. Phys. Soc. Jpn. 31(2), 506–510 (1971).
    [Crossref]
  30. H. Orihara, S. Hashimoto, and Y. Ishibashi, “A Theory of D-E Hysteresis Loop Based on the Avrami Model,” J. Phys. Soc. Jpn. 63(3), 1031–1035 (1994).
    [Crossref]
  31. A. Kolmogorov, “Zur Statistik der Kristallisationsvorgänge in Metallen,” Izv. Akad. Nauk. Ser. Math. 1(3), 355–359 (1937).
  32. M. Avrami, “Kinetics of phase change. II transformation-time relations for random distribution of nuclei,” J. Chem. Phys. 8(2), 212–224 (1940).
    [Crossref]
  33. A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, “Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films,” Phys. Rev. B 66(21), 214109 (2002).
    [Crossref]
  34. I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, and M. Tsukada, “Crossover between nucleation-controlled kinetics and domain wall motion kinetics of polarization reversal in ferroelectric films,” Appl. Phys. Lett. 83(16), 3362–3364 (2003).
    [Crossref]
  35. W. Li and M. Alexe, “Investigation on switching kinetics in epitaxial Pb(Zr0.2Ti0.8)O3 ferroelectric thin films: Role of the 90° domain walls,” Appl. Phys. Lett. 91(26), 262903 (2007).
    [Crossref]
  36. J. Y. Jo, H. S. Han, J. G. Yoon, T. K. Song, S. H. Kim, and T. W. Noh, “Domain switching kinetics in disordered ferroelectric thin films,” Phys. Rev. Lett. 99(26), 267602 (2007).
    [Crossref]
  37. D. J. Jung, M. Dawber, J. F. Scott, L. J. Sinnamon, and J. M. Gregg, “Switching dynamics in ferroelectric thin films: an experimental survey,” Integr. Ferroelectr. 48(1), 59–68 (2002).
    [Crossref]
  38. X. J. Lou, “Statistical switching kinetics of ferroelectrics,” J. Phys.: Condens. Matter 21(1), 012207 (2009).
    [Crossref]
  39. I. Stolichnov, L. Malin, E. Colla, and A. K. Tagantsev, “Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr,Ti)O3 films,” Appl. Phys. Lett. 86(1), 012902 (2005).
    [Crossref]
  40. O. Lohse, M. Grossmann, U. Boettger, D. Bolten, and R. Waser, “Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films,” J. Appl. Phys. 89(4), 2332–2336 (2001).
    [Crossref]
  41. T. Takaaki, S. M. Num, Y. B. Kil, and S. Wada, “High frequency measurements of P-E hysteresis curves of pzt thin films,” Ferroelectrics 259(1), 43–48 (2001).
    [Crossref]
  42. S. Wan and K. Bowman, “Modeling of electric field induced texture in lead zirconate titanate ceramics,” J. Mater. Res. 16(8), 2306–2313 (2001).
    [Crossref]
  43. M. Grossmann, D. Bolten, O. Lohse, and U. Boettger, “Correlation between switching and fatigue in PbZr0.3Ti0.7O3 thin films,” Appl. Phys. Lett. 77(12), 1894 (2000).
    [Crossref]
  44. W. J. Merz, “Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness,” J. Appl. Phys. 27(8), 938–943 (1956).
    [Crossref]
  45. X. Zhang, H. L. Liu, Z. Zhao, X. P. Wang, and P. F. Wu, “Electric-field control of the ferro-paraelectric phase transition in Cu: KTN crystals,” Opt. Express 25(23), 28776–28782 (2017).
    [Crossref]
  46. S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “700 kHz beam scanning using electro-optic KTN planar optical deflector,” Proc. SPIE 9744, 97440L (2016).
    [Crossref]

2018 (3)

F. Di Mei, L. Falsi, M. Flammini, D. Pierangeli, P. D. Porto, A. J. Agranat, and E. DelRe, “Giant broadband refraction in the visible in a ferroelectric perovskite,” Nat. Photonics 12(12), 734–738 (2018).
[Crossref]

X. Zhang, S. He, Z. Zhao, P. F. Wu, X. P. Wang, and H. L. Liu, “Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient,” Sci. Rep. 8(1), 2892 (2018).
[Crossref]

Y. C. Jia, M. Winkler, C. Cheng, F. Chen, L. Kirste, V. Cimalla, A. Žukauskaitė, J. Szabados, I. Breunig, and K. Buse, “Pulsed laser deposition of ferroelectric potassium tantalate-niobate optical waveguiding thin films,” Opt. Mater. Express 8(3), 541–548 (2018).
[Crossref]

2017 (3)

J. Parravicini, E. DelRe, A. J. Agranatc, and G. Parravicinid, “Liquid-solid directional composites and anisotropic dipolar phases of polar nanoregions in disordered perovskite,” Nanoscale 9(27), 9572–9580 (2017).
[Crossref]

H. Takenaka, I. Grinberg, S. Liu, and A. M. Rappe, “Slush-like polar structures in single-crystal relaxors,” Nature 546(7658), 391–395 (2017).
[Crossref]

X. Zhang, H. L. Liu, Z. Zhao, X. P. Wang, and P. F. Wu, “Electric-field control of the ferro-paraelectric phase transition in Cu: KTN crystals,” Opt. Express 25(23), 28776–28782 (2017).
[Crossref]

2016 (6)

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “700 kHz beam scanning using electro-optic KTN planar optical deflector,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

F. D. Mei, P. Caramazza, D. Pierangeli, G. D. Domenico, H. Ilan, A. J. Agranat, P. Di Porto, and E. DelRe, “Intrinsic negative mass from nonlinearity,” Phys. Rev. Lett. 116(15), 153902 (2016).
[Crossref]

D. Wang, A. A. Bokov, Z. G. Ye, J. Hlinka, and L. Bellaiche, “Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics,” Nat. Commun. 7(1), 11014 (2016).
[Crossref]

P. Tan, H. Tian, C. P. Hu, X. D. Meng, C. Y. Mao, F. Huang, G. Shi, and Z. X. Zhou, “Temperature field driven polar nanoregions in KTa1-xNbxO3,” Appl. Phys. Lett. 109(25), 252904 (2016).
[Crossref]

D. Pierangeli, M. Ferraro, F. D. Mei, G. D. Domenico, C. E. M. de Oliveira, A. J. Agranat, and E. DelRe, “Super-crystals in composite ferroelectrics,” Nat. Commun. 7(1), 10674 (2016).
[Crossref]

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

2015 (2)

Y. Kabessa, A. Yativ, H. E. Ilan, and A. J. Agranat, “Electro-optical modulation with immunity to optical damage by bipolar operation in potassium lithium tantalate niobite,” Opt. Express 23(4), 4348–4356 (2015).
[Crossref]

E. DelRe, F. Di Mei, J. Parravicini, G. Parravicini, A. J. Agranat, and C. Conti, “Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths,” Nat. Photonics 9(4), 228–232 (2015).
[Crossref]

2014 (2)

T. Imai, S. Toyoda, J. Miyazu, J. Kobayashi, and S. Kojima, “Permittivity changes induced by injected electrons and field-induced phase transition in KTa1-xNbxO3 optical beam deflectors,” Jpn. J. Appl. Phys. 53(9S), 09PB02 (2014).
[Crossref]

X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
[Crossref]

2013 (1)

2011 (1)

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
[Crossref]

2009 (1)

X. J. Lou, “Statistical switching kinetics of ferroelectrics,” J. Phys.: Condens. Matter 21(1), 012207 (2009).
[Crossref]

2008 (3)

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

G. Y. Xu, J. S. Wen, C. Stock, and P. M. Gehring, “Phase instability induced by polar nanoregions in a relaxor ferroelectric system,” Nat. Mater. 7(7), 562–566 (2008).
[Crossref]

W. Dmowski, S. B. Vakhrushev, I. K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, “Local lattice dynamics and the origin of the relaxor ferroelectric behavior,” Phys. Rev. Lett. 100(13), 137602 (2008).
[Crossref]

2007 (2)

W. Li and M. Alexe, “Investigation on switching kinetics in epitaxial Pb(Zr0.2Ti0.8)O3 ferroelectric thin films: Role of the 90° domain walls,” Appl. Phys. Lett. 91(26), 262903 (2007).
[Crossref]

J. Y. Jo, H. S. Han, J. G. Yoon, T. K. Song, S. H. Kim, and T. W. Noh, “Domain switching kinetics in disordered ferroelectric thin films,” Phys. Rev. Lett. 99(26), 267602 (2007).
[Crossref]

2005 (2)

A. Pashkin, V. Železný, J. Petzelt, and J. Phys, “Infrared spectroscopy of KTa1-xNbxO3 crystals,” J. Phys.: Condens. Matter 17(25), L265–L270 (2005).
[Crossref]

I. Stolichnov, L. Malin, E. Colla, and A. K. Tagantsev, “Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr,Ti)O3 films,” Appl. Phys. Lett. 86(1), 012902 (2005).
[Crossref]

2004 (1)

X. B. Ren, “Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching,” Nat. Mater. 3(2), 91–94 (2004).
[Crossref]

2003 (2)

M. Sawaki and H. Motai, “Successful preparation of KTN crystals with the highest reported electro-optic effect and the potential for providing a great improvement in optical device performance,” NTT Tech. Rev. 1(9), 56–58 (2003).

I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, and M. Tsukada, “Crossover between nucleation-controlled kinetics and domain wall motion kinetics of polarization reversal in ferroelectric films,” Appl. Phys. Lett. 83(16), 3362–3364 (2003).
[Crossref]

2002 (2)

D. J. Jung, M. Dawber, J. F. Scott, L. J. Sinnamon, and J. M. Gregg, “Switching dynamics in ferroelectric thin films: an experimental survey,” Integr. Ferroelectr. 48(1), 59–68 (2002).
[Crossref]

A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, “Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films,” Phys. Rev. B 66(21), 214109 (2002).
[Crossref]

2001 (4)

O. Lohse, M. Grossmann, U. Boettger, D. Bolten, and R. Waser, “Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films,” J. Appl. Phys. 89(4), 2332–2336 (2001).
[Crossref]

T. Takaaki, S. M. Num, Y. B. Kil, and S. Wada, “High frequency measurements of P-E hysteresis curves of pzt thin films,” Ferroelectrics 259(1), 43–48 (2001).
[Crossref]

S. Wan and K. Bowman, “Modeling of electric field induced texture in lead zirconate titanate ceramics,” J. Mater. Res. 16(8), 2306–2313 (2001).
[Crossref]

B. Dkhil and J. M. Kiat, “Electric-field-induced polarization in the ergodic and nonergodic states of PbMg1/3Nb2/3O3 relaxor,” J. Appl. Phys. 90(9), 4676–4681 (2001).
[Crossref]

2000 (2)

H. X. Fu and R. E. Cohen, “Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics,” Nature 403(6767), 281–283 (2000).
[Crossref]

M. Grossmann, D. Bolten, O. Lohse, and U. Boettger, “Correlation between switching and fatigue in PbZr0.3Ti0.7O3 thin films,” Appl. Phys. Lett. 77(12), 1894 (2000).
[Crossref]

1999 (1)

V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
[Crossref]

1994 (1)

H. Orihara, S. Hashimoto, and Y. Ishibashi, “A Theory of D-E Hysteresis Loop Based on the Avrami Model,” J. Phys. Soc. Jpn. 63(3), 1031–1035 (1994).
[Crossref]

1992 (2)

T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen, and C. Warde, “Femtosecond resolution of soft mode dynamics in structural phase transitions,” Science 258(5083), 770–774 (1992).
[Crossref]

J. Toulouse, P. DiAntonio, B. E. Vugmeister, X. M. Wang, and L. A. Knauss, “Precursor effects and ferroelectric macroregions in KTa1-xNbxO3 and K1-yLiyTaO3,” Phys. Rev. Lett. 68(2), 232–235 (1992).
[Crossref]

1991 (1)

W. Kleemann, V. Schönknecht, D. Sommer, and D. Rytz, “Dissipative quantum tunneling and absence of quadrupolar freezing in glassy K0.989Li0.011TaO3,” Phys. Rev. Lett. 66(6), 762–765 (1991).
[Crossref]

1971 (1)

Y. Ishibashi and Y. Takagi, “Ferroelectric domain switching,” J. Phys. Soc. Jpn. 31(2), 506–510 (1971).
[Crossref]

1956 (1)

W. J. Merz, “Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness,” J. Appl. Phys. 27(8), 938–943 (1956).
[Crossref]

1940 (1)

M. Avrami, “Kinetics of phase change. II transformation-time relations for random distribution of nuclei,” J. Chem. Phys. 8(2), 212–224 (1940).
[Crossref]

1937 (1)

A. Kolmogorov, “Zur Statistik der Kristallisationsvorgänge in Metallen,” Izv. Akad. Nauk. Ser. Math. 1(3), 355–359 (1937).

Agranat, A. J.

F. Di Mei, L. Falsi, M. Flammini, D. Pierangeli, P. D. Porto, A. J. Agranat, and E. DelRe, “Giant broadband refraction in the visible in a ferroelectric perovskite,” Nat. Photonics 12(12), 734–738 (2018).
[Crossref]

F. D. Mei, P. Caramazza, D. Pierangeli, G. D. Domenico, H. Ilan, A. J. Agranat, P. Di Porto, and E. DelRe, “Intrinsic negative mass from nonlinearity,” Phys. Rev. Lett. 116(15), 153902 (2016).
[Crossref]

D. Pierangeli, M. Ferraro, F. D. Mei, G. D. Domenico, C. E. M. de Oliveira, A. J. Agranat, and E. DelRe, “Super-crystals in composite ferroelectrics,” Nat. Commun. 7(1), 10674 (2016).
[Crossref]

E. DelRe, F. Di Mei, J. Parravicini, G. Parravicini, A. J. Agranat, and C. Conti, “Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths,” Nat. Photonics 9(4), 228–232 (2015).
[Crossref]

Y. Kabessa, A. Yativ, H. E. Ilan, and A. J. Agranat, “Electro-optical modulation with immunity to optical damage by bipolar operation in potassium lithium tantalate niobite,” Opt. Express 23(4), 4348–4356 (2015).
[Crossref]

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
[Crossref]

Agranatc, A. J.

J. Parravicini, E. DelRe, A. J. Agranatc, and G. Parravicinid, “Liquid-solid directional composites and anisotropic dipolar phases of polar nanoregions in disordered perovskite,” Nanoscale 9(27), 9572–9580 (2017).
[Crossref]

Alexe, M.

W. Li and M. Alexe, “Investigation on switching kinetics in epitaxial Pb(Zr0.2Ti0.8)O3 ferroelectric thin films: Role of the 90° domain walls,” Appl. Phys. Lett. 91(26), 262903 (2007).
[Crossref]

Avrami, M.

M. Avrami, “Kinetics of phase change. II transformation-time relations for random distribution of nuclei,” J. Chem. Phys. 8(2), 212–224 (1940).
[Crossref]

Bellaiche, L.

D. Wang, A. A. Bokov, Z. G. Ye, J. Hlinka, and L. Bellaiche, “Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics,” Nat. Commun. 7(1), 11014 (2016).
[Crossref]

Bermudez, V.

V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
[Crossref]

Boettger, U.

O. Lohse, M. Grossmann, U. Boettger, D. Bolten, and R. Waser, “Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films,” J. Appl. Phys. 89(4), 2332–2336 (2001).
[Crossref]

M. Grossmann, D. Bolten, O. Lohse, and U. Boettger, “Correlation between switching and fatigue in PbZr0.3Ti0.7O3 thin films,” Appl. Phys. Lett. 77(12), 1894 (2000).
[Crossref]

Bokov, A. A.

D. Wang, A. A. Bokov, Z. G. Ye, J. Hlinka, and L. Bellaiche, “Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics,” Nat. Commun. 7(1), 11014 (2016).
[Crossref]

Bolten, D.

O. Lohse, M. Grossmann, U. Boettger, D. Bolten, and R. Waser, “Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films,” J. Appl. Phys. 89(4), 2332–2336 (2001).
[Crossref]

M. Grossmann, D. Bolten, O. Lohse, and U. Boettger, “Correlation between switching and fatigue in PbZr0.3Ti0.7O3 thin films,” Appl. Phys. Lett. 77(12), 1894 (2000).
[Crossref]

Bowman, K.

S. Wan and K. Bowman, “Modeling of electric field induced texture in lead zirconate titanate ceramics,” J. Mater. Res. 16(8), 2306–2313 (2001).
[Crossref]

Breunig, I.

Buse, K.

Caramazza, P.

F. D. Mei, P. Caramazza, D. Pierangeli, G. D. Domenico, H. Ilan, A. J. Agranat, P. Di Porto, and E. DelRe, “Intrinsic negative mass from nonlinearity,” Phys. Rev. Lett. 116(15), 153902 (2016).
[Crossref]

Chang, Y. C.

Chen, F.

Cheng, C.

Cimalla, V.

Cohen, R. E.

H. X. Fu and R. E. Cohen, “Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics,” Nature 403(6767), 281–283 (2000).
[Crossref]

Colla, E.

I. Stolichnov, L. Malin, E. Colla, and A. K. Tagantsev, “Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr,Ti)O3 films,” Appl. Phys. Lett. 86(1), 012902 (2005).
[Crossref]

Conti, C.

E. DelRe, F. Di Mei, J. Parravicini, G. Parravicini, A. J. Agranat, and C. Conti, “Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths,” Nat. Photonics 9(4), 228–232 (2015).
[Crossref]

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
[Crossref]

Cross, J. S.

I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, and M. Tsukada, “Crossover between nucleation-controlled kinetics and domain wall motion kinetics of polarization reversal in ferroelectric films,” Appl. Phys. Lett. 83(16), 3362–3364 (2003).
[Crossref]

A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, “Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films,” Phys. Rev. B 66(21), 214109 (2002).
[Crossref]

Dawber, M.

D. J. Jung, M. Dawber, J. F. Scott, L. J. Sinnamon, and J. M. Gregg, “Switching dynamics in ferroelectric thin films: an experimental survey,” Integr. Ferroelectr. 48(1), 59–68 (2002).
[Crossref]

de Oliveira, C. E. M.

D. Pierangeli, M. Ferraro, F. D. Mei, G. D. Domenico, C. E. M. de Oliveira, A. J. Agranat, and E. DelRe, “Super-crystals in composite ferroelectrics,” Nat. Commun. 7(1), 10674 (2016).
[Crossref]

DelRe, E.

F. Di Mei, L. Falsi, M. Flammini, D. Pierangeli, P. D. Porto, A. J. Agranat, and E. DelRe, “Giant broadband refraction in the visible in a ferroelectric perovskite,” Nat. Photonics 12(12), 734–738 (2018).
[Crossref]

J. Parravicini, E. DelRe, A. J. Agranatc, and G. Parravicinid, “Liquid-solid directional composites and anisotropic dipolar phases of polar nanoregions in disordered perovskite,” Nanoscale 9(27), 9572–9580 (2017).
[Crossref]

F. D. Mei, P. Caramazza, D. Pierangeli, G. D. Domenico, H. Ilan, A. J. Agranat, P. Di Porto, and E. DelRe, “Intrinsic negative mass from nonlinearity,” Phys. Rev. Lett. 116(15), 153902 (2016).
[Crossref]

D. Pierangeli, M. Ferraro, F. D. Mei, G. D. Domenico, C. E. M. de Oliveira, A. J. Agranat, and E. DelRe, “Super-crystals in composite ferroelectrics,” Nat. Commun. 7(1), 10674 (2016).
[Crossref]

E. DelRe, F. Di Mei, J. Parravicini, G. Parravicini, A. J. Agranat, and C. Conti, “Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths,” Nat. Photonics 9(4), 228–232 (2015).
[Crossref]

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
[Crossref]

Di Mei, F.

F. Di Mei, L. Falsi, M. Flammini, D. Pierangeli, P. D. Porto, A. J. Agranat, and E. DelRe, “Giant broadband refraction in the visible in a ferroelectric perovskite,” Nat. Photonics 12(12), 734–738 (2018).
[Crossref]

E. DelRe, F. Di Mei, J. Parravicini, G. Parravicini, A. J. Agranat, and C. Conti, “Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths,” Nat. Photonics 9(4), 228–232 (2015).
[Crossref]

Di Porto, P.

F. D. Mei, P. Caramazza, D. Pierangeli, G. D. Domenico, H. Ilan, A. J. Agranat, P. Di Porto, and E. DelRe, “Intrinsic negative mass from nonlinearity,” Phys. Rev. Lett. 116(15), 153902 (2016).
[Crossref]

DiAntonio, P.

J. Toulouse, P. DiAntonio, B. E. Vugmeister, X. M. Wang, and L. A. Knauss, “Precursor effects and ferroelectric macroregions in KTa1-xNbxO3 and K1-yLiyTaO3,” Phys. Rev. Lett. 68(2), 232–235 (1992).
[Crossref]

Dieguez, E.

V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
[Crossref]

Dkhil, B.

B. Dkhil and J. M. Kiat, “Electric-field-induced polarization in the ergodic and nonergodic states of PbMg1/3Nb2/3O3 relaxor,” J. Appl. Phys. 90(9), 4676–4681 (2001).
[Crossref]

Dmowski, W.

W. Dmowski, S. B. Vakhrushev, I. K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, “Local lattice dynamics and the origin of the relaxor ferroelectric behavior,” Phys. Rev. Lett. 100(13), 137602 (2008).
[Crossref]

Domenico, G. D.

F. D. Mei, P. Caramazza, D. Pierangeli, G. D. Domenico, H. Ilan, A. J. Agranat, P. Di Porto, and E. DelRe, “Intrinsic negative mass from nonlinearity,” Phys. Rev. Lett. 116(15), 153902 (2016).
[Crossref]

D. Pierangeli, M. Ferraro, F. D. Mei, G. D. Domenico, C. E. M. de Oliveira, A. J. Agranat, and E. DelRe, “Super-crystals in composite ferroelectrics,” Nat. Commun. 7(1), 10674 (2016).
[Crossref]

Dougherty, T. P.

T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen, and C. Warde, “Femtosecond resolution of soft mode dynamics in structural phase transitions,” Science 258(5083), 770–774 (1992).
[Crossref]

Egami, T.

W. Dmowski, S. B. Vakhrushev, I. K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, “Local lattice dynamics and the origin of the relaxor ferroelectric behavior,” Phys. Rev. Lett. 100(13), 137602 (2008).
[Crossref]

Falsi, L.

F. Di Mei, L. Falsi, M. Flammini, D. Pierangeli, P. D. Porto, A. J. Agranat, and E. DelRe, “Giant broadband refraction in the visible in a ferroelectric perovskite,” Nat. Photonics 12(12), 734–738 (2018).
[Crossref]

Ferraro, M.

D. Pierangeli, M. Ferraro, F. D. Mei, G. D. Domenico, C. E. M. de Oliveira, A. J. Agranat, and E. DelRe, “Super-crystals in composite ferroelectrics,” Nat. Commun. 7(1), 10674 (2016).
[Crossref]

Flammini, M.

F. Di Mei, L. Falsi, M. Flammini, D. Pierangeli, P. D. Porto, A. J. Agranat, and E. DelRe, “Giant broadband refraction in the visible in a ferroelectric perovskite,” Nat. Photonics 12(12), 734–738 (2018).
[Crossref]

Fu, H. X.

H. X. Fu and R. E. Cohen, “Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics,” Nature 403(6767), 281–283 (2000).
[Crossref]

Fujiura, K.

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

Garrett, M. H.

T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen, and C. Warde, “Femtosecond resolution of soft mode dynamics in structural phase transitions,” Science 258(5083), 770–774 (1992).
[Crossref]

Gehring, P. M.

G. Y. Xu, J. S. Wen, C. Stock, and P. M. Gehring, “Phase instability induced by polar nanoregions in a relaxor ferroelectric system,” Nat. Mater. 7(7), 562–566 (2008).
[Crossref]

Gregg, J. M.

D. J. Jung, M. Dawber, J. F. Scott, L. J. Sinnamon, and J. M. Gregg, “Switching dynamics in ferroelectric thin films: an experimental survey,” Integr. Ferroelectr. 48(1), 59–68 (2002).
[Crossref]

Grinberg, I.

H. Takenaka, I. Grinberg, S. Liu, and A. M. Rappe, “Slush-like polar structures in single-crystal relaxors,” Nature 546(7658), 391–395 (2017).
[Crossref]

Grossmann, M.

O. Lohse, M. Grossmann, U. Boettger, D. Bolten, and R. Waser, “Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films,” J. Appl. Phys. 89(4), 2332–2336 (2001).
[Crossref]

M. Grossmann, D. Bolten, O. Lohse, and U. Boettger, “Correlation between switching and fatigue in PbZr0.3Ti0.7O3 thin films,” Appl. Phys. Lett. 77(12), 1894 (2000).
[Crossref]

Han, H. S.

J. Y. Jo, H. S. Han, J. G. Yoon, T. K. Song, S. H. Kim, and T. W. Noh, “Domain switching kinetics in disordered ferroelectric thin films,” Phys. Rev. Lett. 99(26), 267602 (2007).
[Crossref]

Hashimoto, S.

H. Orihara, S. Hashimoto, and Y. Ishibashi, “A Theory of D-E Hysteresis Loop Based on the Avrami Model,” J. Phys. Soc. Jpn. 63(3), 1031–1035 (1994).
[Crossref]

He, S.

X. Zhang, S. He, Z. Zhao, P. F. Wu, X. P. Wang, and H. L. Liu, “Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient,” Sci. Rep. 8(1), 2892 (2018).
[Crossref]

Hehlen, M. P.

W. Dmowski, S. B. Vakhrushev, I. K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, “Local lattice dynamics and the origin of the relaxor ferroelectric behavior,” Phys. Rev. Lett. 100(13), 137602 (2008).
[Crossref]

Hlinka, J.

D. Wang, A. A. Bokov, Z. G. Ye, J. Hlinka, and L. Bellaiche, “Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics,” Nat. Commun. 7(1), 11014 (2016).
[Crossref]

Hoffman, R. C.

Hong, G. L.

X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
[Crossref]

Hu, C. P.

P. Tan, H. Tian, C. P. Hu, X. D. Meng, C. Y. Mao, F. Huang, G. Shi, and Z. X. Zhou, “Temperature field driven polar nanoregions in KTa1-xNbxO3,” Appl. Phys. Lett. 109(25), 252904 (2016).
[Crossref]

Huang, F.

P. Tan, H. Tian, C. P. Hu, X. D. Meng, C. Y. Mao, F. Huang, G. Shi, and Z. X. Zhou, “Temperature field driven polar nanoregions in KTa1-xNbxO3,” Appl. Phys. Lett. 109(25), 252904 (2016).
[Crossref]

Ilan, H.

F. D. Mei, P. Caramazza, D. Pierangeli, G. D. Domenico, H. Ilan, A. J. Agranat, P. Di Porto, and E. DelRe, “Intrinsic negative mass from nonlinearity,” Phys. Rev. Lett. 116(15), 153902 (2016).
[Crossref]

Ilan, H. E.

Imai, T.

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “700 kHz beam scanning using electro-optic KTN planar optical deflector,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

T. Imai, S. Toyoda, J. Miyazu, J. Kobayashi, and S. Kojima, “Permittivity changes induced by injected electrons and field-induced phase transition in KTa1-xNbxO3 optical beam deflectors,” Jpn. J. Appl. Phys. 53(9S), 09PB02 (2014).
[Crossref]

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

Ishibashi, Y.

H. Orihara, S. Hashimoto, and Y. Ishibashi, “A Theory of D-E Hysteresis Loop Based on the Avrami Model,” J. Phys. Soc. Jpn. 63(3), 1031–1035 (1994).
[Crossref]

Y. Ishibashi and Y. Takagi, “Ferroelectric domain switching,” J. Phys. Soc. Jpn. 31(2), 506–510 (1971).
[Crossref]

Jensen, H. P.

T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen, and C. Warde, “Femtosecond resolution of soft mode dynamics in structural phase transitions,” Science 258(5083), 770–774 (1992).
[Crossref]

Jeong, I. K.

W. Dmowski, S. B. Vakhrushev, I. K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, “Local lattice dynamics and the origin of the relaxor ferroelectric behavior,” Phys. Rev. Lett. 100(13), 137602 (2008).
[Crossref]

Jia, Y. C.

Jo, J. Y.

J. Y. Jo, H. S. Han, J. G. Yoon, T. K. Song, S. H. Kim, and T. W. Noh, “Domain switching kinetics in disordered ferroelectric thin films,” Phys. Rev. Lett. 99(26), 267602 (2007).
[Crossref]

Jung, D. J.

D. J. Jung, M. Dawber, J. F. Scott, L. J. Sinnamon, and J. M. Gregg, “Switching dynamics in ferroelectric thin films: an experimental survey,” Integr. Ferroelectr. 48(1), 59–68 (2002).
[Crossref]

Kabessa, Y.

Kiat, J. M.

B. Dkhil and J. M. Kiat, “Electric-field-induced polarization in the ergodic and nonergodic states of PbMg1/3Nb2/3O3 relaxor,” J. Appl. Phys. 90(9), 4676–4681 (2001).
[Crossref]

Kil, Y. B.

T. Takaaki, S. M. Num, Y. B. Kil, and S. Wada, “High frequency measurements of P-E hysteresis curves of pzt thin films,” Ferroelectrics 259(1), 43–48 (2001).
[Crossref]

Kim, S. H.

J. Y. Jo, H. S. Han, J. G. Yoon, T. K. Song, S. H. Kim, and T. W. Noh, “Domain switching kinetics in disordered ferroelectric thin films,” Phys. Rev. Lett. 99(26), 267602 (2007).
[Crossref]

Kirste, L.

Kleemann, W.

W. Kleemann, V. Schönknecht, D. Sommer, and D. Rytz, “Dissipative quantum tunneling and absence of quadrupolar freezing in glassy K0.989Li0.011TaO3,” Phys. Rev. Lett. 66(6), 762–765 (1991).
[Crossref]

Knauss, L. A.

J. Toulouse, P. DiAntonio, B. E. Vugmeister, X. M. Wang, and L. A. Knauss, “Precursor effects and ferroelectric macroregions in KTa1-xNbxO3 and K1-yLiyTaO3,” Phys. Rev. Lett. 68(2), 232–235 (1992).
[Crossref]

Kobayashi, J.

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “700 kHz beam scanning using electro-optic KTN planar optical deflector,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

T. Imai, S. Toyoda, J. Miyazu, J. Kobayashi, and S. Kojima, “Permittivity changes induced by injected electrons and field-induced phase transition in KTa1-xNbxO3 optical beam deflectors,” Jpn. J. Appl. Phys. 53(9S), 09PB02 (2014).
[Crossref]

Kojima, S.

T. Imai, S. Toyoda, J. Miyazu, J. Kobayashi, and S. Kojima, “Permittivity changes induced by injected electrons and field-induced phase transition in KTa1-xNbxO3 optical beam deflectors,” Jpn. J. Appl. Phys. 53(9S), 09PB02 (2014).
[Crossref]

Kolmogorov, A.

A. Kolmogorov, “Zur Statistik der Kristallisationsvorgänge in Metallen,” Izv. Akad. Nauk. Ser. Math. 1(3), 355–359 (1937).

Li, Q. G.

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

Li, W.

W. Li and M. Alexe, “Investigation on switching kinetics in epitaxial Pb(Zr0.2Ti0.8)O3 ferroelectric thin films: Role of the 90° domain walls,” Appl. Phys. Lett. 91(26), 262903 (2007).
[Crossref]

Liu, B.

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
[Crossref]

Liu, H. L.

X. Zhang, S. He, Z. Zhao, P. F. Wu, X. P. Wang, and H. L. Liu, “Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient,” Sci. Rep. 8(1), 2892 (2018).
[Crossref]

X. Zhang, H. L. Liu, Z. Zhao, X. P. Wang, and P. F. Wu, “Electric-field control of the ferro-paraelectric phase transition in Cu: KTN crystals,” Opt. Express 25(23), 28776–28782 (2017).
[Crossref]

Liu, S.

H. Takenaka, I. Grinberg, S. Liu, and A. M. Rappe, “Slush-like polar structures in single-crystal relaxors,” Nature 546(7658), 391–395 (2017).
[Crossref]

Lohse, O.

O. Lohse, M. Grossmann, U. Boettger, D. Bolten, and R. Waser, “Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films,” J. Appl. Phys. 89(4), 2332–2336 (2001).
[Crossref]

M. Grossmann, D. Bolten, O. Lohse, and U. Boettger, “Correlation between switching and fatigue in PbZr0.3Ti0.7O3 thin films,” Appl. Phys. Lett. 77(12), 1894 (2000).
[Crossref]

Lou, X. J.

X. J. Lou, “Statistical switching kinetics of ferroelectrics,” J. Phys.: Condens. Matter 21(1), 012207 (2009).
[Crossref]

Lv, X. S.

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
[Crossref]

Ma, L.

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

Malin, L.

I. Stolichnov, L. Malin, E. Colla, and A. K. Tagantsev, “Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr,Ti)O3 films,” Appl. Phys. Lett. 86(1), 012902 (2005).
[Crossref]

Mao, C. Y.

P. Tan, H. Tian, C. P. Hu, X. D. Meng, C. Y. Mao, F. Huang, G. Shi, and Z. X. Zhou, “Temperature field driven polar nanoregions in KTa1-xNbxO3,” Appl. Phys. Lett. 109(25), 252904 (2016).
[Crossref]

Mei, F. D.

D. Pierangeli, M. Ferraro, F. D. Mei, G. D. Domenico, C. E. M. de Oliveira, A. J. Agranat, and E. DelRe, “Super-crystals in composite ferroelectrics,” Nat. Commun. 7(1), 10674 (2016).
[Crossref]

F. D. Mei, P. Caramazza, D. Pierangeli, G. D. Domenico, H. Ilan, A. J. Agranat, P. Di Porto, and E. DelRe, “Intrinsic negative mass from nonlinearity,” Phys. Rev. Lett. 116(15), 153902 (2016).
[Crossref]

Meng, X. D.

P. Tan, H. Tian, C. P. Hu, X. D. Meng, C. Y. Mao, F. Huang, G. Shi, and Z. X. Zhou, “Temperature field driven polar nanoregions in KTa1-xNbxO3,” Appl. Phys. Lett. 109(25), 252904 (2016).
[Crossref]

Merz, W. J.

W. J. Merz, “Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness,” J. Appl. Phys. 27(8), 938–943 (1956).
[Crossref]

Miyazu, J.

T. Imai, S. Toyoda, J. Miyazu, J. Kobayashi, and S. Kojima, “Permittivity changes induced by injected electrons and field-induced phase transition in KTa1-xNbxO3 optical beam deflectors,” Jpn. J. Appl. Phys. 53(9S), 09PB02 (2014).
[Crossref]

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

Motai, H.

M. Sawaki and H. Motai, “Successful preparation of KTN crystals with the highest reported electro-optic effect and the potential for providing a great improvement in optical device performance,” NTT Tech. Rev. 1(9), 56–58 (2003).

Mott, A. G.

Nakamura, K.

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

Nelson, K. A.

T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen, and C. Warde, “Femtosecond resolution of soft mode dynamics in structural phase transitions,” Science 258(5083), 770–774 (1992).
[Crossref]

Noh, T. W.

J. Y. Jo, H. S. Han, J. G. Yoon, T. K. Song, S. H. Kim, and T. W. Noh, “Domain switching kinetics in disordered ferroelectric thin films,” Phys. Rev. Lett. 99(26), 267602 (2007).
[Crossref]

Num, S. M.

T. Takaaki, S. M. Num, Y. B. Kil, and S. Wada, “High frequency measurements of P-E hysteresis curves of pzt thin films,” Ferroelectrics 259(1), 43–48 (2001).
[Crossref]

Orihara, H.

H. Orihara, S. Hashimoto, and Y. Ishibashi, “A Theory of D-E Hysteresis Loop Based on the Avrami Model,” J. Phys. Soc. Jpn. 63(3), 1031–1035 (1994).
[Crossref]

Parravicini, G.

E. DelRe, F. Di Mei, J. Parravicini, G. Parravicini, A. J. Agranat, and C. Conti, “Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths,” Nat. Photonics 9(4), 228–232 (2015).
[Crossref]

Parravicini, J.

J. Parravicini, E. DelRe, A. J. Agranatc, and G. Parravicinid, “Liquid-solid directional composites and anisotropic dipolar phases of polar nanoregions in disordered perovskite,” Nanoscale 9(27), 9572–9580 (2017).
[Crossref]

E. DelRe, F. Di Mei, J. Parravicini, G. Parravicini, A. J. Agranat, and C. Conti, “Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths,” Nat. Photonics 9(4), 228–232 (2015).
[Crossref]

Parravicinid, G.

J. Parravicini, E. DelRe, A. J. Agranatc, and G. Parravicinid, “Liquid-solid directional composites and anisotropic dipolar phases of polar nanoregions in disordered perovskite,” Nanoscale 9(27), 9572–9580 (2017).
[Crossref]

Pashkin, A.

A. Pashkin, V. Železný, J. Petzelt, and J. Phys, “Infrared spectroscopy of KTa1-xNbxO3 crystals,” J. Phys.: Condens. Matter 17(25), L265–L270 (2005).
[Crossref]

Petzelt, J.

A. Pashkin, V. Železný, J. Petzelt, and J. Phys, “Infrared spectroscopy of KTa1-xNbxO3 crystals,” J. Phys.: Condens. Matter 17(25), L265–L270 (2005).
[Crossref]

Phys, J.

A. Pashkin, V. Železný, J. Petzelt, and J. Phys, “Infrared spectroscopy of KTa1-xNbxO3 crystals,” J. Phys.: Condens. Matter 17(25), L265–L270 (2005).
[Crossref]

Pierangeli, D.

F. Di Mei, L. Falsi, M. Flammini, D. Pierangeli, P. D. Porto, A. J. Agranat, and E. DelRe, “Giant broadband refraction in the visible in a ferroelectric perovskite,” Nat. Photonics 12(12), 734–738 (2018).
[Crossref]

F. D. Mei, P. Caramazza, D. Pierangeli, G. D. Domenico, H. Ilan, A. J. Agranat, P. Di Porto, and E. DelRe, “Intrinsic negative mass from nonlinearity,” Phys. Rev. Lett. 116(15), 153902 (2016).
[Crossref]

D. Pierangeli, M. Ferraro, F. D. Mei, G. D. Domenico, C. E. M. de Oliveira, A. J. Agranat, and E. DelRe, “Super-crystals in composite ferroelectrics,” Nat. Commun. 7(1), 10674 (2016).
[Crossref]

Porto, P. D.

F. Di Mei, L. Falsi, M. Flammini, D. Pierangeli, P. D. Porto, A. J. Agranat, and E. DelRe, “Giant broadband refraction in the visible in a ferroelectric perovskite,” Nat. Photonics 12(12), 734–738 (2018).
[Crossref]

Rappe, A. M.

H. Takenaka, I. Grinberg, S. Liu, and A. M. Rappe, “Slush-like polar structures in single-crystal relaxors,” Nature 546(7658), 391–395 (2017).
[Crossref]

Ren, X. B.

X. B. Ren, “Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching,” Nat. Mater. 3(2), 91–94 (2004).
[Crossref]

Rytz, D.

W. Kleemann, V. Schönknecht, D. Sommer, and D. Rytz, “Dissipative quantum tunneling and absence of quadrupolar freezing in glassy K0.989Li0.011TaO3,” Phys. Rev. Lett. 66(6), 762–765 (1991).
[Crossref]

Sakamoto, T.

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “700 kHz beam scanning using electro-optic KTN planar optical deflector,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

Sasaki, Y.

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “700 kHz beam scanning using electro-optic KTN planar optical deflector,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

Sasaura, M.

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

Sawaki, M.

M. Sawaki and H. Motai, “Successful preparation of KTN crystals with the highest reported electro-optic effect and the potential for providing a great improvement in optical device performance,” NTT Tech. Rev. 1(9), 56–58 (2003).

Schönknecht, V.

W. Kleemann, V. Schönknecht, D. Sommer, and D. Rytz, “Dissipative quantum tunneling and absence of quadrupolar freezing in glassy K0.989Li0.011TaO3,” Phys. Rev. Lett. 66(6), 762–765 (1991).
[Crossref]

Scott, J. F.

D. J. Jung, M. Dawber, J. F. Scott, L. J. Sinnamon, and J. M. Gregg, “Switching dynamics in ferroelectric thin films: an experimental survey,” Integr. Ferroelectr. 48(1), 59–68 (2002).
[Crossref]

Serrano, M. D.

V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
[Crossref]

Setter, N.

I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, and M. Tsukada, “Crossover between nucleation-controlled kinetics and domain wall motion kinetics of polarization reversal in ferroelectric films,” Appl. Phys. Lett. 83(16), 3362–3364 (2003).
[Crossref]

A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, “Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films,” Phys. Rev. B 66(21), 214109 (2002).
[Crossref]

Shi, G.

P. Tan, H. Tian, C. P. Hu, X. D. Meng, C. Y. Mao, F. Huang, G. Shi, and Z. X. Zhou, “Temperature field driven polar nanoregions in KTa1-xNbxO3,” Appl. Phys. Lett. 109(25), 252904 (2016).
[Crossref]

Shu, R.

X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
[Crossref]

Sinnamon, L. J.

D. J. Jung, M. Dawber, J. F. Scott, L. J. Sinnamon, and J. M. Gregg, “Switching dynamics in ferroelectric thin films: an experimental survey,” Integr. Ferroelectr. 48(1), 59–68 (2002).
[Crossref]

Sommer, D.

W. Kleemann, V. Schönknecht, D. Sommer, and D. Rytz, “Dissipative quantum tunneling and absence of quadrupolar freezing in glassy K0.989Li0.011TaO3,” Phys. Rev. Lett. 66(6), 762–765 (1991).
[Crossref]

Song, T. K.

J. Y. Jo, H. S. Han, J. G. Yoon, T. K. Song, S. H. Kim, and T. W. Noh, “Domain switching kinetics in disordered ferroelectric thin films,” Phys. Rev. Lett. 99(26), 267602 (2007).
[Crossref]

Spinozzi, E.

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
[Crossref]

Stock, C.

G. Y. Xu, J. S. Wen, C. Stock, and P. M. Gehring, “Phase instability induced by polar nanoregions in a relaxor ferroelectric system,” Nat. Mater. 7(7), 562–566 (2008).
[Crossref]

Stolichnov, I.

I. Stolichnov, L. Malin, E. Colla, and A. K. Tagantsev, “Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr,Ti)O3 films,” Appl. Phys. Lett. 86(1), 012902 (2005).
[Crossref]

I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, and M. Tsukada, “Crossover between nucleation-controlled kinetics and domain wall motion kinetics of polarization reversal in ferroelectric films,” Appl. Phys. Lett. 83(16), 3362–3364 (2003).
[Crossref]

A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, “Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films,” Phys. Rev. B 66(21), 214109 (2002).
[Crossref]

Szabados, J.

Tagantsev, A.

I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, and M. Tsukada, “Crossover between nucleation-controlled kinetics and domain wall motion kinetics of polarization reversal in ferroelectric films,” Appl. Phys. Lett. 83(16), 3362–3364 (2003).
[Crossref]

Tagantsev, A. K.

I. Stolichnov, L. Malin, E. Colla, and A. K. Tagantsev, “Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr,Ti)O3 films,” Appl. Phys. Lett. 86(1), 012902 (2005).
[Crossref]

A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, “Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films,” Phys. Rev. B 66(21), 214109 (2002).
[Crossref]

Takaaki, T.

T. Takaaki, S. M. Num, Y. B. Kil, and S. Wada, “High frequency measurements of P-E hysteresis curves of pzt thin films,” Ferroelectrics 259(1), 43–48 (2001).
[Crossref]

Takagi, Y.

Y. Ishibashi and Y. Takagi, “Ferroelectric domain switching,” J. Phys. Soc. Jpn. 31(2), 506–510 (1971).
[Crossref]

Takenaka, H.

H. Takenaka, I. Grinberg, S. Liu, and A. M. Rappe, “Slush-like polar structures in single-crystal relaxors,” Nature 546(7658), 391–395 (2017).
[Crossref]

Tan, P.

P. Tan, H. Tian, C. P. Hu, X. D. Meng, C. Y. Mao, F. Huang, G. Shi, and Z. X. Zhou, “Temperature field driven polar nanoregions in KTa1-xNbxO3,” Appl. Phys. Lett. 109(25), 252904 (2016).
[Crossref]

Tatsumi, S.

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “700 kHz beam scanning using electro-optic KTN planar optical deflector,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

Tian, H.

P. Tan, H. Tian, C. P. Hu, X. D. Meng, C. Y. Mao, F. Huang, G. Shi, and Z. X. Zhou, “Temperature field driven polar nanoregions in KTa1-xNbxO3,” Appl. Phys. Lett. 109(25), 252904 (2016).
[Crossref]

Toulouse, J.

J. Toulouse, P. DiAntonio, B. E. Vugmeister, X. M. Wang, and L. A. Knauss, “Precursor effects and ferroelectric macroregions in KTa1-xNbxO3 and K1-yLiyTaO3,” Phys. Rev. Lett. 68(2), 232–235 (1992).
[Crossref]

Toyoda, S.

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “700 kHz beam scanning using electro-optic KTN planar optical deflector,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

T. Imai, S. Toyoda, J. Miyazu, J. Kobayashi, and S. Kojima, “Permittivity changes induced by injected electrons and field-induced phase transition in KTa1-xNbxO3 optical beam deflectors,” Jpn. J. Appl. Phys. 53(9S), 09PB02 (2014).
[Crossref]

Trouw, F.

W. Dmowski, S. B. Vakhrushev, I. K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, “Local lattice dynamics and the origin of the relaxor ferroelectric behavior,” Phys. Rev. Lett. 100(13), 137602 (2008).
[Crossref]

Tsukada, M.

I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, and M. Tsukada, “Crossover between nucleation-controlled kinetics and domain wall motion kinetics of polarization reversal in ferroelectric films,” Appl. Phys. Lett. 83(16), 3362–3364 (2003).
[Crossref]

A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, “Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films,” Phys. Rev. B 66(21), 214109 (2002).
[Crossref]

Vakhrushev, S. B.

W. Dmowski, S. B. Vakhrushev, I. K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, “Local lattice dynamics and the origin of the relaxor ferroelectric behavior,” Phys. Rev. Lett. 100(13), 137602 (2008).
[Crossref]

Vugmeister, B. E.

J. Toulouse, P. DiAntonio, B. E. Vugmeister, X. M. Wang, and L. A. Knauss, “Precursor effects and ferroelectric macroregions in KTa1-xNbxO3 and K1-yLiyTaO3,” Phys. Rev. Lett. 68(2), 232–235 (1992).
[Crossref]

Wada, S.

T. Takaaki, S. M. Num, Y. B. Kil, and S. Wada, “High frequency measurements of P-E hysteresis curves of pzt thin films,” Ferroelectrics 259(1), 43–48 (2001).
[Crossref]

Wan, S.

S. Wan and K. Bowman, “Modeling of electric field induced texture in lead zirconate titanate ceramics,” J. Mater. Res. 16(8), 2306–2313 (2001).
[Crossref]

Wang, C.

Wang, D.

D. Wang, A. A. Bokov, Z. G. Ye, J. Hlinka, and L. Bellaiche, “Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics,” Nat. Commun. 7(1), 11014 (2016).
[Crossref]

Wang, J. Y.

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
[Crossref]

Wang, X. M.

J. Toulouse, P. DiAntonio, B. E. Vugmeister, X. M. Wang, and L. A. Knauss, “Precursor effects and ferroelectric macroregions in KTa1-xNbxO3 and K1-yLiyTaO3,” Phys. Rev. Lett. 68(2), 232–235 (1992).
[Crossref]

Wang, X. P.

X. Zhang, S. He, Z. Zhao, P. F. Wu, X. P. Wang, and H. L. Liu, “Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient,” Sci. Rep. 8(1), 2892 (2018).
[Crossref]

X. Zhang, H. L. Liu, Z. Zhao, X. P. Wang, and P. F. Wu, “Electric-field control of the ferro-paraelectric phase transition in Cu: KTN crystals,” Opt. Express 25(23), 28776–28782 (2017).
[Crossref]

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
[Crossref]

Warde, C.

T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen, and C. Warde, “Femtosecond resolution of soft mode dynamics in structural phase transitions,” Science 258(5083), 770–774 (1992).
[Crossref]

Waser, R.

O. Lohse, M. Grossmann, U. Boettger, D. Bolten, and R. Waser, “Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films,” J. Appl. Phys. 89(4), 2332–2336 (2001).
[Crossref]

Wei, L.

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

Wen, J. S.

G. Y. Xu, J. S. Wen, C. Stock, and P. M. Gehring, “Phase instability induced by polar nanoregions in a relaxor ferroelectric system,” Nat. Mater. 7(7), 562–566 (2008).
[Crossref]

Wiederrecht, G. P.

T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen, and C. Warde, “Femtosecond resolution of soft mode dynamics in structural phase transitions,” Science 258(5083), 770–774 (1992).
[Crossref]

Winkler, M.

Wu, P. F.

X. Zhang, S. He, Z. Zhao, P. F. Wu, X. P. Wang, and H. L. Liu, “Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient,” Sci. Rep. 8(1), 2892 (2018).
[Crossref]

X. Zhang, H. L. Liu, Z. Zhao, X. P. Wang, and P. F. Wu, “Electric-field control of the ferro-paraelectric phase transition in Cu: KTN crystals,” Opt. Express 25(23), 28776–28782 (2017).
[Crossref]

Xu, G. Y.

G. Y. Xu, J. S. Wen, C. Stock, and P. M. Gehring, “Phase instability induced by polar nanoregions in a relaxor ferroelectric system,” Nat. Mater. 7(7), 562–566 (2008).
[Crossref]

Xu, J. H.

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

Yang, Y. G.

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
[Crossref]

Yativ, A.

Ye, Z. G.

D. Wang, A. A. Bokov, Z. G. Ye, J. Hlinka, and L. Bellaiche, “Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics,” Nat. Commun. 7(1), 11014 (2016).
[Crossref]

Yin, S. Z.

Yoon, J. G.

J. Y. Jo, H. S. Han, J. G. Yoon, T. K. Song, S. H. Kim, and T. W. Noh, “Domain switching kinetics in disordered ferroelectric thin films,” Phys. Rev. Lett. 99(26), 267602 (2007).
[Crossref]

Yu, H. H.

X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
[Crossref]

Železný, V.

A. Pashkin, V. Železný, J. Petzelt, and J. Phys, “Infrared spectroscopy of KTa1-xNbxO3 crystals,” J. Phys.: Condens. Matter 17(25), L265–L270 (2005).
[Crossref]

Zhang, X.

X. Zhang, S. He, Z. Zhao, P. F. Wu, X. P. Wang, and H. L. Liu, “Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient,” Sci. Rep. 8(1), 2892 (2018).
[Crossref]

X. Zhang, H. L. Liu, Z. Zhao, X. P. Wang, and P. F. Wu, “Electric-field control of the ferro-paraelectric phase transition in Cu: KTN crystals,” Opt. Express 25(23), 28776–28782 (2017).
[Crossref]

Zhang, Y. Y.

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
[Crossref]

Zhao, Z.

X. Zhang, S. He, Z. Zhao, P. F. Wu, X. P. Wang, and H. L. Liu, “Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient,” Sci. Rep. 8(1), 2892 (2018).
[Crossref]

X. Zhang, H. L. Liu, Z. Zhao, X. P. Wang, and P. F. Wu, “Electric-field control of the ferro-paraelectric phase transition in Cu: KTN crystals,” Opt. Express 25(23), 28776–28782 (2017).
[Crossref]

Zhou, Z. X.

P. Tan, H. Tian, C. P. Hu, X. D. Meng, C. Y. Mao, F. Huang, G. Shi, and Z. X. Zhou, “Temperature field driven polar nanoregions in KTa1-xNbxO3,” Appl. Phys. Lett. 109(25), 252904 (2016).
[Crossref]

Žukauskaite, A.

Appl. Phys. Lett. (6)

P. Tan, H. Tian, C. P. Hu, X. D. Meng, C. Y. Mao, F. Huang, G. Shi, and Z. X. Zhou, “Temperature field driven polar nanoregions in KTa1-xNbxO3,” Appl. Phys. Lett. 109(25), 252904 (2016).
[Crossref]

I. Stolichnov, A. Tagantsev, N. Setter, J. S. Cross, and M. Tsukada, “Crossover between nucleation-controlled kinetics and domain wall motion kinetics of polarization reversal in ferroelectric films,” Appl. Phys. Lett. 83(16), 3362–3364 (2003).
[Crossref]

W. Li and M. Alexe, “Investigation on switching kinetics in epitaxial Pb(Zr0.2Ti0.8)O3 ferroelectric thin films: Role of the 90° domain walls,” Appl. Phys. Lett. 91(26), 262903 (2007).
[Crossref]

I. Stolichnov, L. Malin, E. Colla, and A. K. Tagantsev, “Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr,Ti)O3 films,” Appl. Phys. Lett. 86(1), 012902 (2005).
[Crossref]

M. Grossmann, D. Bolten, O. Lohse, and U. Boettger, “Correlation between switching and fatigue in PbZr0.3Ti0.7O3 thin films,” Appl. Phys. Lett. 77(12), 1894 (2000).
[Crossref]

X. P. Wang, B. Liu, Y. G. Yang, Y. Y. Zhang, X. S. Lv, G. L. Hong, R. Shu, H. H. Yu, and J. Y. Wang, “Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal,” Appl. Phys. Lett. 105(5), 051910 (2014).
[Crossref]

Ferroelectrics (1)

T. Takaaki, S. M. Num, Y. B. Kil, and S. Wada, “High frequency measurements of P-E hysteresis curves of pzt thin films,” Ferroelectrics 259(1), 43–48 (2001).
[Crossref]

Integr. Ferroelectr. (1)

D. J. Jung, M. Dawber, J. F. Scott, L. J. Sinnamon, and J. M. Gregg, “Switching dynamics in ferroelectric thin films: an experimental survey,” Integr. Ferroelectr. 48(1), 59–68 (2002).
[Crossref]

Izv. Akad. Nauk. Ser. Math. (1)

A. Kolmogorov, “Zur Statistik der Kristallisationsvorgänge in Metallen,” Izv. Akad. Nauk. Ser. Math. 1(3), 355–359 (1937).

J. Appl. Phys. (4)

O. Lohse, M. Grossmann, U. Boettger, D. Bolten, and R. Waser, “Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films,” J. Appl. Phys. 89(4), 2332–2336 (2001).
[Crossref]

B. Dkhil and J. M. Kiat, “Electric-field-induced polarization in the ergodic and nonergodic states of PbMg1/3Nb2/3O3 relaxor,” J. Appl. Phys. 90(9), 4676–4681 (2001).
[Crossref]

W. J. Merz, “Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness,” J. Appl. Phys. 27(8), 938–943 (1956).
[Crossref]

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

J. Chem. Phys. (1)

M. Avrami, “Kinetics of phase change. II transformation-time relations for random distribution of nuclei,” J. Chem. Phys. 8(2), 212–224 (1940).
[Crossref]

J. Cryst. Growth (1)

V. Bermudez, M. D. Serrano, and E. Dieguez, “Bulk periodic poled lithium niobate crystals doped with Er and Yb,” J. Cryst. Growth 200(1-2), 185–190 (1999).
[Crossref]

J. Mater. Res. (1)

S. Wan and K. Bowman, “Modeling of electric field induced texture in lead zirconate titanate ceramics,” J. Mater. Res. 16(8), 2306–2313 (2001).
[Crossref]

J. Mater. Sci.: Mater. Electron. (1)

X. P. Wang, Q. G. Li, Y. G. Yang, Y. Y. Zhang, X. S. Lv, L. Wei, B. Liu, J. H. Xu, L. Ma, and J. Y. Wang, “Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals,” J. Mater. Sci.: Mater. Electron. 27(12), 13075–13079 (2016).
[Crossref]

J. Phys. Soc. Jpn. (2)

Y. Ishibashi and Y. Takagi, “Ferroelectric domain switching,” J. Phys. Soc. Jpn. 31(2), 506–510 (1971).
[Crossref]

H. Orihara, S. Hashimoto, and Y. Ishibashi, “A Theory of D-E Hysteresis Loop Based on the Avrami Model,” J. Phys. Soc. Jpn. 63(3), 1031–1035 (1994).
[Crossref]

J. Phys.: Condens. Matter (2)

X. J. Lou, “Statistical switching kinetics of ferroelectrics,” J. Phys.: Condens. Matter 21(1), 012207 (2009).
[Crossref]

A. Pashkin, V. Železný, J. Petzelt, and J. Phys, “Infrared spectroscopy of KTa1-xNbxO3 crystals,” J. Phys.: Condens. Matter 17(25), L265–L270 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Imai, S. Toyoda, J. Miyazu, J. Kobayashi, and S. Kojima, “Permittivity changes induced by injected electrons and field-induced phase transition in KTa1-xNbxO3 optical beam deflectors,” Jpn. J. Appl. Phys. 53(9S), 09PB02 (2014).
[Crossref]

Nanoscale (1)

J. Parravicini, E. DelRe, A. J. Agranatc, and G. Parravicinid, “Liquid-solid directional composites and anisotropic dipolar phases of polar nanoregions in disordered perovskite,” Nanoscale 9(27), 9572–9580 (2017).
[Crossref]

Nat. Commun. (2)

D. Wang, A. A. Bokov, Z. G. Ye, J. Hlinka, and L. Bellaiche, “Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics,” Nat. Commun. 7(1), 11014 (2016).
[Crossref]

D. Pierangeli, M. Ferraro, F. D. Mei, G. D. Domenico, C. E. M. de Oliveira, A. J. Agranat, and E. DelRe, “Super-crystals in composite ferroelectrics,” Nat. Commun. 7(1), 10674 (2016).
[Crossref]

Nat. Mater. (2)

G. Y. Xu, J. S. Wen, C. Stock, and P. M. Gehring, “Phase instability induced by polar nanoregions in a relaxor ferroelectric system,” Nat. Mater. 7(7), 562–566 (2008).
[Crossref]

X. B. Ren, “Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching,” Nat. Mater. 3(2), 91–94 (2004).
[Crossref]

Nat. Photonics (3)

F. Di Mei, L. Falsi, M. Flammini, D. Pierangeli, P. D. Porto, A. J. Agranat, and E. DelRe, “Giant broadband refraction in the visible in a ferroelectric perovskite,” Nat. Photonics 12(12), 734–738 (2018).
[Crossref]

E. DelRe, F. Di Mei, J. Parravicini, G. Parravicini, A. J. Agranat, and C. Conti, “Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths,” Nat. Photonics 9(4), 228–232 (2015).
[Crossref]

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
[Crossref]

Nature (2)

H. Takenaka, I. Grinberg, S. Liu, and A. M. Rappe, “Slush-like polar structures in single-crystal relaxors,” Nature 546(7658), 391–395 (2017).
[Crossref]

H. X. Fu and R. E. Cohen, “Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics,” Nature 403(6767), 281–283 (2000).
[Crossref]

NTT Tech. Rev. (1)

M. Sawaki and H. Motai, “Successful preparation of KTN crystals with the highest reported electro-optic effect and the potential for providing a great improvement in optical device performance,” NTT Tech. Rev. 1(9), 56–58 (2003).

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Rev. B (1)

A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, “Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films,” Phys. Rev. B 66(21), 214109 (2002).
[Crossref]

Phys. Rev. Lett. (5)

J. Y. Jo, H. S. Han, J. G. Yoon, T. K. Song, S. H. Kim, and T. W. Noh, “Domain switching kinetics in disordered ferroelectric thin films,” Phys. Rev. Lett. 99(26), 267602 (2007).
[Crossref]

W. Kleemann, V. Schönknecht, D. Sommer, and D. Rytz, “Dissipative quantum tunneling and absence of quadrupolar freezing in glassy K0.989Li0.011TaO3,” Phys. Rev. Lett. 66(6), 762–765 (1991).
[Crossref]

J. Toulouse, P. DiAntonio, B. E. Vugmeister, X. M. Wang, and L. A. Knauss, “Precursor effects and ferroelectric macroregions in KTa1-xNbxO3 and K1-yLiyTaO3,” Phys. Rev. Lett. 68(2), 232–235 (1992).
[Crossref]

F. D. Mei, P. Caramazza, D. Pierangeli, G. D. Domenico, H. Ilan, A. J. Agranat, P. Di Porto, and E. DelRe, “Intrinsic negative mass from nonlinearity,” Phys. Rev. Lett. 116(15), 153902 (2016).
[Crossref]

W. Dmowski, S. B. Vakhrushev, I. K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, “Local lattice dynamics and the origin of the relaxor ferroelectric behavior,” Phys. Rev. Lett. 100(13), 137602 (2008).
[Crossref]

Proc. SPIE (1)

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “700 kHz beam scanning using electro-optic KTN planar optical deflector,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

Sci. Rep. (1)

X. Zhang, S. He, Z. Zhao, P. F. Wu, X. P. Wang, and H. L. Liu, “Abnormal optical anisotropy in correlated disorder KTa1-xNbxO3:Cu with refractive index gradient,” Sci. Rep. 8(1), 2892 (2018).
[Crossref]

Science (1)

T. P. Dougherty, G. P. Wiederrecht, K. A. Nelson, M. H. Garrett, H. P. Jensen, and C. Warde, “Femtosecond resolution of soft mode dynamics in structural phase transitions,” Science 258(5083), 770–774 (1992).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Switching effects of spontaneously formed superlattices

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Electric-field-induced switchable superlattices in KTN:Cu crystals. (a) The diffraction of the intrinsic grating at Tm+20 °C (The red dash line circles indicate the positions of diffracted beams which are dim due to the weak intrinsic grating). (b) The strong diffraction induced by the spontaneously formed superlattices at Tm-3 °C. (c-d) Optical switching of diffraction due to the switchable superlattices under 1 Hz square electric fields. A video clip regarding the optical switching is supplied as supplementary materials (see Visualization 1). (e) Pre-polarization process by implementing a DC electric field of −200 V. The left and the right axes represent I0 and I1 respectively. The inset shows a schematic of the experimental setup. (f) Time-dependent curves of driving electric field and resultant optical diffraction. More details of the experimentation can be found in the experimental section.
Fig. 2.
Fig. 2. Mechanism of the switching effect in KTN:Cu crystal. (a-c) The domain walls (red lines) of nanoscale polar domain structures (blue-color ellipses, color gradient represents the polarization strength) leading to the X-ray-like optical diffraction with different polarization (a) py0 = p-y0 = 50%, (b) py1 - p-y1>0, (c) py1 - p-y1> py2 - p-y2 > 0, where py and p-y represent the probabilities of the polar domains reorienting to y and -y directions, respectively. Red-color lines with deeper color have relatively higher refractive index modulation. The ellipses with red contour imply polar domains oriented by external electric field. (d) The rising time of optical switching is 143 µs under a 1 Hz square-wave driving electric field. (e) Slow component of time response under a square-wave electric field with 50 s period (The red dashed arrow indicates the fast component corresponding to Fig. 2d). (f) Electric-field dependent amplitude (green line) and response time (blue line) of switching under 1 Hz frequency.
Fig. 3.
Fig. 3. Electric currents and optical response in polarization reversal process. (a) Sequence of electric-field pulses used in experiments. (b) Non-polarization reversal current with a single-exponential fitting. (c) Current response with two time constants. (d) Optical response with a single-exponential fitting.
Fig. 4.
Fig. 4. (a) Optical switching results with various frequencies of 400 Vpp square electric fields; (b) Multi-level optical switching results driven by different electric fields (-200 V,0,+200 V).

Metrics