Abstract

Metal-dielectric reflective metasurfaces with an engineered phase response provide a versatile alternative to conventional optics, especially when wanting to defy the basic law of reflection, as in compact near-eye display systems for augmented reality applications. Specifically, a key component of these display systems is a reflective grating with see-through function or capability. For a reflective metasurface, the transmission regime is typically not allowed due to a non-transparent metal backplate. In the current work, we propose a method to enable see-through metal-dielectric metasurfaces by etching apertures of random position and diameter (RPD) much larger than the design wavelength of the metasurfaces. We demonstrate a 1200 lp/mm metal-dielectric metasurface diffraction grating for use in reflection with 650 nm illumination. The fabricated device shows ∼20% diffraction efficiency in the first diffractive order over 0-50° angle of incidence, which is in agreement with the electromagnetic simulations. The device is semitransparent, letting ∼50% of the light illuminating the back of the device through via the RPD apertures. Furthermore, the light transmitted through the RPD apertures does not show any defined features due to diffraction (rings, fringes, etc.) aside from a quasi-uniform halo.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Long-term efficiency preservation for gradient phase metasurface diffraction gratings in the visible

Daniel K. Nikolov, Fei Cheng, Necdet Basaran, Aaron Bauer, Jannick P. Rolland, and A. Nick Vamivakas
Opt. Mater. Express 8(8) 2125-2130 (2018)

Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays

Yun-Han Lee, Kun Yin, and Shin-Tson Wu
Opt. Express 25(22) 27008-27014 (2017)

Seeing through biological tissues using the fly eye principle

Joseph Rosen and David Abookasis
Opt. Express 11(26) 3605-3611 (2003)

References

  • View by:
  • |
  • |
  • |

  1. O. Cakmakci and J. P. Rolland, “Examples of HWD Architectures: Low-, mid- and wide-field of fiew designs,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012).
  2. B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” in Proc. SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV, (2013).
  3. M. J. Hayford and O. Cakmakci, “Optical components for head-worn displays,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2016).
  4. Z. Liu, Y. Pang, C. Pan, and Z. Huang, “Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics,” Opt. Express 25(24), 30720–30731 (2017).
    [Crossref]
  5. A. Travis, “Wide field-of-view virtual image projector,” U.S. patent application 20,130,021,392 A1 (January 24, 2013).
  6. A. Travis, “Wide field-of-view virtual image projector,” U.S. patent application 20,130,329,301 A1 (December 12, 2013).
  7. T. Levola, “Diffractive optics for virtual reality display,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
    [Crossref]
  8. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  9. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 39(1), 89–92 (2008).
    [Crossref]
  10. A. Bauer and J. P. Rolland, “Visual space assessment of two all-reflective, freeform, optical see-through headworn displays,” Opt. Express 22(11), 13155–13163 (2014).
    [Crossref]
  11. J. P. Rolland, A. N. Vamivakas, A. Bauer, D. K. Nikolov, and F. Cheng, “Augmented reality display,” U.S. Provisional Pat. Ser. No. 62/679,505, filed 06/01/2018.
  12. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
    [Crossref]
  13. A. Pors and S. I. Bozhevolnyi, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21(3), 2942–2952 (2013).
    [Crossref]
  14. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
    [Crossref]
  15. F. Cheng, L. Ding, L. Qiu, D. Nikolov, A. Bauer, J. P. Rolland, and A. N. Vamivakas, “Polarization-switchable holograms based on efficient, broadband multifunctional metasurfaces in the visible regime,” Opt. Express 26(23), 30678–30688 (2018).
    [Crossref]
  16. S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref]
  17. A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
    [Crossref]
  18. Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
    [Crossref]
  19. A. L. Kitt, J. P. Rolland, and A. N. Vamivakas, “Visible metasurfaces and ruled diffraction gratings: a comparison,” Opt. Mater. Express 5(12), 2895–2901 (2015).
    [Crossref]
  20. T. Coan, G. S. Barroso, R. A. F. Machado, F. S. de Souza, A. Spinelli, and G. Motz, “A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection,” Prog. Org. Coat. 89, 220–230 (2015).
    [Crossref]
  21. T. Coan, G. S. Barroso, G. Motz, A. Bolzán, and R. A. F. Machado, “Preparation of PMMA/hBN composite coatings for metal surface protection,” Mater. Res. 16(6), 1366–1372 (2013).
    [Crossref]
  22. F. Cheng, J. Gao, T. S. Luk, and X. D. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
    [Crossref]
  23. F. Cheng, X. D. Yang, D. Rosenmann, L. Stan, D. Czaplewski, and J. Gao, “Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer,” Opt. Express 23(19), 25329–25339 (2015).
    [Crossref]
  24. D. K. Nikolov, F. Cheng, N. Basaran, A. Bauer, J. P. Rolland, and A. N. Vamivakas, “Long-term efficiency preservation for gradient phase metasurface diffraction gratings in the visible,” Opt. Mater. Express 8(8), 2125–2130 (2018).
    [Crossref]
  25. A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of Optical Transmission in Thin Metal Films,” Phys. Procedia 32, 1–13 (2012).
    [Crossref]
  26. S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111(3), 1255–1264 (1999).
    [Crossref]
  27. M. Fox, “Molecular Materials,” in Optical Properties of Solids (Oxford University Press, 2010).
  28. P. D. Lee, C. T. LaBree, and R. A. Freibrun, “Fresnel diffraction patterns of an array of circular apertures,” J. Opt. Soc. Am. 57(9), 1115–1120 (1967).
    [Crossref]
  29. R. Bergsten and S. Huberty, “White-light Fresnel diffraction by a circular aperture,” J. Opt. Soc. Am. 67(5), 643–647 (1977).
    [Crossref]
  30. D. S. Burch, “Fresnel diffraction by a circular aperture,” Am. J. Phys. 53(3), 255–260 (1985).
    [Crossref]
  31. Inc. Lumerical Solutions.
  32. T. Deyu, L. Ming, S. Liwei, X. Changqing, and Z. Xiaoli, “A ZEP520-LOR bilayer resist lift-off process by e-beam lithography for nanometer pattern transfer,” in 7th IEEE Conference on Nanotechnology (2007).

2018 (2)

2017 (1)

2015 (5)

F. Cheng, J. Gao, T. S. Luk, and X. D. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref]

F. Cheng, X. D. Yang, D. Rosenmann, L. Stan, D. Czaplewski, and J. Gao, “Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer,” Opt. Express 23(19), 25329–25339 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref]

A. L. Kitt, J. P. Rolland, and A. N. Vamivakas, “Visible metasurfaces and ruled diffraction gratings: a comparison,” Opt. Mater. Express 5(12), 2895–2901 (2015).
[Crossref]

T. Coan, G. S. Barroso, R. A. F. Machado, F. S. de Souza, A. Spinelli, and G. Motz, “A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection,” Prog. Org. Coat. 89, 220–230 (2015).
[Crossref]

2014 (1)

2013 (4)

2012 (3)

A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of Optical Transmission in Thin Metal Films,” Phys. Procedia 32, 1–13 (2012).
[Crossref]

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

2009 (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

2008 (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 39(1), 89–92 (2008).
[Crossref]

2006 (1)

T. Levola, “Diffractive optics for virtual reality display,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

1999 (1)

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111(3), 1255–1264 (1999).
[Crossref]

1985 (1)

D. S. Burch, “Fresnel diffraction by a circular aperture,” Am. J. Phys. 53(3), 255–260 (1985).
[Crossref]

1977 (1)

1967 (1)

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 39(1), 89–92 (2008).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 39(1), 89–92 (2008).
[Crossref]

Axelevitch, A.

A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of Optical Transmission in Thin Metal Films,” Phys. Procedia 32, 1–13 (2012).
[Crossref]

Aydin, K.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref]

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Barroso, G. S.

T. Coan, G. S. Barroso, R. A. F. Machado, F. S. de Souza, A. Spinelli, and G. Motz, “A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection,” Prog. Org. Coat. 89, 220–230 (2015).
[Crossref]

T. Coan, G. S. Barroso, G. Motz, A. Bolzán, and R. A. F. Machado, “Preparation of PMMA/hBN composite coatings for metal surface protection,” Mater. Res. 16(6), 1366–1372 (2013).
[Crossref]

Basaran, N.

Bauer, A.

Bergsten, R.

Bolzán, A.

T. Coan, G. S. Barroso, G. Motz, A. Bolzán, and R. A. F. Machado, “Preparation of PMMA/hBN composite coatings for metal surface protection,” Mater. Res. 16(6), 1366–1372 (2013).
[Crossref]

Bozhevolnyi, S. I.

Burch, D. S.

D. S. Burch, “Fresnel diffraction by a circular aperture,” Am. J. Phys. 53(3), 255–260 (1985).
[Crossref]

Burda, C.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111(3), 1255–1264 (1999).
[Crossref]

Butun, S.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref]

Cakmakci, O.

O. Cakmakci and J. P. Rolland, “Examples of HWD Architectures: Low-, mid- and wide-field of fiew designs,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012).

M. J. Hayford and O. Cakmakci, “Optical components for head-worn displays,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2016).

Changqing, X.

T. Deyu, L. Ming, S. Liwei, X. Changqing, and Z. Xiaoli, “A ZEP520-LOR bilayer resist lift-off process by e-beam lithography for nanometer pattern transfer,” in 7th IEEE Conference on Nanotechnology (2007).

Chen, W. T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Chen, X.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Cheng, F.

Coan, T.

T. Coan, G. S. Barroso, R. A. F. Machado, F. S. de Souza, A. Spinelli, and G. Motz, “A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection,” Prog. Org. Coat. 89, 220–230 (2015).
[Crossref]

T. Coan, G. S. Barroso, G. Motz, A. Bolzán, and R. A. F. Machado, “Preparation of PMMA/hBN composite coatings for metal surface protection,” Mater. Res. 16(6), 1366–1372 (2013).
[Crossref]

Czaplewski, D.

de Souza, F. S.

T. Coan, G. S. Barroso, R. A. F. Machado, F. S. de Souza, A. Spinelli, and G. Motz, “A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection,” Prog. Org. Coat. 89, 220–230 (2015).
[Crossref]

Deyu, T.

T. Deyu, L. Ming, S. Liwei, X. Changqing, and Z. Xiaoli, “A ZEP520-LOR bilayer resist lift-off process by e-beam lithography for nanometer pattern transfer,” in 7th IEEE Conference on Nanotechnology (2007).

Ding, L.

El-Sayed, M. A.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111(3), 1255–1264 (1999).
[Crossref]

Fox, M.

M. Fox, “Molecular Materials,” in Optical Properties of Solids (Oxford University Press, 2010).

Freibrun, R. A.

Gao, J.

F. Cheng, X. D. Yang, D. Rosenmann, L. Stan, D. Czaplewski, and J. Gao, “Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer,” Opt. Express 23(19), 25329–25339 (2015).
[Crossref]

F. Cheng, J. Gao, T. S. Luk, and X. D. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref]

Golan, G.

A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of Optical Transmission in Thin Metal Films,” Phys. Procedia 32, 1–13 (2012).
[Crossref]

Gorenstein, B.

A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of Optical Transmission in Thin Metal Films,” Phys. Procedia 32, 1–13 (2012).
[Crossref]

Guo, G.-Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Hayford, M. J.

M. J. Hayford and O. Cakmakci, “Optical components for head-worn displays,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2016).

He, Q.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Huang, L.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Huang, Z.

Huberty, S.

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Juan, T. K.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Kitt, A. L.

Kress, B.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” in Proc. SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV, (2013).

Kung, W.-T.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 39(1), 89–92 (2008).
[Crossref]

LaBree, C. T.

Lee, P. D.

Levola, T.

T. Levola, “Diffractive optics for virtual reality display,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

Li, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Li, Z.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref]

Liao, C. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Link, S.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111(3), 1255–1264 (1999).
[Crossref]

Liu, Z.

Liwei, S.

T. Deyu, L. Ming, S. Liwei, X. Changqing, and Z. Xiaoli, “A ZEP520-LOR bilayer resist lift-off process by e-beam lithography for nanometer pattern transfer,” in 7th IEEE Conference on Nanotechnology (2007).

Luk, T. S.

F. Cheng, J. Gao, T. S. Luk, and X. D. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref]

Machado, R. A. F.

T. Coan, G. S. Barroso, R. A. F. Machado, F. S. de Souza, A. Spinelli, and G. Motz, “A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection,” Prog. Org. Coat. 89, 220–230 (2015).
[Crossref]

T. Coan, G. S. Barroso, G. Motz, A. Bolzán, and R. A. F. Machado, “Preparation of PMMA/hBN composite coatings for metal surface protection,” Mater. Res. 16(6), 1366–1372 (2013).
[Crossref]

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 39(1), 89–92 (2008).
[Crossref]

Ming, L.

T. Deyu, L. Ming, S. Liwei, X. Changqing, and Z. Xiaoli, “A ZEP520-LOR bilayer resist lift-off process by e-beam lithography for nanometer pattern transfer,” in 7th IEEE Conference on Nanotechnology (2007).

Motz, G.

T. Coan, G. S. Barroso, R. A. F. Machado, F. S. de Souza, A. Spinelli, and G. Motz, “A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection,” Prog. Org. Coat. 89, 220–230 (2015).
[Crossref]

T. Coan, G. S. Barroso, G. Motz, A. Bolzán, and R. A. F. Machado, “Preparation of PMMA/hBN composite coatings for metal surface protection,” Mater. Res. 16(6), 1366–1372 (2013).
[Crossref]

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 39(1), 89–92 (2008).
[Crossref]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 39(1), 89–92 (2008).
[Crossref]

Nielsen, M. G.

Nikolov, D.

Nikolov, D. K.

D. K. Nikolov, F. Cheng, N. Basaran, A. Bauer, J. P. Rolland, and A. N. Vamivakas, “Long-term efficiency preservation for gradient phase metasurface diffraction gratings in the visible,” Opt. Mater. Express 8(8), 2125–2130 (2018).
[Crossref]

J. P. Rolland, A. N. Vamivakas, A. Bauer, D. K. Nikolov, and F. Cheng, “Augmented reality display,” U.S. Provisional Pat. Ser. No. 62/679,505, filed 06/01/2018.

Ogawa, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 39(1), 89–92 (2008).
[Crossref]

Palacios, E.

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref]

Pan, C.

Pang, Y.

Pors, A.

Qiu, C.-W.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Qiu, L.

Rolland, J. P.

Rosenmann, D.

Spinelli, A.

T. Coan, G. S. Barroso, R. A. F. Machado, F. S. de Souza, A. Spinelli, and G. Motz, “A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection,” Prog. Org. Coat. 89, 220–230 (2015).
[Crossref]

Stan, L.

Starner, T.

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” in Proc. SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV, (2013).

Sun, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Travis, A.

A. Travis, “Wide field-of-view virtual image projector,” U.S. patent application 20,130,021,392 A1 (January 24, 2013).

A. Travis, “Wide field-of-view virtual image projector,” U.S. patent application 20,130,329,301 A1 (December 12, 2013).

Tsai, D. P.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Vamivakas, A. N.

Wang, C. M.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Wang, Z. L.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111(3), 1255–1264 (1999).
[Crossref]

Xiao, S.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Xiaoli, Z.

T. Deyu, L. Ming, S. Liwei, X. Changqing, and Z. Xiaoli, “A ZEP520-LOR bilayer resist lift-off process by e-beam lithography for nanometer pattern transfer,” in 7th IEEE Conference on Nanotechnology (2007).

Yang, K. Y.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Yang, X. D.

F. Cheng, X. D. Yang, D. Rosenmann, L. Stan, D. Czaplewski, and J. Gao, “Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer,” Opt. Express 23(19), 25329–25339 (2015).
[Crossref]

F. Cheng, J. Gao, T. S. Luk, and X. D. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref]

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 39(1), 89–92 (2008).
[Crossref]

Zentgraf, T.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Zhang, S.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Zhou, L.

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Am. J. Phys. (1)

D. S. Burch, “Fresnel diffraction by a circular aperture,” Am. J. Phys. 53(3), 255–260 (1985).
[Crossref]

Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 39(1), 89–92 (2008).
[Crossref]

J. Chem. Phys. (1)

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys. 111(3), 1255–1264 (1999).
[Crossref]

J. Opt. Soc. Am. (2)

J. Soc. Inf. Disp. (2)

T. Levola, “Diffractive optics for virtual reality display,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Mater. Res. (1)

T. Coan, G. S. Barroso, G. Motz, A. Bolzán, and R. A. F. Machado, “Preparation of PMMA/hBN composite coatings for metal surface protection,” Mater. Res. 16(6), 1366–1372 (2013).
[Crossref]

Nano Lett. (2)

S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref]

Z. Li, E. Palacios, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Lett. 15(3), 1615–1621 (2015).
[Crossref]

Nat. Commun. (1)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(1), 1198 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Procedia (1)

A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of Optical Transmission in Thin Metal Films,” Phys. Procedia 32, 1–13 (2012).
[Crossref]

Prog. Org. Coat. (1)

T. Coan, G. S. Barroso, R. A. F. Machado, F. S. de Souza, A. Spinelli, and G. Motz, “A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection,” Prog. Org. Coat. 89, 220–230 (2015).
[Crossref]

Sci. Rep. (1)

F. Cheng, J. Gao, T. S. Luk, and X. D. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref]

Other (9)

M. Fox, “Molecular Materials,” in Optical Properties of Solids (Oxford University Press, 2010).

J. P. Rolland, A. N. Vamivakas, A. Bauer, D. K. Nikolov, and F. Cheng, “Augmented reality display,” U.S. Provisional Pat. Ser. No. 62/679,505, filed 06/01/2018.

O. Cakmakci and J. P. Rolland, “Examples of HWD Architectures: Low-, mid- and wide-field of fiew designs,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2012).

B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” in Proc. SPIE 8720, Photonic Applications for Aerospace, Commercial, and Harsh Environments IV, (2013).

M. J. Hayford and O. Cakmakci, “Optical components for head-worn displays,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, eds. (Springer, 2016).

A. Travis, “Wide field-of-view virtual image projector,” U.S. patent application 20,130,021,392 A1 (January 24, 2013).

A. Travis, “Wide field-of-view virtual image projector,” U.S. patent application 20,130,329,301 A1 (December 12, 2013).

Inc. Lumerical Solutions.

T. Deyu, L. Ming, S. Liwei, X. Changqing, and Z. Xiaoli, “A ZEP520-LOR bilayer resist lift-off process by e-beam lithography for nanometer pattern transfer,” in 7th IEEE Conference on Nanotechnology (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The device application. (a) There are two working regimes – reflective and see-through. The reflective side provides arbitrary optical function. Light illuminating the device from the back side gets transmitted through with minimal alterations. (b) The reflective side of the device. The rectangular nano-tokens shape the reflected wavefront. (c) The back side of the device. The large circular apertures provide the see-through property. The device was rotated to match the orientation in (b) for easier comparison.
Fig. 2.
Fig. 2. (a) The unit cell for the final designed metasurface – top x-y and side x-z view (diagram) including dimensions in nm (table); (b) the modeled efficiency of the first diffractive order for AOIs from 0 to 50°. (c) The random position and diameter of the pattern of apertures that is superimposed on the metasurface design shown in (a) to enable the see-through regime. The aperture sizes vary between 8 um and 30 µm.
Fig. 3.
Fig. 3. Front and back of the metasurface device: (a) A SEM image of the nano-tokens forming the grating on the front of the device. The scale is 200 nm. (b) An optical microscope image of the front of the fabricated device. The dark square corresponds to the area patterned by the nano-tokens (shown in (a)) as seen through the optical microscope. The circles are the etched apertures that enable the see-though regime. The scale is 100 μm. (c) An optical microscope of the back of the device. Only the RPD aperture array is seen. The image is rotated in the same orientation as in (b) for easy comparison. The scale is 100 μm. The images have been converted to a black and white scale for better visualization.
Fig. 4.
Fig. 4. (a) The intensity of an image of a negative 1951 USAF test target illuminated by a low coherence LED without the RPD pattern sample. (b) The intensity of an image of the target illuminated by the LED through the RPD pattern sample. (c-f) The intensity measured through line cuts A-D shown in (a) and (b). The intensity is measured in arbitrary units such that 1 corresponds to a fully saturated pixel on the camera detector and 0 corresponds to a fully dark pixel. (g) The imaging setup used to take the images of the test target.
Fig. 5.
Fig. 5. (a) The experimental setup used to measure the diffraction efficiency; θlim is the angular region where the input and output arm collide and θi is the angle of incidence measured from the normal of the surface. (b) The experimental measurements of the device’s efficiency before etching the apertures η1 (red stars) and after etching the apertures η2 (blue triangles). The red squares are the simulated values for the efficiency η1. The blue circles show the ratio η2/ η1 in percent. An x-axis break was used to emphasize the regions of interest where measurements were performed (the region left out corresponds to the regime where the input and output arm collide in the experimental setup). The uncertainty of the measurements is smaller than the size of the markers. (c) The experimental setup used to image the diffraction patterns formed by the 10 mm by 10 mm sample. (d) Imaging of the diffraction patterns formed by an RPD aperture array (top left corner) on the 10 mm by 10 mm sample. The pixels in the center of the images are saturated on the camera’s detector.
Fig. 6.
Fig. 6. (a) The intensity of an image of the LED taken in the setup shown in Fig. 5(c) without the RPD pattern sample. (b) The intensity of an image of the LED as seen through the RPD pattern sample. (c) The intensity through the line cuts shown in (a) and (b). The intensity is measured in the same arbitrary units used in Fig. 4.

Metrics