Abstract

We study the optical near- and mid-infrared pumping of the heterostructure based on graphene with a black-As layer. This layer serves for the optical generation and cooling of the electron-hole pairs to be injected into the graphene layer. Due to the cooling of the electron-hole pairs, their energy in the case of the absorbing-cooling layer with the optimized thickness can be close to the energy gap of the black-As layer. Owing to a relatively narrow energy gap of the black-As layer $\Delta _G$, the energy of the injected electron-hole pairs can be smaller than the energy of optical phonons in in graphene ($\hbar \omega _0 \simeq 0.2$ eV. This can provide the formation of the cold electron-hole plasma in the graphene-layer that is beneficial for achieving of the interband population inversion and the interband terahertz lasing. The obtained results can be used for the optimization of the terahertz lasers with the optical pumping.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Far-infrared photodetectors based on graphene/black-AsP heterostructures

Victor Ryzhii, Maxim Ryzhii, Vladimir Mitin, Michael S. Shur, and Taiichi Otsuji
Opt. Express 28(2) 2480-2498 (2020)

Nonlinear response of infrared photodetectors based on van der Waals heterostructures with graphene layers

Victor Ryzhii, Maxim Ryzhii, Dmitry Svintsov, Vladimir Leiman, Vladimir Mitin, Michael S. Shur, and Taiichi Otsuji
Opt. Express 25(5) 5536-5549 (2017)

Double-graphene-layer terahertz laser: concept, characteristics, and comparison

Victor Ryzhii, Alexander A. Dubinov, Taiichi Otsuji, Vladimir Ya. Aleshkin, Maxim Ryzhii, and Michael Shur
Opt. Express 21(25) 31567-31577 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  2. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  3. V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–20 (2012).
    [Crossref]
  4. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref]
  5. A. Tredicucci and M. S. Vitielo, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 130–138 (2014).
    [Crossref]
  6. F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref]
  7. V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
    [Crossref]
  8. V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
    [Crossref]
  9. V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
    [Crossref]
  10. A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
    [Crossref]
  11. V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
    [Crossref]
  12. S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85(3), 035443 (2012).
    [Crossref]
  13. T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108(16), 167401 (2012).
    [Crossref]
  14. I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
    [Crossref]
  15. T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
    [Crossref]
  16. D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
    [Crossref]
  17. V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9R), 094001 (2011).
    [Crossref]
  18. A. R Davoyan, M. Yu. Morozov, V. V. Popov, A. Satou, and T. Otsuji, “Graphene surface emitting terahertz laser: diffusion pumping concept,” Appl. Phys. Lett. 103(25), 251102 (2013).
    [Crossref]
  19. V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Negative terahertz conductivity at vertical carrier injection in a black-Arsenic-Phosphorus-Graphene heterostructure integrated with a light-emitting diode,” arXiv: 1901.10755 (2019).
  20. Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
    [Crossref]
  21. H. Asahina and A. Morita, “Band structure and optical properties of black phosphorus,” J. Phys. C: Solid State Phys. 17(11), 1839–1852 (1984).
    [Crossref]
  22. A. Morita, “Semiconducting Black Phosphorus,” Appl. Phys. A 39(4), 227–242 (1986).
    [Crossref]
  23. X. Ling, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U. S. A. 112(15), 4523–4530 (2015).
    [Crossref]
  24. B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
    [Crossref]
  25. M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
    [Crossref]
  26. S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
    [Crossref]
  27. L. Yu, Z. Zhu, A. Gaol, J. Wang, F. Miaol, Y. Shi, and X. Wang, “Electrically tunable optical properties of few-layer black arsenic phosphorus,” Nanotechnology 29(48), 484001 (2018).
    [Crossref]
  28. Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
    [Crossref]
  29. G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103(5), 053513 (2013).
    [Crossref]
  30. V Ryzhii, T Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
    [Crossref]
  31. J. H. Rogers, J. S. De Groot, Z. Abou-Assaleh, J. P. Matte, T. W. Johnston, and M. D. Rosen, “Electron heat transport in a steep temperature gradient,” Phys. Fluids B 1(4), 741–749 (1989).
    [Crossref]
  32. E. Rosencher, B. Vinter, F. Luc, L. Thibaudeu, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
    [Crossref]
  33. V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS$_2$2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
    [Crossref]
  34. F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
    [Crossref]
  35. H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
    [Crossref]
  36. J. M. Iglesias, M. J. Martin, E. Pascual, and R. Rengel, “Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene,” Appl. Phys. Lett. 108(4), 043105 (2016).
    [Crossref]
  37. H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
    [Crossref]
  38. V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
    [Crossref]
  39. A. Krier, “Physics and technology of mid-infrared light emitting diodes,” Philos. Trans. R. Soc., A 359(1780), 599–619 (2001).
    [Crossref]
  40. A. Krier (ed.), Mid-infrared Semiconductor Optoelectronics (Springer Ser. in Optical Sciences, 2006).
  41. M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
    [Crossref]
  42. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
    [Crossref]
  43. S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(1), 38–47 (2011).
    [Crossref]

2019 (1)

2018 (5)

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

L. Yu, Z. Zhu, A. Gaol, J. Wang, F. Miaol, Y. Shi, and X. Wang, “Electrically tunable optical properties of few-layer black arsenic phosphorus,” Nanotechnology 29(48), 484001 (2018).
[Crossref]

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

V Ryzhii, T Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

2017 (1)

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

2016 (1)

J. M. Iglesias, M. J. Martin, E. Pascual, and R. Rengel, “Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene,” Appl. Phys. Lett. 108(4), 043105 (2016).
[Crossref]

2015 (6)

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS$_2$2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
[Crossref]

X. Ling, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U. S. A. 112(15), 4523–4530 (2015).
[Crossref]

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

2014 (2)

A. Tredicucci and M. S. Vitielo, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 130–138 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

2013 (4)

A. R Davoyan, M. Yu. Morozov, V. V. Popov, A. Satou, and T. Otsuji, “Graphene surface emitting terahertz laser: diffusion pumping concept,” Appl. Phys. Lett. 103(25), 251102 (2013).
[Crossref]

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103(5), 053513 (2013).
[Crossref]

2012 (5)

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85(3), 035443 (2012).
[Crossref]

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108(16), 167401 (2012).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–20 (2012).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

2011 (3)

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9R), 094001 (2011).
[Crossref]

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(1), 38–47 (2011).
[Crossref]

2010 (4)

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

2009 (3)

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

2007 (1)

V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
[Crossref]

2001 (1)

A. Krier, “Physics and technology of mid-infrared light emitting diodes,” Philos. Trans. R. Soc., A 359(1780), 599–619 (2001).
[Crossref]

1994 (1)

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeu, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

1989 (1)

J. H. Rogers, J. S. De Groot, Z. Abou-Assaleh, J. P. Matte, T. W. Johnston, and M. D. Rosen, “Electron heat transport in a steep temperature gradient,” Phys. Fluids B 1(4), 741–749 (1989).
[Crossref]

1986 (1)

A. Morita, “Semiconducting Black Phosphorus,” Appl. Phys. A 39(4), 227–242 (1986).
[Crossref]

1984 (1)

H. Asahina and A. Morita, “Band structure and optical properties of black phosphorus,” J. Phys. C: Solid State Phys. 17(11), 1839–1852 (1984).
[Crossref]

Abbas, A.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

Abbas, A. N.

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Abou-Assaleh, Z.

J. H. Rogers, J. S. De Groot, Z. Abou-Assaleh, J. P. Matte, T. W. Johnston, and M. D. Rosen, “Electron heat transport in a steep temperature gradient,” Phys. Fluids B 1(4), 741–749 (1989).
[Crossref]

Aleshkin, V. Y.

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

Aleshkin, V. Ya.

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS$_2$2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

Analytis, J.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Asahina, H.

H. Asahina and A. Morita, “Band structure and optical properties of black phosphorus,” J. Phys. C: Solid State Phys. 17(11), 1839–1852 (1984).
[Crossref]

Asensio, M. C.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Avila, J.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Avouris, Ph.

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Bachhuber, F.

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

Baryshnikov, N. V.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–20 (2012).
[Crossref]

Belkin, M. A.

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

Bois, P.

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeu, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Boubanga-Tombet, S.

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85(3), 035443 (2012).
[Crossref]

Boubanga-Tombet, S. A.

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

Cacho, C.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

Cai, Y.

Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
[Crossref]

Capasso, F.

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Cavalleri, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

Chan, S.

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85(3), 035443 (2012).
[Crossref]

Chandrashekhar, M.

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

Charasheyhar, M.

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Chen, C.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Chen, X.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Chen, Y.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Cho, K.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103(5), 053513 (2013).
[Crossref]

Choe, H. S.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Colombo, L.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103(5), 053513 (2013).
[Crossref]

Cronin, S. B.

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Davoyan, A. R

A. R Davoyan, M. Yu. Morozov, V. V. Popov, A. Satou, and T. Otsuji, “Graphene surface emitting terahertz laser: diffusion pumping concept,” Appl. Phys. Lett. 103(25), 251102 (2013).
[Crossref]

Davoyan, A. R.

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

De Groot, J. S.

J. H. Rogers, J. S. De Groot, Z. Abou-Assaleh, J. P. Matte, T. W. Johnston, and M. D. Rosen, “Electron heat transport in a steep temperature gradient,” Phys. Fluids B 1(4), 741–749 (1989).
[Crossref]

De Natale, P.

Deng, B.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

Dhall, R.

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Dubinov, A. A.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS$_2$2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

Fang, X.

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Ferrari, A. C.

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Fu, Y.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Fukushima, T.

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

Gao, A.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Gao, H.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Gaol, A.

L. Yu, Z. Zhu, A. Gaol, J. Wang, F. Miaol, Y. Shi, and X. Wang, “Electrically tunable optical properties of few-layer black arsenic phosphorus,” Nanotechnology 29(48), 484001 (2018).
[Crossref]

Ge, M.

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Geim, A. K.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

George, P. A.

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Gierz, I.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

Gong, G.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103(5), 053513 (2013).
[Crossref]

Guinea, F.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Guo, Q.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Haiges, R.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hu, W.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Hupalo, M.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108(16), 167401 (2012).
[Crossref]

Hwang, J.

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

Iglesias, J. M.

J. M. Iglesias, M. J. Martin, E. Pascual, and R. Rengel, “Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene,” Appl. Phys. Lett. 108(4), 043105 (2016).
[Crossref]

Jia, Y.

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Jiang, L.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Johnston, T. W.

J. H. Rogers, J. S. De Groot, Z. Abou-Assaleh, J. P. Matte, T. W. Johnston, and M. D. Rosen, “Electron heat transport in a steep temperature gradient,” Phys. Fluids B 1(4), 741–749 (1989).
[Crossref]

Karasik, V. E.

V Ryzhii, T Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–20 (2012).
[Crossref]

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Negative terahertz conductivity at vertical carrier injection in a black-Arsenic-Phosphorus-Graphene heterostructure integrated with a light-emitting diode,” arXiv: 1901.10755 (2019).

Kealhofer, R.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Ko, C.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Köhler, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

Kopf, M.

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Koppens, F. H. L.

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Krier, A.

A. Krier, “Physics and technology of mid-infrared light emitting diodes,” Philos. Trans. R. Soc., A 359(1780), 599–619 (2001).
[Crossref]

A. Krier (ed.), Mid-infrared Semiconductor Optoelectronics (Springer Ser. in Optical Sciences, 2006).

Kumar, S.

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(1), 38–47 (2011).
[Crossref]

Leiman, V. G.

V Ryzhii, T Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Negative terahertz conductivity at vertical carrier injection in a black-Arsenic-Phosphorus-Graphene heterostructure integrated with a light-emitting diode,” arXiv: 1901.10755 (2019).

Li, J.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Li, S.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Li, T.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108(16), 167401 (2012).
[Crossref]

Ling, X.

X. Ling, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U. S. A. 112(15), 4523–4530 (2015).
[Crossref]

Liu, B.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Liu, E.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Liu, H.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Liu, Y.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

Long, M.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Lu, W.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Luc, F.

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeu, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

Luo, L.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108(16), 167401 (2012).
[Crossref]

Ma, Y.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

Martin, M. J.

J. M. Iglesias, M. J. Martin, E. Pascual, and R. Rengel, “Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene,” Appl. Phys. Lett. 108(4), 043105 (2016).
[Crossref]

Matte, J. P.

J. H. Rogers, J. S. De Groot, Z. Abou-Assaleh, J. P. Matte, T. W. Johnston, and M. D. Rosen, “Electron heat transport in a steep temperature gradient,” Phys. Fluids B 1(4), 741–749 (1989).
[Crossref]

Miao, F.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Miaol, F.

L. Yu, Z. Zhu, A. Gaol, J. Wang, F. Miaol, Y. Shi, and X. Wang, “Electrically tunable optical properties of few-layer black arsenic phosphorus,” Nanotechnology 29(48), 484001 (2018).
[Crossref]

Mitin, V

V Ryzhii, T Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

Mitin, V.

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–20 (2012).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9R), 094001 (2011).
[Crossref]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Negative terahertz conductivity at vertical carrier injection in a black-Arsenic-Phosphorus-Graphene heterostructure integrated with a light-emitting diode,” arXiv: 1901.10755 (2019).

Mitrano, M.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

Mitsushio, J.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Morita, A.

A. Morita, “Semiconducting Black Phosphorus,” Appl. Phys. A 39(4), 227–242 (1986).
[Crossref]

H. Asahina and A. Morita, “Band structure and optical properties of black phosphorus,” J. Phys. C: Solid State Phys. 17(11), 1839–1852 (1984).
[Crossref]

Mueller, T.

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Nagle, J.

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeu, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

Naveh, D.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

Nilges, T.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Novoselov, K. S.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Otsuji, T

V Ryzhii, T Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

Otsuji, T.

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS$_2$2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

A. R Davoyan, M. Yu. Morozov, V. V. Popov, A. Satou, and T. Otsuji, “Graphene surface emitting terahertz laser: diffusion pumping concept,” Appl. Phys. Lett. 103(25), 251102 (2013).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–20 (2012).
[Crossref]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85(3), 035443 (2012).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9R), 094001 (2011).
[Crossref]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
[Crossref]

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Negative terahertz conductivity at vertical carrier injection in a black-Arsenic-Phosphorus-Graphene heterostructure integrated with a light-emitting diode,” arXiv: 1901.10755 (2019).

Ott, C.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Pan, C.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Park, J.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

Pascual, E.

J. M. Iglesias, M. J. Martin, E. Pascual, and R. Rengel, “Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene,” Appl. Phys. Lett. 108(4), 043105 (2016).
[Crossref]

Peres, N. M. R.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Petersen, J. C.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

Pielnhofer, F.

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Polini, M.

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Polischuk, O. V.

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

Ponomarev, D. S.

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

V Ryzhii, T Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

Popov, V. V.

A. R Davoyan, M. Yu. Morozov, V. V. Popov, A. Satou, and T. Otsuji, “Graphene surface emitting terahertz laser: diffusion pumping concept,” Appl. Phys. Lett. 103(25), 251102 (2013).
[Crossref]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

Rana, F.

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Rengel, R.

J. M. Iglesias, M. J. Martin, E. Pascual, and R. Rengel, “Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene,” Appl. Phys. Lett. 108(4), 043105 (2016).
[Crossref]

Rogers, J. H.

J. H. Rogers, J. S. De Groot, Z. Abou-Assaleh, J. P. Matte, T. W. Johnston, and M. D. Rosen, “Electron heat transport in a steep temperature gradient,” Phys. Fluids B 1(4), 741–749 (1989).
[Crossref]

Rosen, M. D.

J. H. Rogers, J. S. De Groot, Z. Abou-Assaleh, J. P. Matte, T. W. Johnston, and M. D. Rosen, “Electron heat transport in a steep temperature gradient,” Phys. Fluids B 1(4), 741–749 (1989).
[Crossref]

Rosencher, E.

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeu, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

Ruiz-Vargas, C. S.

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

Ryabova, N.

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–20 (2012).
[Crossref]

Ryzhii, M.

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

V Ryzhii, T Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS$_2$2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–20 (2012).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9R), 094001 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
[Crossref]

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Negative terahertz conductivity at vertical carrier injection in a black-Arsenic-Phosphorus-Graphene heterostructure integrated with a light-emitting diode,” arXiv: 1901.10755 (2019).

Ryzhii, V

V Ryzhii, T Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

Ryzhii, V.

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS$_2$2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–20 (2012).
[Crossref]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85(3), 035443 (2012).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9R), 094001 (2011).
[Crossref]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
[Crossref]

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Negative terahertz conductivity at vertical carrier injection in a black-Arsenic-Phosphorus-Graphene heterostructure integrated with a light-emitting diode,” arXiv: 1901.10755 (2019).

Satou, A.

A. R Davoyan, M. Yu. Morozov, V. V. Popov, A. Satou, and T. Otsuji, “Graphene surface emitting terahertz laser: diffusion pumping concept,” Appl. Phys. Lett. 103(25), 251102 (2013).
[Crossref]

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85(3), 035443 (2012).
[Crossref]

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9R), 094001 (2011).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

Satou, A. A.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Scalari, G.

Schmalian, J.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108(16), 167401 (2012).
[Crossref]

Sharavaraman, S.

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Shen, C.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

Shi, Y.

L. Yu, Z. Zhu, A. Gaol, J. Wang, F. Miaol, Y. Shi, and X. Wang, “Electrically tunable optical properties of few-layer black arsenic phosphorus,” Nanotechnology 29(48), 484001 (2018).
[Crossref]

Shields, V. B.

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

Shields, V. D.

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

Shivaraman, S.

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

Shur, M. S.

V. Ryzhii, D. S. Ponomarev, M. Ryzhii, V. Mitin, M. S. Shur, and T. Otsuji, “Negative and positive terahertz and infrared photoconductivity in uncooled graphene,” Opt. Mater. Express 9(2), 585–597 (2019).
[Crossref]

V Ryzhii, T Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Negative terahertz conductivity at vertical carrier injection in a black-Arsenic-Phosphorus-Graphene heterostructure integrated with a light-emitting diode,” arXiv: 1901.10755 (2019).

Sinai, O.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

Spencer, M. G.

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Springate, E.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

Starke, U.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

Stöhr, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

Strait, J. H.

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

Sugawara, K.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Suh, J.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tamamushi, G.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Taniguchi, T.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

Thibaudeu, L.

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeu, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

Tobah, Y.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Tredicucci, A.

A. Tredicucci and M. S. Vitielo, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 130–138 (2014).
[Crossref]

Tringides, M. C.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108(16), 167401 (2012).
[Crossref]

Turcu, I. E.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

Vinter, B.

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeu, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

Vitiello, M. S.

M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
[Crossref]

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Vitielo, M. S.

A. Tredicucci and M. S. Vitielo, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 130–138 (2014).
[Crossref]

Wallace, R. M.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103(5), 053513 (2013).
[Crossref]

Wang, H.

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

Wang, J.

L. Yu, Z. Zhu, A. Gaol, J. Wang, F. Miaol, Y. Shi, and X. Wang, “Electrically tunable optical properties of few-layer black arsenic phosphorus,” Nanotechnology 29(48), 484001 (2018).
[Crossref]

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108(16), 167401 (2012).
[Crossref]

Wang, P.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Wang, W.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103(5), 053513 (2013).
[Crossref]

Wang, X.

L. Yu, Z. Zhu, A. Gaol, J. Wang, F. Miaol, Y. Shi, and X. Wang, “Electrically tunable optical properties of few-layer black arsenic phosphorus,” Nanotechnology 29(48), 484001 (2018).
[Crossref]

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Watanabe, K.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

Watanabe, T.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85(3), 035443 (2012).
[Crossref]

Wei, Z.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Weihrich, R.

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Williams, B.

Wu, J.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Xia, F.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Xia, H.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Xia, Q.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Xu, J.

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Ya. Aleshkin, V.

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

Yabe, Y.

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

Yadav, D.

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Yu, L.

L. Yu, Z. Zhu, A. Gaol, J. Wang, F. Miaol, Y. Shi, and X. Wang, “Electrically tunable optical properties of few-layer black arsenic phosphorus,” Nanotechnology 29(48), 484001 (2018).
[Crossref]

Yu. Morozov, M.

A. R Davoyan, M. Yu. Morozov, V. V. Popov, A. Satou, and T. Otsuji, “Graphene surface emitting terahertz laser: diffusion pumping concept,” Appl. Phys. Lett. 103(25), 251102 (2013).
[Crossref]

Yuan, S.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

Yuan, Z.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Zhang, G.

Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
[Crossref]

Zhang, H.

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103(5), 053513 (2013).
[Crossref]

Zhang, J.

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108(16), 167401 (2012).
[Crossref]

Zhang, Y.-W.

Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
[Crossref]

Zhong, M.

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Zhou, C.

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Zhu, Z.

L. Yu, Z. Zhu, A. Gaol, J. Wang, F. Miaol, Y. Shi, and X. Wang, “Electrically tunable optical properties of few-layer black arsenic phosphorus,” Nanotechnology 29(48), 484001 (2018).
[Crossref]

ACS Nano (1)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

Adv. Mater. (2)

B. Liu, M. Kopf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, and C. Zhou, “Black Arsenic–Phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties,” Adv. Mater. 27(30), 4423–4429 (2015).
[Crossref]

Y. Chen, C. Chen, R. Kealhofer, H. Liu, Z. Yuan, L. Jiang, J. Suh, J. Park, C. Ko, H. S. Choe, J. Avila, M. Zhong, Z. Wei, J. Li, S. Li, H. Gao, Y. Liu, J. Analytis, Q. Xia, M. C. Asensio, and J. Wu, “Black Arsenic: a layered semiconductor with extreme in-plane anisotropy,” Adv. Mater. 30(30), 1800754 (2018).
[Crossref]

Appl. Phys. A (1)

A. Morita, “Semiconducting Black Phosphorus,” Appl. Phys. A 39(4), 227–242 (1986).
[Crossref]

Appl. Phys. Lett. (5)

G. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, “Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors,” Appl. Phys. Lett. 103(5), 053513 (2013).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. D. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

J. M. Iglesias, M. J. Martin, E. Pascual, and R. Rengel, “Hot carrier and hot phonon coupling during ultrafast relaxation of photoexcited electrons in graphene,” Appl. Phys. Lett. 108(4), 043105 (2016).
[Crossref]

H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, “Ultrafast relaxation dynamics of hot optical phonons in graphene,” Appl. Phys. Lett. 96(8), 081917 (2010).
[Crossref]

A. R Davoyan, M. Yu. Morozov, V. V. Popov, A. Satou, and T. Otsuji, “Graphene surface emitting terahertz laser: diffusion pumping concept,” Appl. Phys. Lett. 103(25), 251102 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

E. Rosencher, B. Vinter, F. Luc, L. Thibaudeu, P. Bois, and J. Nagle, “Emission and capture of electrons in multiquantum-well structures,” IEEE J. Quantum Electron. 30(12), 2875–2888 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Tredicucci and M. S. Vitielo, “Device concepts for graphene-based terahertz photonics,” IEEE J. Sel. Top. Quantum Electron. 20(1), 130–138 (2014).
[Crossref]

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(1), 38–47 (2011).
[Crossref]

J. Appl. Phys. (3)

V. Ryzhii, M. Ryzhii, and T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101(8), 083114 (2007).
[Crossref]

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106(8), 084507 (2009).
[Crossref]

V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107(5), 054505 (2010).
[Crossref]

J. Phys. C: Solid State Phys. (1)

H. Asahina and A. Morita, “Band structure and optical properties of black phosphorus,” J. Phys. C: Solid State Phys. 17(11), 1839–1852 (1984).
[Crossref]

J. Phys. Soc. Jpn. (1)

V. Ya. Aleshkin, A. A. Dubinov, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Electron capture in van der Waals graphene-based heterostructures with WS$_2$2 barrier layers,” J. Phys. Soc. Jpn. 84(9), 094703 (2015).
[Crossref]

J. Phys.: Condens. Matter (1)

A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys.: Condens. Matter 23(14), 145302 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, and T. Otsuji, “Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion,” Jpn. J. Appl. Phys. 50(9R), 094001 (2011).
[Crossref]

Nano Lett. (1)

S. Yuan, C. Shen, B. Deng, X. Chen, Q. Guo, Y. Ma, A. Abbas, B. Liu, R. Haiges, C. Ott, T. Nilges, K. Watanabe, T. Taniguchi, O. Sinai, D. Naveh, C. Zhou, and F. Xia, “Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures,” Nano Lett. 18(5), 3172–3179 (2018).
[Crossref]

Nanophotonics (1)

D. Yadav, G. Tamamushi, T. Watanabe, J. Mitsushio, Y. Tobah, K. Sugawara, A. A. Dubinov, A. A. Satou, M. Ryzhii, V. Ryzhii, and T. Otsuji, “Terahertz light-emitting graphene-channel transistor toward single-mode lasing,” Nanophotonics 7(4), 741–752 (2018).
[Crossref]

Nanotechnology (1)

L. Yu, Z. Zhu, A. Gaol, J. Wang, F. Miaol, Y. Shi, and X. Wang, “Electrically tunable optical properties of few-layer black arsenic phosphorus,” Nanotechnology 29(48), 484001 (2018).
[Crossref]

Nat. Mater. (1)

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12(12), 1119–1124 (2013).
[Crossref]

Nat. Nanotechnol. (1)

F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

New J. Phys. (1)

T. Watanabe, T. Fukushima, Y. Yabe, S. A. Boubanga-Tombet, A. Satou, A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, V. Ryzhii, and T. Otsuji, “The gain enhancement effect of surface plasmon-polaritons on terahertz stimulated emission in optically pumped monolayer graphene,” New J. Phys. 15(7), 075003 (2013).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Opto-Electron. Rev. (1)

V. Ryzhii, N. Ryabova, M. Ryzhii, N. V. Baryshnikov, V. E. Karasik, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetectors based on multiple graphene layer and nanoribbon structures,” Opto-Electron. Rev. 20(1), 15–20 (2012).
[Crossref]

Philos. Trans. R. Soc., A (1)

A. Krier, “Physics and technology of mid-infrared light emitting diodes,” Philos. Trans. R. Soc., A 359(1780), 599–619 (2001).
[Crossref]

Phys. Fluids B (1)

J. H. Rogers, J. S. De Groot, Z. Abou-Assaleh, J. P. Matte, T. W. Johnston, and M. D. Rosen, “Electron heat transport in a steep temperature gradient,” Phys. Fluids B 1(4), 741–749 (1989).
[Crossref]

Phys. Rev. B (3)

F. Rana, P. A. George, J. H. Strait, S. Sharavaraman, M. Charasheyhar, and M. G. Spencer, “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79(11), 115447 (2009).
[Crossref]

V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86(19), 195437 (2012).
[Crossref]

S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, “Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature,” Phys. Rev. B 85(3), 035443 (2012).
[Crossref]

Phys. Rev. Lett. (1)

T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108(16), 167401 (2012).
[Crossref]

Phys. Scr. (1)

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

X. Ling, “The renaissance of black phosphorus,” Proc. Natl. Acad. Sci. U. S. A. 112(15), 4523–4530 (2015).
[Crossref]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Sci. Adv. (1)

M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, “Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus,” Sci. Adv. 3, e1700589 (2017).
[Crossref]

Sci. Rep. (1)

Y. Cai, G. Zhang, and Y.-W. Zhang, “Layer-dependent band alignment and work function of few-layer phosphorene,” Sci. Rep. 4(1), 6677 (2015).
[Crossref]

Semicond. Sci. Technol. (1)

V Ryzhii, T Otsuji, M. Ryzhii, D. S. Ponomarev, V. E. Karasik, V. G. Leiman, V Mitin, and M. S. Shur, “Electrical modulation of terahertz radiation using graphene-phosphorene heterostructures,” Semicond. Sci. Technol. 33(12), 124010 (2018).
[Crossref]

Other (2)

A. Krier (ed.), Mid-infrared Semiconductor Optoelectronics (Springer Ser. in Optical Sciences, 2006).

V. Ryzhii, M. Ryzhii, T. Otsuji, V. E. Karasik, V. G. Leiman, V. Mitin, and M. S. Shur, “Negative terahertz conductivity at vertical carrier injection in a black-Arsenic-Phosphorus-Graphene heterostructure integrated with a light-emitting diode,” arXiv: 1901.10755 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. The band diagram of a heterostructure comprising the black-As- ACL and GL. A bulk arrow indicate the direction of incident pumping NIR/MIR with the photon energy $\hbar \Omega$, and a wavy vertical arrow shows the interband photogeneration of electrons and holes ((black and open circles) propagating (diffusing and cooling) from the illuminated surface of the ACL to the GL in which they are accumulated with the formation of the interband population inversion.
Fig. 2.
Fig. 2. Spatial distributions of (a) the carrier density $n$ and (b) the carrier effective temperature $T$ at different pumping photon wavelength $\lambda _{pump}$ for the black-As ACL ($\Delta _G = 0.15$ eV).
Fig. 3.
Fig. 3. Dependences of (a) the injected power $Q$ and (b) the injection quantum efficiency $\eta$ on the black-As ACL thickness $d$ for different pumping wavelength $\lambda _{pump}$.
Fig. 4.
Fig. 4. The normalized carrier quasi-Fermi energy $\mu /T_{GL}$ in the GL as a function of the ACL thickness $d$ for (a) different normalized pumping radiation intensity $I_{\Omega }/I_0$ and $\lambda _{pump} = 0.808\mu$m and (b) different pumping radiation wavelengths at $I_{\Omega }/I_0 = 10$.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

1 e d j d x + n τ R = α Ω I Ω exp ( α Ω x ) ,
d q d x + n ( T T 0 ) τ ε = α Ω ( Ω Δ G ) I Ω exp ( α Ω x ) .
j = e d ( D n ) d x , q = j e F T κ d T d x ,
d n d x | x = 0 = 0 , d T d x | x = 0 = 0 ,
j e | x = d = s n | x = d , q | x = d = 3 2 ( T T 0 ) s n | x = d ,
T G L = T 0 1 T 0 ω 0 ln [ 1 + η a I Ω I 0 ( Δ G + 3 T | x = d ω 0 ω 0 ) ] ( I Ω I 0 = P Ω I 0 Ω ) .
μ T G L = 1 2 ln [ 1 + η I Ω I 0 1 + η a I Ω I 0 ( Δ G + 3 T | x = d ω 0 ω 0 ) ] ,
T 0 < 1 3 ( ω 0 Δ G ) = T 0 T .
T 0 1 3 [ ω 0 ( 1 + a ) Δ G ] = T 0 μ .
μ T G L η 2 a I Ω I 0 ( 1 + a Δ G + 3 T | x = d ω 0 ) , μ T G L 1 2 ln ( a ω 0 Δ G + 3 T x = d ω 0 ) .
Re σ ω i n t e r e 2 4 tanh ( ω μ 4 T G l ) .

Metrics