Abstract

In order to exploit gallium’s (Ga) rich polymorphism in the design of phase-change plasmonic systems, accurate understanding of the dielectric function of the different Ga-phases is crucial. The dielectric dispersion profiles of those phases appearing at atmospheric pressure have been reported in the literature, but there is no information on the dielectric function of the high-pressure Ga-phases. Through first principles calculations we present a comprehensive analysis of the interdependence of the crystal structure, band structure, and dielectric function of two high-pressure Ga phases (Ga(II) and Ga(III)). The plasmonic behavior of these high-pressure Ga-phases is compared to those stable (liquid- and α-Ga) and metastable (β-, γ- and δ-Ga) at atmospherics pressure. This analysis can have important implications in the design of pressure-driven phase-change Ga plasmonic devices and high-pressure SERS substrates.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures

Yael Gutierrez, Dolores Ortiz, Juan M. Sanz, Jose M. Saiz, Francisco Gonzalez, Henry O. Everitt, and Fernando Moreno
Opt. Express 24(18) 20621-20631 (2016)

Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids

Robin M. Cole, Sumeet Mahajan, Phil N. Bartlett, and Jeremy J. Baumberg
Opt. Express 17(16) 13298-13308 (2009)

The Ag dielectric function in plasmonic metamaterials

Vladimir P. Drachev, Uday K. Chettiar, Alexander V. Kildishev, Hsiao-Kuan Yuan, Wenshan Cai, and Vladimir M. Shalaev
Opt. Express 16(2) 1186-1195 (2008)

References

  • View by:
  • |
  • |
  • |

  1. L. Bosio, “Crystal structures of Ga(II) and Ga(III),” J. Chem. Phys. 68(3), 1221–1223 (1978).
    [Crossref]
  2. L. Bosio, A. Defrain, H. Curien, and A. Rimsky, “Structure cristalline du gallium β,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25(5), 995 (1969).
    [Crossref]
  3. L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaγ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28(6), 1974–1975 (1972).
    [Crossref]
  4. L. Bosio, R. Cortes, J. R. D. Copley, W. D. Teuchert, and J. Lefebvre, “Phonons in metastable beta gallium: neutron scattering measurements,” J. Phys. F: Met. Phys. 11(11), 2261–2273 (1981).
    [Crossref]
  5. L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaδ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 29(2), 367–368 (1973).
    [Crossref]
  6. P. C. Wu, T.-H. Kim, A. S. Brown, M. Losurdo, G. Bruno, and H. O. Everitt, “Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry,” Appl. Phys. Lett. 90(10), 103119 (2007).
    [Crossref]
  7. P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 25(3), 1019 (2007).
    [Crossref]
  8. Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621 (2016).
    [Crossref]
  9. B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
    [Crossref]
  10. N. I. Zheludev, “Single nanoparticle as photonic switch and optical memory element,” J. Opt. A: Pure Appl. Opt. 8(4), S1–S8 (2006).
    [Crossref]
  11. A. V. Krasavin, K. F. MacDonald, A. S. Schwanecke, and N. I. Zheludev, “Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics,” Appl. Phys. Lett. 89(3), 031118 (2006).
    [Crossref]
  12. A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
    [Crossref]
  13. A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon–polariton waves,” J. Opt. A: Pure Appl. Opt. 7(2), S85–S89 (2005).
    [Crossref]
  14. K. F. MacDonald, V. A. Fedotov, S. Pochon, G. Stevens, F. V. Kusmartsev, V. I. Emel’yanov, and N. I. Zheludev, “Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation,” Europhys. Lett. 67(4), 614–619 (2004).
    [Crossref]
  15. S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase coexistence in gallium nanoparticles controlled by electron excitation,” Phys. Rev. Lett. 92(14), 145702 (2004).
    [Crossref]
  16. S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
    [Crossref]
  17. O. Schulte and W. B. Holzapfel, “Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa,” Phys. Rev. B 55(13), 8122–8128 (1997).
    [Crossref]
  18. M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
    [Crossref]
  19. Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
    [Crossref]
  20. T. Kenichi, K. Kazuaki, and A. Masao, “High-pressure bct-fcc phase transition in Ga,” Phys. Rev. B 58(5), 2482–2486 (1998).
    [Crossref]
  21. Z. Li and J. S. Tse, “High-pressure bct to fcc structural transformation in Ga,” Phys. Rev. B 62(15), 9900–9902 (2000).
    [Crossref]
  22. L. Comez, A. Di Cicco, J. Itié, and A. Polian, “High-pressure and high-temperature x-ray absorption study of liquid and solid gallium,” Phys. Rev. B 65(1), 014114 (2001).
    [Crossref]
  23. P. Wang, H. Li, J. Jiang, B. Mo, and C. Cui, “An exploration of surface enhanced Raman spectroscopy (SERS) for in situ detection of sulfite under high pressure,” Vib. Spectrosc. 100(99), 172–176 (2019).
    [Crossref]
  24. Y. Fu and D. D. Dlott, “Single molecules under high pressure,” J. Phys. Chem. C 119(11), 6373–6381 (2015).
    [Crossref]
  25. P. Podini and J. M. Schnur, “Applicability of sers to the study of adsorption at high pressure,” Chem. Phys. Lett. 93(1), 86–90 (1982).
    [Crossref]
  26. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order- N materials simulation,” J. Phys.: Condens. Matter 14(11), 2745–2779 (2002).
    [Crossref]
  27. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
    [Crossref]
  28. D. R. Hamann, “Optimized norm-conserving Vanderbilt pseudopotentials,” Phys. Rev. B 88(8), 085117 (2013).
    [Crossref]
  29. A. García, M. J. Verstraete, Y. Pouillon, and J. Junquera, “The psml format and library for norm-conserving pseudopotential data curation and interoperability,” Comput. Phys. Commun. 227, 51–71 (2018).
    [Crossref]
  30. M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, “The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table,” Comput. Phys. Commun. 226(3), 39–54 (2018).
    [Crossref]
  31. J. Junquera, Ó Paz, D. Sánchez-Portal, and E. Artacho, “Numerical atomic orbitals for linear-scaling calculations,” Phys. Rev. B 64(23), 235111 (2001).
    [Crossref]
  32. E. Anglada, J. M. Soler, J. Junquera, and E. Artacho, “Systematic generation of finite-range atomic basis sets for linear-scaling calculations,” Phys. Rev. B 66(20), 205101 (2002).
    [Crossref]
  33. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
    [Crossref]
  34. A. K. Harman, S. Ninomiya, and S. Adachi, “Optical constants of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 76(12), 8032–8036 (1994).
    [Crossref]
  35. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
    [Crossref]
  36. A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
    [Crossref]
  37. J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
    [Crossref]
  38. Y. Gutiérrez, R. Alcaraz, D. Osa, D. Ortiz, J. M. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(1), 64 (2018).
    [Crossref]
  39. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref]
  40. Y. Gutiérrez, M. M. Giangregorio, F. Palumbo, A. S. Brown, F. Moreno, and M. Losurdo, “Optically addressing interaction of Mg / MgO plasmonic systems with hydrogen,” Opt. Express 27(4), A197–A205 (2019).
    [Crossref]
  41. A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
    [Crossref]
  42. X. Zhang, P. Li, Á Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
    [Crossref]
  43. P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
    [Crossref]
  44. Y. Yang, J. M. Callahan, T. H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: A demonstration of surface-enhanced raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
    [Crossref]
  45. F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
    [Crossref]

2019 (3)

Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
[Crossref]

P. Wang, H. Li, J. Jiang, B. Mo, and C. Cui, “An exploration of surface enhanced Raman spectroscopy (SERS) for in situ detection of sulfite under high pressure,” Vib. Spectrosc. 100(99), 172–176 (2019).
[Crossref]

Y. Gutiérrez, M. M. Giangregorio, F. Palumbo, A. S. Brown, F. Moreno, and M. Losurdo, “Optically addressing interaction of Mg / MgO plasmonic systems with hydrogen,” Opt. Express 27(4), A197–A205 (2019).
[Crossref]

2018 (3)

Y. Gutiérrez, R. Alcaraz, D. Osa, D. Ortiz, J. M. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(1), 64 (2018).
[Crossref]

A. García, M. J. Verstraete, Y. Pouillon, and J. Junquera, “The psml format and library for norm-conserving pseudopotential data curation and interoperability,” Comput. Phys. Commun. 227, 51–71 (2018).
[Crossref]

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, “The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table,” Comput. Phys. Commun. 226(3), 39–54 (2018).
[Crossref]

2016 (3)

Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621 (2016).
[Crossref]

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref]

X. Zhang, P. Li, Á Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

2015 (3)

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Y. Fu and D. D. Dlott, “Single molecules under high pressure,” J. Phys. Chem. C 119(11), 6373–6381 (2015).
[Crossref]

2014 (1)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

2013 (4)

Y. Yang, J. M. Callahan, T. H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: A demonstration of surface-enhanced raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref]

F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
[Crossref]

D. R. Hamann, “Optimized norm-conserving Vanderbilt pseudopotentials,” Phys. Rev. B 88(8), 085117 (2013).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

2012 (1)

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref]

2009 (1)

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref]

2008 (1)

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref]

2007 (3)

P. C. Wu, T.-H. Kim, A. S. Brown, M. Losurdo, G. Bruno, and H. O. Everitt, “Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry,” Appl. Phys. Lett. 90(10), 103119 (2007).
[Crossref]

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 25(3), 1019 (2007).
[Crossref]

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
[Crossref]

2006 (2)

N. I. Zheludev, “Single nanoparticle as photonic switch and optical memory element,” J. Opt. A: Pure Appl. Opt. 8(4), S1–S8 (2006).
[Crossref]

A. V. Krasavin, K. F. MacDonald, A. S. Schwanecke, and N. I. Zheludev, “Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics,” Appl. Phys. Lett. 89(3), 031118 (2006).
[Crossref]

2005 (1)

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon–polariton waves,” J. Opt. A: Pure Appl. Opt. 7(2), S85–S89 (2005).
[Crossref]

2004 (3)

K. F. MacDonald, V. A. Fedotov, S. Pochon, G. Stevens, F. V. Kusmartsev, V. I. Emel’yanov, and N. I. Zheludev, “Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation,” Europhys. Lett. 67(4), 614–619 (2004).
[Crossref]

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase coexistence in gallium nanoparticles controlled by electron excitation,” Phys. Rev. Lett. 92(14), 145702 (2004).
[Crossref]

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

2002 (2)

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order- N materials simulation,” J. Phys.: Condens. Matter 14(11), 2745–2779 (2002).
[Crossref]

E. Anglada, J. M. Soler, J. Junquera, and E. Artacho, “Systematic generation of finite-range atomic basis sets for linear-scaling calculations,” Phys. Rev. B 66(20), 205101 (2002).
[Crossref]

2001 (2)

J. Junquera, Ó Paz, D. Sánchez-Portal, and E. Artacho, “Numerical atomic orbitals for linear-scaling calculations,” Phys. Rev. B 64(23), 235111 (2001).
[Crossref]

L. Comez, A. Di Cicco, J. Itié, and A. Polian, “High-pressure and high-temperature x-ray absorption study of liquid and solid gallium,” Phys. Rev. B 65(1), 014114 (2001).
[Crossref]

2000 (1)

Z. Li and J. S. Tse, “High-pressure bct to fcc structural transformation in Ga,” Phys. Rev. B 62(15), 9900–9902 (2000).
[Crossref]

1998 (1)

T. Kenichi, K. Kazuaki, and A. Masao, “High-pressure bct-fcc phase transition in Ga,” Phys. Rev. B 58(5), 2482–2486 (1998).
[Crossref]

1997 (1)

O. Schulte and W. B. Holzapfel, “Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa,” Phys. Rev. B 55(13), 8122–8128 (1997).
[Crossref]

1994 (1)

A. K. Harman, S. Ninomiya, and S. Adachi, “Optical constants of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 76(12), 8032–8036 (1994).
[Crossref]

1982 (1)

P. Podini and J. M. Schnur, “Applicability of sers to the study of adsorption at high pressure,” Chem. Phys. Lett. 93(1), 86–90 (1982).
[Crossref]

1981 (1)

L. Bosio, R. Cortes, J. R. D. Copley, W. D. Teuchert, and J. Lefebvre, “Phonons in metastable beta gallium: neutron scattering measurements,” J. Phys. F: Met. Phys. 11(11), 2261–2273 (1981).
[Crossref]

1978 (1)

L. Bosio, “Crystal structures of Ga(II) and Ga(III),” J. Chem. Phys. 68(3), 1221–1223 (1978).
[Crossref]

1976 (1)

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

1973 (1)

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaδ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 29(2), 367–368 (1973).
[Crossref]

1972 (1)

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaγ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28(6), 1974–1975 (1972).
[Crossref]

1969 (1)

L. Bosio, A. Defrain, H. Curien, and A. Rimsky, “Structure cristalline du gallium β,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25(5), 995 (1969).
[Crossref]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Adachi, S.

A. K. Harman, S. Ninomiya, and S. Adachi, “Optical constants of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 76(12), 8032–8036 (1994).
[Crossref]

Albella, P.

F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
[Crossref]

Alcaraz, R.

Y. Gutiérrez, R. Alcaraz, D. Osa, D. Ortiz, J. M. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(1), 64 (2018).
[Crossref]

Alcaraz de la Osa, R.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Anglada, E.

E. Anglada, J. M. Soler, J. Junquera, and E. Artacho, “Systematic generation of finite-range atomic basis sets for linear-scaling calculations,” Phys. Rev. B 66(20), 205101 (2002).
[Crossref]

Artacho, E.

E. Anglada, J. M. Soler, J. Junquera, and E. Artacho, “Systematic generation of finite-range atomic basis sets for linear-scaling calculations,” Phys. Rev. B 66(20), 205101 (2002).
[Crossref]

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order- N materials simulation,” J. Phys.: Condens. Matter 14(11), 2745–2779 (2002).
[Crossref]

J. Junquera, Ó Paz, D. Sánchez-Portal, and E. Artacho, “Numerical atomic orbitals for linear-scaling calculations,” Phys. Rev. B 64(23), 235111 (2001).
[Crossref]

Baffou, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Barreda, Á

X. Zhang, P. Li, Á Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

Bianco, G. V.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref]

Blaber, M. G.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref]

Bosio, L.

L. Bosio, R. Cortes, J. R. D. Copley, W. D. Teuchert, and J. Lefebvre, “Phonons in metastable beta gallium: neutron scattering measurements,” J. Phys. F: Met. Phys. 11(11), 2261–2273 (1981).
[Crossref]

L. Bosio, “Crystal structures of Ga(II) and Ga(III),” J. Chem. Phys. 68(3), 1221–1223 (1978).
[Crossref]

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaδ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 29(2), 367–368 (1973).
[Crossref]

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaγ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28(6), 1974–1975 (1972).
[Crossref]

L. Bosio, A. Defrain, H. Curien, and A. Rimsky, “Structure cristalline du gallium β,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25(5), 995 (1969).
[Crossref]

Bousquet, E.

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, “The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table,” Comput. Phys. Commun. 226(3), 39–54 (2018).
[Crossref]

Brown, A. S.

Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
[Crossref]

Y. Gutiérrez, M. M. Giangregorio, F. Palumbo, A. S. Brown, F. Moreno, and M. Losurdo, “Optically addressing interaction of Mg / MgO plasmonic systems with hydrogen,” Opt. Express 27(4), A197–A205 (2019).
[Crossref]

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Y. Yang, J. M. Callahan, T. H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: A demonstration of surface-enhanced raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref]

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref]

P. C. Wu, T.-H. Kim, A. S. Brown, M. Losurdo, G. Bruno, and H. O. Everitt, “Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry,” Appl. Phys. Lett. 90(10), 103119 (2007).
[Crossref]

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 25(3), 1019 (2007).
[Crossref]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Bruno, G.

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 25(3), 1019 (2007).
[Crossref]

P. C. Wu, T.-H. Kim, A. S. Brown, M. Losurdo, G. Bruno, and H. O. Everitt, “Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry,” Appl. Phys. Lett. 90(10), 103119 (2007).
[Crossref]

Burke, K.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref]

Callahan, J. M.

Y. Yang, J. M. Callahan, T. H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: A demonstration of surface-enhanced raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref]

Choi, S.

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 25(3), 1019 (2007).
[Crossref]

Comez, L.

L. Comez, A. Di Cicco, J. Itié, and A. Polian, “High-pressure and high-temperature x-ray absorption study of liquid and solid gallium,” Phys. Rev. B 65(1), 014114 (2001).
[Crossref]

Constantin, L. A.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref]

Copley, J. R. D.

L. Bosio, R. Cortes, J. R. D. Copley, W. D. Teuchert, and J. Lefebvre, “Phonons in metastable beta gallium: neutron scattering measurements,” J. Phys. F: Met. Phys. 11(11), 2261–2273 (1981).
[Crossref]

Cortes, R.

L. Bosio, R. Cortes, J. R. D. Copley, W. D. Teuchert, and J. Lefebvre, “Phonons in metastable beta gallium: neutron scattering measurements,” J. Phys. F: Met. Phys. 11(11), 2261–2273 (1981).
[Crossref]

Csonka, G. I.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref]

Cui, C.

P. Wang, H. Li, J. Jiang, B. Mo, and C. Cui, “An exploration of surface enhanced Raman spectroscopy (SERS) for in situ detection of sulfite under high pressure,” Vib. Spectrosc. 100(99), 172–176 (2019).
[Crossref]

Curien, H.

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaδ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 29(2), 367–368 (1973).
[Crossref]

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaγ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28(6), 1974–1975 (1972).
[Crossref]

L. Bosio, A. Defrain, H. Curien, and A. Rimsky, “Structure cristalline du gallium β,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25(5), 995 (1969).
[Crossref]

Defrain, A.

L. Bosio, A. Defrain, H. Curien, and A. Rimsky, “Structure cristalline du gallium β,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25(5), 995 (1969).
[Crossref]

Di Cicco, A.

L. Comez, A. Di Cicco, J. Itié, and A. Polian, “High-pressure and high-temperature x-ray absorption study of liquid and solid gallium,” Phys. Rev. B 65(1), 014114 (2001).
[Crossref]

Dlott, D. D.

Y. Fu and D. D. Dlott, “Single molecules under high pressure,” J. Phys. Chem. C 119(11), 6373–6381 (2015).
[Crossref]

Dupont, M.

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaδ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 29(2), 367–368 (1973).
[Crossref]

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaγ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28(6), 1974–1975 (1972).
[Crossref]

Emel’yanov, V. I.

K. F. MacDonald, V. A. Fedotov, S. Pochon, G. Stevens, F. V. Kusmartsev, V. I. Emel’yanov, and N. I. Zheludev, “Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation,” Europhys. Lett. 67(4), 614–619 (2004).
[Crossref]

Engel, C. J.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref]

Everitt, H. O.

Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
[Crossref]

Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621 (2016).
[Crossref]

X. Zhang, P. Li, Á Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Y. Yang, J. M. Callahan, T. H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: A demonstration of surface-enhanced raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref]

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref]

P. C. Wu, T.-H. Kim, A. S. Brown, M. Losurdo, G. Bruno, and H. O. Everitt, “Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry,” Appl. Phys. Lett. 90(10), 103119 (2007).
[Crossref]

Fedotov, V. A.

K. F. MacDonald, V. A. Fedotov, S. Pochon, G. Stevens, F. V. Kusmartsev, V. I. Emel’yanov, and N. I. Zheludev, “Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation,” Europhys. Lett. 67(4), 614–619 (2004).
[Crossref]

Finkelstein, G.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Fu, Y.

Y. Fu and D. D. Dlott, “Single molecules under high pressure,” J. Phys. Chem. C 119(11), 6373–6381 (2015).
[Crossref]

Gale, J. D.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order- N materials simulation,” J. Phys.: Condens. Matter 14(11), 2745–2779 (2002).
[Crossref]

García, A.

A. García, M. J. Verstraete, Y. Pouillon, and J. Junquera, “The psml format and library for norm-conserving pseudopotential data curation and interoperability,” Comput. Phys. Commun. 227, 51–71 (2018).
[Crossref]

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order- N materials simulation,” J. Phys.: Condens. Matter 14(11), 2745–2779 (2002).
[Crossref]

García-Fernández, P.

Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
[Crossref]

Giangregorio, M. M.

Giantomassi, M.

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, “The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table,” Comput. Phys. Commun. 226(3), 39–54 (2018).
[Crossref]

Gonzalez, F.

González, F.

Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
[Crossref]

Y. Gutiérrez, R. Alcaraz, D. Osa, D. Ortiz, J. M. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(1), 64 (2018).
[Crossref]

X. Zhang, P. Li, Á Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Gonze, X.

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, “The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table,” Comput. Phys. Commun. 226(3), 39–54 (2018).
[Crossref]

Gutierrez, Y.

Gutiérrez, Y.

Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
[Crossref]

Y. Gutiérrez, M. M. Giangregorio, F. Palumbo, A. S. Brown, F. Moreno, and M. Losurdo, “Optically addressing interaction of Mg / MgO plasmonic systems with hydrogen,” Opt. Express 27(4), A197–A205 (2019).
[Crossref]

Y. Gutiérrez, R. Alcaraz, D. Osa, D. Ortiz, J. M. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(1), 64 (2018).
[Crossref]

X. Zhang, P. Li, Á Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Hamann, D. R.

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, “The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table,” Comput. Phys. Commun. 226(3), 39–54 (2018).
[Crossref]

D. R. Hamann, “Optimized norm-conserving Vanderbilt pseudopotentials,” Phys. Rev. B 88(8), 085117 (2013).
[Crossref]

Harman, A. K.

A. K. Harman, S. Ninomiya, and S. Adachi, “Optical constants of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 76(12), 8032–8036 (1994).
[Crossref]

Hingerl, K.

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref]

Holzapfel, W. B.

O. Schulte and W. B. Holzapfel, “Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa,” Phys. Rev. B 55(13), 8122–8128 (1997).
[Crossref]

Itié, J.

L. Comez, A. Di Cicco, J. Itié, and A. Polian, “High-pressure and high-temperature x-ray absorption study of liquid and solid gallium,” Phys. Rev. B 65(1), 014114 (2001).
[Crossref]

Jiang, J.

P. Wang, H. Li, J. Jiang, B. Mo, and C. Cui, “An exploration of surface enhanced Raman spectroscopy (SERS) for in situ detection of sulfite under high pressure,” Vib. Spectrosc. 100(99), 172–176 (2019).
[Crossref]

Jonsson, F.

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
[Crossref]

Junquera, J.

Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
[Crossref]

A. García, M. J. Verstraete, Y. Pouillon, and J. Junquera, “The psml format and library for norm-conserving pseudopotential data curation and interoperability,” Comput. Phys. Commun. 227, 51–71 (2018).
[Crossref]

E. Anglada, J. M. Soler, J. Junquera, and E. Artacho, “Systematic generation of finite-range atomic basis sets for linear-scaling calculations,” Phys. Rev. B 66(20), 205101 (2002).
[Crossref]

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order- N materials simulation,” J. Phys.: Condens. Matter 14(11), 2745–2779 (2002).
[Crossref]

J. Junquera, Ó Paz, D. Sánchez-Portal, and E. Artacho, “Numerical atomic orbitals for linear-scaling calculations,” Phys. Rev. B 64(23), 235111 (2001).
[Crossref]

Kazuaki, K.

T. Kenichi, K. Kazuaki, and A. Masao, “High-pressure bct-fcc phase transition in Ga,” Phys. Rev. B 58(5), 2482–2486 (1998).
[Crossref]

Kenichi, T.

T. Kenichi, K. Kazuaki, and A. Masao, “High-pressure bct-fcc phase transition in Ga,” Phys. Rev. B 58(5), 2482–2486 (1998).
[Crossref]

Khoury, C. G.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref]

Kim, T. H.

Y. Yang, J. M. Callahan, T. H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: A demonstration of surface-enhanced raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref]

Kim, T.-H.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref]

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 25(3), 1019 (2007).
[Crossref]

P. C. Wu, T.-H. Kim, A. S. Brown, M. Losurdo, G. Bruno, and H. O. Everitt, “Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry,” Appl. Phys. Lett. 90(10), 103119 (2007).
[Crossref]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Knize, R. J.

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase coexistence in gallium nanoparticles controlled by electron excitation,” Phys. Rev. Lett. 92(14), 145702 (2004).
[Crossref]

Krasavin, A. V.

A. V. Krasavin, K. F. MacDonald, A. S. Schwanecke, and N. I. Zheludev, “Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics,” Appl. Phys. Lett. 89(3), 031118 (2006).
[Crossref]

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon–polariton waves,” J. Opt. A: Pure Appl. Opt. 7(2), S85–S89 (2005).
[Crossref]

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

Kusmartsev, F. V.

K. F. MacDonald, V. A. Fedotov, S. Pochon, G. Stevens, F. V. Kusmartsev, V. I. Emel’yanov, and N. I. Zheludev, “Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation,” Europhys. Lett. 67(4), 614–619 (2004).
[Crossref]

Lalisse, A.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Lefebvre, J.

L. Bosio, R. Cortes, J. R. D. Copley, W. D. Teuchert, and J. Lefebvre, “Phonons in metastable beta gallium: neutron scattering measurements,” J. Phys. F: Met. Phys. 11(11), 2261–2273 (1981).
[Crossref]

Li, H.

P. Wang, H. Li, J. Jiang, B. Mo, and C. Cui, “An exploration of surface enhanced Raman spectroscopy (SERS) for in situ detection of sulfite under high pressure,” Vib. Spectrosc. 100(99), 172–176 (2019).
[Crossref]

Li, P.

X. Zhang, P. Li, Á Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

Li, Z.

Z. Li and J. S. Tse, “High-pressure bct to fcc structural transformation in Ga,” Phys. Rev. B 62(15), 9900–9902 (2000).
[Crossref]

Liu, J.

X. Zhang, P. Li, Á Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Losurdo, M.

Y. Gutiérrez, M. M. Giangregorio, F. Palumbo, A. S. Brown, F. Moreno, and M. Losurdo, “Optically addressing interaction of Mg / MgO plasmonic systems with hydrogen,” Opt. Express 27(4), A197–A205 (2019).
[Crossref]

Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
[Crossref]

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref]

P. C. Wu, T.-H. Kim, A. S. Brown, M. Losurdo, G. Bruno, and H. O. Everitt, “Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry,” Appl. Phys. Lett. 90(10), 103119 (2007).
[Crossref]

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 25(3), 1019 (2007).
[Crossref]

Lubin, S. M.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref]

MacDonald, K. F.

A. V. Krasavin, K. F. MacDonald, A. S. Schwanecke, and N. I. Zheludev, “Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics,” Appl. Phys. Lett. 89(3), 031118 (2006).
[Crossref]

K. F. MacDonald, V. A. Fedotov, S. Pochon, G. Stevens, F. V. Kusmartsev, V. I. Emel’yanov, and N. I. Zheludev, “Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation,” Europhys. Lett. 67(4), 614–619 (2004).
[Crossref]

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase coexistence in gallium nanoparticles controlled by electron excitation,” Phys. Rev. Lett. 92(14), 145702 (2004).
[Crossref]

Marcos Sanz, J.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Masao, A.

T. Kenichi, K. Kazuaki, and A. Masao, “High-pressure bct-fcc phase transition in Ga,” Phys. Rev. B 58(5), 2482–2486 (1998).
[Crossref]

Mo, B.

P. Wang, H. Li, J. Jiang, B. Mo, and C. Cui, “An exploration of surface enhanced Raman spectroscopy (SERS) for in situ detection of sulfite under high pressure,” Vib. Spectrosc. 100(99), 172–176 (2019).
[Crossref]

Monkhorst, H. J.

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Moreno, F.

Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
[Crossref]

Y. Gutiérrez, M. M. Giangregorio, F. Palumbo, A. S. Brown, F. Moreno, and M. Losurdo, “Optically addressing interaction of Mg / MgO plasmonic systems with hydrogen,” Opt. Express 27(4), A197–A205 (2019).
[Crossref]

Y. Gutiérrez, R. Alcaraz, D. Osa, D. Ortiz, J. M. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(1), 64 (2018).
[Crossref]

X. Zhang, P. Li, Á Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621 (2016).
[Crossref]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Nieto-Vesperinas, M.

F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
[Crossref]

Ninomiya, S.

A. K. Harman, S. Ninomiya, and S. Adachi, “Optical constants of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 76(12), 8032–8036 (1994).
[Crossref]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Odom, T. W.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref]

Ordejón, P.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order- N materials simulation,” J. Phys.: Condens. Matter 14(11), 2745–2779 (2002).
[Crossref]

Ortiz, D.

Y. Gutiérrez, R. Alcaraz, D. Osa, D. Ortiz, J. M. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(1), 64 (2018).
[Crossref]

Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621 (2016).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Osa, D.

Y. Gutiérrez, R. Alcaraz, D. Osa, D. Ortiz, J. M. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(1), 64 (2018).
[Crossref]

Pack, J. D.

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Palumbo, F.

Paz, Ó

J. Junquera, Ó Paz, D. Sánchez-Portal, and E. Artacho, “Numerical atomic orbitals for linear-scaling calculations,” Phys. Rev. B 64(23), 235111 (2001).
[Crossref]

Perdew, J. P.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref]

Plain, J.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Pochon, S.

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase coexistence in gallium nanoparticles controlled by electron excitation,” Phys. Rev. Lett. 92(14), 145702 (2004).
[Crossref]

K. F. MacDonald, V. A. Fedotov, S. Pochon, G. Stevens, F. V. Kusmartsev, V. I. Emel’yanov, and N. I. Zheludev, “Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation,” Europhys. Lett. 67(4), 614–619 (2004).
[Crossref]

Podini, P.

P. Podini and J. M. Schnur, “Applicability of sers to the study of adsorption at high pressure,” Chem. Phys. Lett. 93(1), 86–90 (1982).
[Crossref]

Polian, A.

L. Comez, A. Di Cicco, J. Itié, and A. Polian, “High-pressure and high-temperature x-ray absorption study of liquid and solid gallium,” Phys. Rev. B 65(1), 014114 (2001).
[Crossref]

Pouillon, Y.

A. García, M. J. Verstraete, Y. Pouillon, and J. Junquera, “The psml format and library for norm-conserving pseudopotential data curation and interoperability,” Comput. Phys. Commun. 227, 51–71 (2018).
[Crossref]

Rignanese, G.-M.

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, “The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table,” Comput. Phys. Commun. 226(3), 39–54 (2018).
[Crossref]

Rimsky, A.

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaδ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 29(2), 367–368 (1973).
[Crossref]

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaγ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28(6), 1974–1975 (1972).
[Crossref]

L. Bosio, A. Defrain, H. Curien, and A. Rimsky, “Structure cristalline du gallium β,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25(5), 995 (1969).
[Crossref]

Rubanov, S.

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref]

Ruzsinszky, A.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref]

Sainz de la Maza, M.

Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
[Crossref]

Saiz, J. M.

Y. Gutiérrez, R. Alcaraz, D. Osa, D. Ortiz, J. M. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(1), 64 (2018).
[Crossref]

Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621 (2016).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Sánchez-Portal, D.

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order- N materials simulation,” J. Phys.: Condens. Matter 14(11), 2745–2779 (2002).
[Crossref]

J. Junquera, Ó Paz, D. Sánchez-Portal, and E. Artacho, “Numerical atomic orbitals for linear-scaling calculations,” Phys. Rev. B 64(23), 235111 (2001).
[Crossref]

Sanz, J. M.

Y. Gutierrez, D. Ortiz, J. M. Sanz, J. M. Saiz, F. Gonzalez, H. O. Everitt, and F. Moreno, “How an oxide shell affects the ultraviolet plasmonic behavior of Ga, Mg, and Al nanostructures,” Opt. Express 24(18), 20621 (2016).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Schatz, G. C.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref]

Schnur, J. M.

P. Podini and J. M. Schnur, “Applicability of sers to the study of adsorption at high pressure,” Chem. Phys. Lett. 93(1), 86–90 (1982).
[Crossref]

Schulte, O.

O. Schulte and W. B. Holzapfel, “Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa,” Phys. Rev. B 55(13), 8122–8128 (1997).
[Crossref]

Schwanecke, A. S.

A. V. Krasavin, K. F. MacDonald, A. S. Schwanecke, and N. I. Zheludev, “Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics,” Appl. Phys. Lett. 89(3), 031118 (2006).
[Crossref]

Scuseria, G. E.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref]

Soares, B. F.

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
[Crossref]

Soler, J. M.

E. Anglada, J. M. Soler, J. Junquera, and E. Artacho, “Systematic generation of finite-range atomic basis sets for linear-scaling calculations,” Phys. Rev. B 66(20), 205101 (2002).
[Crossref]

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order- N materials simulation,” J. Phys.: Condens. Matter 14(11), 2745–2779 (2002).
[Crossref]

Stevens, G.

K. F. MacDonald, V. A. Fedotov, S. Pochon, G. Stevens, F. V. Kusmartsev, V. I. Emel’yanov, and N. I. Zheludev, “Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation,” Europhys. Lett. 67(4), 614–619 (2004).
[Crossref]

Suh, J. Y.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref]

Suvorova, A.

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref]

Tessier, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Teuchert, W. D.

L. Bosio, R. Cortes, J. R. D. Copley, W. D. Teuchert, and J. Lefebvre, “Phonons in metastable beta gallium: neutron scattering measurements,” J. Phys. F: Met. Phys. 11(11), 2261–2273 (1981).
[Crossref]

Tse, J. S.

Z. Li and J. S. Tse, “High-pressure bct to fcc structural transformation in Ga,” Phys. Rev. B 62(15), 9900–9902 (2000).
[Crossref]

van Setten, M. J.

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, “The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table,” Comput. Phys. Commun. 226(3), 39–54 (2018).
[Crossref]

Verstraete, M. J.

A. García, M. J. Verstraete, Y. Pouillon, and J. Junquera, “The psml format and library for norm-conserving pseudopotential data curation and interoperability,” Comput. Phys. Commun. 227, 51–71 (2018).
[Crossref]

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, “The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table,” Comput. Phys. Commun. 226(3), 39–54 (2018).
[Crossref]

Vivekchand, S. R. C.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref]

Vo-Dinh, T.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref]

Vydrov, O. A.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref]

Wang, P.

P. Wang, H. Li, J. Jiang, B. Mo, and C. Cui, “An exploration of surface enhanced Raman spectroscopy (SERS) for in situ detection of sulfite under high pressure,” Vib. Spectrosc. 100(99), 172–176 (2019).
[Crossref]

Watson, A. M.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Wu, P. C.

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref]

P. C. Wu, T.-H. Kim, A. S. Brown, M. Losurdo, G. Bruno, and H. O. Everitt, “Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry,” Appl. Phys. Lett. 90(10), 103119 (2007).
[Crossref]

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 25(3), 1019 (2007).
[Crossref]

Yang, Y.

Y. Yang, J. M. Callahan, T. H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: A demonstration of surface-enhanced raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref]

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref]

Zayats, A. V.

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon–polariton waves,” J. Opt. A: Pure Appl. Opt. 7(2), S85–S89 (2005).
[Crossref]

Zhang, X.

X. Zhang, P. Li, Á Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

Zheludev, N. I.

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
[Crossref]

N. I. Zheludev, “Single nanoparticle as photonic switch and optical memory element,” J. Opt. A: Pure Appl. Opt. 8(4), S1–S8 (2006).
[Crossref]

A. V. Krasavin, K. F. MacDonald, A. S. Schwanecke, and N. I. Zheludev, “Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics,” Appl. Phys. Lett. 89(3), 031118 (2006).
[Crossref]

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon–polariton waves,” J. Opt. A: Pure Appl. Opt. 7(2), S85–S89 (2005).
[Crossref]

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

K. F. MacDonald, V. A. Fedotov, S. Pochon, G. Stevens, F. V. Kusmartsev, V. I. Emel’yanov, and N. I. Zheludev, “Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation,” Europhys. Lett. 67(4), 614–619 (2004).
[Crossref]

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase coexistence in gallium nanoparticles controlled by electron excitation,” Phys. Rev. Lett. 92(14), 145702 (2004).
[Crossref]

Zhou, W.

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref]

Zhou, X.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref]

ACS Nano (1)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. (3)

L. Bosio, A. Defrain, H. Curien, and A. Rimsky, “Structure cristalline du gallium β,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25(5), 995 (1969).
[Crossref]

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaγ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28(6), 1974–1975 (1972).
[Crossref]

L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Gaδ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 29(2), 367–368 (1973).
[Crossref]

Adv. Opt. Mater. (1)

Y. Gutiérrez, M. Losurdo, P. García-Fernández, M. Sainz de la Maza, F. González, A. S. Brown, H. O. Everitt, J. Junquera, and F. Moreno, “Gallium polymorphs: phase-dependent plasmonics,” Adv. Opt. Mater. 1900307, 1900307 (2019).
[Crossref]

Ann. Phys. (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Appl. Phys. Lett. (3)

P. C. Wu, T.-H. Kim, A. S. Brown, M. Losurdo, G. Bruno, and H. O. Everitt, “Real-time plasmon resonance tuning of liquid Ga nanoparticles by in situ spectroscopic ellipsometry,” Appl. Phys. Lett. 90(10), 103119 (2007).
[Crossref]

A. V. Krasavin, K. F. MacDonald, A. S. Schwanecke, and N. I. Zheludev, “Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics,” Appl. Phys. Lett. 89(3), 031118 (2006).
[Crossref]

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

Appl. Sci. (1)

Y. Gutiérrez, R. Alcaraz, D. Osa, D. Ortiz, J. M. Saiz, F. González, and F. Moreno, “Plasmonics in the ultraviolet with aluminum, gallium, magnesium and rhodium,” Appl. Sci. 8(1), 64 (2018).
[Crossref]

Chem. Phys. Lett. (1)

P. Podini and J. M. Schnur, “Applicability of sers to the study of adsorption at high pressure,” Chem. Phys. Lett. 93(1), 86–90 (1982).
[Crossref]

Comput. Phys. Commun. (2)

A. García, M. J. Verstraete, Y. Pouillon, and J. Junquera, “The psml format and library for norm-conserving pseudopotential data curation and interoperability,” Comput. Phys. Commun. 227, 51–71 (2018).
[Crossref]

M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G.-M. Rignanese, “The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table,” Comput. Phys. Commun. 226(3), 39–54 (2018).
[Crossref]

Europhys. Lett. (1)

K. F. MacDonald, V. A. Fedotov, S. Pochon, G. Stevens, F. V. Kusmartsev, V. I. Emel’yanov, and N. I. Zheludev, “Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation,” Europhys. Lett. 67(4), 614–619 (2004).
[Crossref]

J. Am. Chem. Soc. (1)

P. C. Wu, C. G. Khoury, T.-H. Kim, Y. Yang, M. Losurdo, G. V. Bianco, T. Vo-Dinh, A. S. Brown, and H. O. Everitt, “Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles,” J. Am. Chem. Soc. 131(34), 12032–12033 (2009).
[Crossref]

J. Appl. Phys. (1)

A. K. Harman, S. Ninomiya, and S. Adachi, “Optical constants of sapphire (α-Al2O3) single crystals,” J. Appl. Phys. 76(12), 8032–8036 (1994).
[Crossref]

J. Chem. Phys. (1)

L. Bosio, “Crystal structures of Ga(II) and Ga(III),” J. Chem. Phys. 68(3), 1221–1223 (1978).
[Crossref]

J. Opt. A: Pure Appl. Opt. (2)

A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon–polariton waves,” J. Opt. A: Pure Appl. Opt. 7(2), S85–S89 (2005).
[Crossref]

N. I. Zheludev, “Single nanoparticle as photonic switch and optical memory element,” J. Opt. A: Pure Appl. Opt. 8(4), S1–S8 (2006).
[Crossref]

J. Phys. Chem. C (3)

Y. Fu and D. D. Dlott, “Single molecules under high pressure,” J. Phys. Chem. C 119(11), 6373–6381 (2015).
[Crossref]

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV Plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

J. Phys. F: Met. Phys. (1)

L. Bosio, R. Cortes, J. R. D. Copley, W. D. Teuchert, and J. Lefebvre, “Phonons in metastable beta gallium: neutron scattering measurements,” J. Phys. F: Met. Phys. 11(11), 2261–2273 (1981).
[Crossref]

J. Phys.: Condens. Matter (1)

J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method for ab initio order- N materials simulation,” J. Phys.: Condens. Matter 14(11), 2745–2779 (2002).
[Crossref]

J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. (1)

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 25(3), 1019 (2007).
[Crossref]

Langmuir (1)

F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
[Crossref]

Nano Lett. (3)

Y. Yang, J. M. Callahan, T. H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet nanoplasmonics: A demonstration of surface-enhanced raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13(6), 2837–2841 (2013).
[Crossref]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref]

S. R. C. Vivekchand, C. J. Engel, S. M. Lubin, M. G. Blaber, W. Zhou, J. Y. Suh, G. C. Schatz, and T. W. Odom, “Liquid plasmonics manipulating surface plasmon polaritons via phase transitions,” Nano Lett. 12(8), 4324–4328 (2012).
[Crossref]

Nanoscale Horiz. (1)

X. Zhang, P. Li, Á Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

Nat. Mater. (1)

M. Losurdo, A. Suvorova, S. Rubanov, K. Hingerl, and A. S. Brown, “Thermally stable coexistence of liquid and solid phases in gallium nanoparticles,” Nat. Mater. 15(9), 995–1002 (2016).
[Crossref]

Opt. Express (2)

Phys. Rev. B (8)

T. Kenichi, K. Kazuaki, and A. Masao, “High-pressure bct-fcc phase transition in Ga,” Phys. Rev. B 58(5), 2482–2486 (1998).
[Crossref]

Z. Li and J. S. Tse, “High-pressure bct to fcc structural transformation in Ga,” Phys. Rev. B 62(15), 9900–9902 (2000).
[Crossref]

L. Comez, A. Di Cicco, J. Itié, and A. Polian, “High-pressure and high-temperature x-ray absorption study of liquid and solid gallium,” Phys. Rev. B 65(1), 014114 (2001).
[Crossref]

O. Schulte and W. B. Holzapfel, “Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa,” Phys. Rev. B 55(13), 8122–8128 (1997).
[Crossref]

D. R. Hamann, “Optimized norm-conserving Vanderbilt pseudopotentials,” Phys. Rev. B 88(8), 085117 (2013).
[Crossref]

J. Junquera, Ó Paz, D. Sánchez-Portal, and E. Artacho, “Numerical atomic orbitals for linear-scaling calculations,” Phys. Rev. B 64(23), 235111 (2001).
[Crossref]

E. Anglada, J. M. Soler, J. Junquera, and E. Artacho, “Systematic generation of finite-range atomic basis sets for linear-scaling calculations,” Phys. Rev. B 66(20), 205101 (2002).
[Crossref]

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13(12), 5188–5192 (1976).
[Crossref]

Phys. Rev. Lett. (3)

S. Pochon, K. F. MacDonald, R. J. Knize, and N. I. Zheludev, “Phase coexistence in gallium nanoparticles controlled by electron excitation,” Phys. Rev. Lett. 92(14), 145702 (2004).
[Crossref]

B. F. Soares, F. Jonsson, and N. I. Zheludev, “All-optical phase-change memory in a single gallium nanoparticle,” Phys. Rev. Lett. 98(15), 153905 (2007).
[Crossref]

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett. 100(13), 136406 (2008).
[Crossref]

Vib. Spectrosc. (1)

P. Wang, H. Li, J. Jiang, B. Mo, and C. Cui, “An exploration of surface enhanced Raman spectroscopy (SERS) for in situ detection of sulfite under high pressure,” Vib. Spectrosc. 100(99), 172–176 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Phase diagram of bulk Ga adapted from Ref. [1], and (b) extended pressure-temperature phase diagram adapted from Ref. [17].
Fig. 2.
Fig. 2. (a,d) Structure of the unit cell, (b,e) density of states DOS, and (c,f) complex dielectric function (ɛ = ɛ1+ iɛ2) of Ga(II) (left) and Ga(III) (right).
Fig. 3.
Fig. 3. Band diagram of Ga(III). Arrows indicate the interband transitions manifested in its complex dielectric function at 1.44 eV. The strength of the color of the arrows indicates the intensity of the transition, based on the evaluation of Mcvk.
Fig. 4.
Fig. 4. (a) Real and (b) imaginary part of the effective dielectric function (ɛ = ɛ1+ iɛ2) of a mixture of Ga(II) and β-Ga obtained using Bruggeman effective medium approximation with different Ga(II) filling fractions fGa(II) (dashed lines). Red and blue solid lines represent the dielectric function of Ga(II) and β-Ga, respectively.
Fig. 5.
Fig. 5. Faraday number vs Fröhlich frequency of the different Ga-phases.
Fig. 6.
Fig. 6. Absorption cross-section (Cabs, blue line) and near-field enhancement averaged 〈|E|2〉 red line) over the surface of (a) Ga(II) and (b) Ga(III) R = 60 nm hemispherical NPs on an infinite sapphire substrate embedded in air. Respective near-field distributions (log10(|E|2)) of their (c, e) low and (d, f) high energy modes. Red and blue arrows indicate the electric field (E) and wave vectors (k), respectively.
Fig. 7.
Fig. 7. (a) Reflectance spectra at normal incidence of a layer 150 nm thick made of the different Ga-phases on a sapphire substrate. (b) Reflectance spectrum at normal incidence of a layer h = 150 nm thick made of a mixture of β-Ga and Ga(II) on a sapphire substrate with different Ga(II) filling fractions fGa(II).

Tables (2)

Tables Icon

Table 1. Theoretical lattice constants, structural parameters, and atomic coordinates of Ga(II) and Ga(III). Some experimental values are added for reference.

Tables Icon

Table 2. Reflectance (%) at normal incidence of a layer h = 150 nm thick made of the different Ga-phases on a sapphire substrate at 1 and 6 eV.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε 2 ( ω ) = 2 π m N ω p 2 ω 2 v , c B Z d k ( 2 π ) 3 | M c v k | 2 δ ( E c k E v k ω )

Metrics