Abstract

Through applied voltage (VAC), the characteristic of dye-doped liquid crystal random lasers (DDLC-RLs) inside capillary fiber (CF) has been readily and efficiently modulated. As VAC rose, the intensity of the emission spike increased dramatically at a fixed excited energy, and the slope efficiency of DDLC-RL increased obviously. By means of the white light scattering spectrum, the increase in the output from DDLC-RL is attributed to the enhancement of recurrent light scattering within the liquid crystals (LCs) to strengthen the light localization. In order to distinguish the characteristic of DDLC-RL with VAC = 0 V and 60 V, the α-stable distribution was adopted to show the Lévy distribution of intensity fluctuation with a reduction in value from α = 1.86 to α = 1.59.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Configuration dependent output characteristics with Fabry–Perot and random lasers from dye-doped liquid crystals within glass cells

Ja-Hon Lin, Yi-Han Li, Sheng-Hung Lin, and Bich-Hanh Nguyen
Photon. Res. 6(5) 403-408 (2018)

Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles

Lei Wang, Yuan Wan, Lijie Shi, Haizheng Zhong, and Luogen Deng
Opt. Express 24(16) 17593-17602 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. J. Exp. Theor. Phys. 26, 835 (1968).
  2. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
    [Crossref] [PubMed]
  3. Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “Random lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Reports 7, 8385 (2017).
    [Crossref]
  4. Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
    [Crossref]
  5. N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
    [Crossref]
  6. H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
    [Crossref]
  7. F. Di Stasio, A. Polovitsyn, I. Angeloni, I. Moreels, and R. Krahne, “Broadband amplified spontaneous emission and random lasing from Wurtzite cdse/cds “giant-shell” nanocrystals,” ACS Photonics 3, 2083–2088 (2016).
    [Crossref]
  8. R. Dhanker, A. Brigeman, A. Larsen, R. Stewart, J. Asbury, and N. Giebink, “Random lasing in organo-lead halide perovskite microcrystal networks,” Appl. Phys. Lett. 105, 151112 (2014).
    [Crossref]
  9. P. I. Pincheira, A. F. Silva, S. I. Fewo, S. J. Carreño, A. L. Moura, E. P. Raposo, A. S. Gomes, and C. B. de Araújo, “Observation of photonic paramagnetic to spin-glass transition in a specially designed tio 2 particle-based dye-colloidal random laser,” Opt. Lett. 41, 3459–3462 (2016).
    [Crossref]
  10. X. Zhao, Z. Wu, S. Ning, S. Liang, D. Wang, and X. Hou, “Random lasing from granular surface of waveguide with blends of ps and pmma,” Opt. Express 19, 16126–16131 (2011).
    [Crossref] [PubMed]
  11. F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
    [Crossref]
  12. S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
    [Crossref] [PubMed]
  13. C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Reports 4, 6736 (2014).
    [Crossref]
  14. D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13, 2342–2345 (2012).
    [Crossref]
  15. J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
    [Crossref]
  16. J.-H. Lin, P.-Y. Chen, and J.-J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22, 9932–9941 (2014).
    [Crossref] [PubMed]
  17. L. Wang, Y. Wan, L. Shi, H. Zhong, and L. Deng, “Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing au nanoparticles,” Opt. Express 24, 17593–17602 (2016).
    [Crossref] [PubMed]
  18. Q. Song, L. Liu, L. Xu, Y. Wu, and Z. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34, 298–300 (2009).
    [Crossref]
  19. S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
    [Crossref]
  20. Q. Song, S. Xiao, X. Zhou, L. Liu, L. Xu, Y. Wu, and Z. Wang, “Liquid-crystal-based tunable high-q directional random laser from a planar random microcavity,” Opt. Lett. 32, 373–375 (2007).
    [Crossref]
  21. S.-H. Lin, P.-Y. Chen, Y.-H. Li, C.-H. Chen, J.-H. Lin, Y.-H. Chen, S.-Y. Tsay, and J.-J. Wu, “Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells,” IEEE Photonics J. 9, 1–8 (2017).
  22. J.-H. Lin, Y.-H. Li, S.-H. Lin, and B.-H. Nguyen, “Configuration dependent output characteristics with Fabry–Perot and random lasers from dye-doped liquid crystals within glass cells,” Photonics Res. 6, 403–408 (2018).
    [Crossref]
  23. J.-H. Lin and Y.-L. Hsiao, “Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes,” Opt. Mater. Express 4, 1555–1563 (2014).
    [Crossref]
  24. J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7, 1–9 (2015).
  25. S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
    [Crossref]
  26. R. Uppu, A. K. Tiwari, and S. Mujumdar, “Identification of statistical regimes and crossovers in coherent random laser emission,” Opt. Lett. 37, 662–664 (2012).
    [Crossref]
  27. R. Uppu and S. Mujumdar, “Lévy exponents as universal identifiers of threshold and criticality in random lasers,” Phys. Rev. A 90, 025801 (2014).
    [Crossref]
  28. J. P. Nolan, “Numerical calculation of stable densities and distribution functions,” Commun. S. Stoch. Models 13, 759–774 (1997).
    [Crossref]

2018 (1)

J.-H. Lin, Y.-H. Li, S.-H. Lin, and B.-H. Nguyen, “Configuration dependent output characteristics with Fabry–Perot and random lasers from dye-doped liquid crystals within glass cells,” Photonics Res. 6, 403–408 (2018).
[Crossref]

2017 (3)

S.-H. Lin, P.-Y. Chen, Y.-H. Li, C.-H. Chen, J.-H. Lin, Y.-H. Chen, S.-Y. Tsay, and J.-J. Wu, “Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells,” IEEE Photonics J. 9, 1–8 (2017).

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “Random lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Reports 7, 8385 (2017).
[Crossref]

J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

2016 (3)

2015 (2)

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7, 1–9 (2015).

2014 (6)

J.-H. Lin and Y.-L. Hsiao, “Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes,” Opt. Mater. Express 4, 1555–1563 (2014).
[Crossref]

R. Uppu and S. Mujumdar, “Lévy exponents as universal identifiers of threshold and criticality in random lasers,” Phys. Rev. A 90, 025801 (2014).
[Crossref]

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Reports 4, 6736 (2014).
[Crossref]

J.-H. Lin, P.-Y. Chen, and J.-J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22, 9932–9941 (2014).
[Crossref] [PubMed]

R. Dhanker, A. Brigeman, A. Larsen, R. Stewart, J. Asbury, and N. Giebink, “Random lasing in organo-lead halide perovskite microcrystal networks,” Appl. Phys. Lett. 105, 151112 (2014).
[Crossref]

2012 (5)

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13, 2342–2345 (2012).
[Crossref]

R. Uppu, A. K. Tiwari, and S. Mujumdar, “Identification of statistical regimes and crossovers in coherent random laser emission,” Opt. Lett. 37, 662–664 (2012).
[Crossref]

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

2011 (1)

2009 (1)

2007 (1)

2004 (1)

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

1999 (1)

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

1997 (1)

J. P. Nolan, “Numerical calculation of stable densities and distribution functions,” Commun. S. Stoch. Models 13, 759–774 (1997).
[Crossref]

1994 (1)

N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

1968 (1)

V. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. J. Exp. Theor. Phys. 26, 835 (1968).

Angeloni, I.

F. Di Stasio, A. Polovitsyn, I. Angeloni, I. Moreels, and R. Krahne, “Broadband amplified spontaneous emission and random lasing from Wurtzite cdse/cds “giant-shell” nanocrystals,” ACS Photonics 3, 2083–2088 (2016).
[Crossref]

Asbury, J.

R. Dhanker, A. Brigeman, A. Larsen, R. Stewart, J. Asbury, and N. Giebink, “Random lasing in organo-lead halide perovskite microcrystal networks,” Appl. Phys. Lett. 105, 151112 (2014).
[Crossref]

Balachandran, R.

N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

Brigeman, A.

R. Dhanker, A. Brigeman, A. Larsen, R. Stewart, J. Asbury, and N. Giebink, “Random lasing in organo-lead halide perovskite microcrystal networks,” Appl. Phys. Lett. 105, 151112 (2014).
[Crossref]

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Carreño, S. J.

Cavalieri, S.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

Chang, R.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Chang, S.-C.

J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Chang, T.-Y.

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Reports 4, 6736 (2014).
[Crossref]

Chen, C.-H.

J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

S.-H. Lin, P.-Y. Chen, Y.-H. Li, C.-H. Chen, J.-H. Lin, Y.-H. Chen, S.-Y. Tsay, and J.-J. Wu, “Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells,” IEEE Photonics J. 9, 1–8 (2017).

Chen, P.-Y.

S.-H. Lin, P.-Y. Chen, Y.-H. Li, C.-H. Chen, J.-H. Lin, Y.-H. Chen, S.-Y. Tsay, and J.-J. Wu, “Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells,” IEEE Photonics J. 9, 1–8 (2017).

J.-H. Lin, P.-Y. Chen, and J.-J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22, 9932–9941 (2014).
[Crossref] [PubMed]

Chen, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Chen, Y.-F.

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Reports 4, 6736 (2014).
[Crossref]

Chen, Y.-H.

J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

S.-H. Lin, P.-Y. Chen, Y.-H. Li, C.-H. Chen, J.-H. Lin, Y.-H. Chen, S.-Y. Tsay, and J.-J. Wu, “Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells,” IEEE Photonics J. 9, 1–8 (2017).

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7, 1–9 (2015).

Chien, C.-Y.

J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Chronakis, I. S.

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

Ciou, B.-Y.

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7, 1–9 (2015).

Coles, H. J.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

de Araújo, C. B.

Deng, L.

Dhanker, R.

R. Dhanker, A. Brigeman, A. Larsen, R. Stewart, J. Asbury, and N. Giebink, “Random lasing in organo-lead halide perovskite microcrystal networks,” Appl. Phys. Lett. 105, 151112 (2014).
[Crossref]

Di Stasio, F.

F. Di Stasio, A. Polovitsyn, I. Angeloni, I. Moreels, and R. Krahne, “Broadband amplified spontaneous emission and random lasing from Wurtzite cdse/cds “giant-shell” nanocrystals,” ACS Photonics 3, 2083–2088 (2016).
[Crossref]

Duan, Z.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “Random lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Reports 7, 8385 (2017).
[Crossref]

Fewo, S. I.

Fu, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Gardiner, D. J.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Giebink, N.

R. Dhanker, A. Brigeman, A. Larsen, R. Stewart, J. Asbury, and N. Giebink, “Random lasing in organo-lead halide perovskite microcrystal networks,” Appl. Phys. Lett. 105, 151112 (2014).
[Crossref]

Gomes, A.

N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

Gomes, A. S.

Gottardo, S.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

Grossmann, T.

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

Gu, B.

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Hands, P. J.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Ho, S.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Hou, X.

Hsiao, Y.-L.

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7, 1–9 (2015).

J.-H. Lin and Y.-L. Hsiao, “Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes,” Opt. Mater. Express 4, 1555–1563 (2014).
[Crossref]

Hu, Z.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Jenne, M.

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

Jørgensen, L.

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

Kalt, H.

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

Karnutsch, C.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13, 2342–2345 (2012).
[Crossref]

Kostovski, G.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13, 2342–2345 (2012).
[Crossref]

Krahne, R.

F. Di Stasio, A. Polovitsyn, I. Angeloni, I. Moreels, and R. Krahne, “Broadband amplified spontaneous emission and random lasing from Wurtzite cdse/cds “giant-shell” nanocrystals,” ACS Photonics 3, 2083–2088 (2016).
[Crossref]

Krämmer, S.

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

Kristensen, A.

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

Larsen, A.

R. Dhanker, A. Brigeman, A. Larsen, R. Stewart, J. Asbury, and N. Giebink, “Random lasing in organo-lead halide perovskite microcrystal networks,” Appl. Phys. Lett. 105, 151112 (2014).
[Crossref]

Lawandy, N. M.

N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

Letokhov, V.

V. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. J. Exp. Theor. Phys. 26, 835 (1968).

Li, Y.-H.

J.-H. Lin, Y.-H. Li, S.-H. Lin, and B.-H. Nguyen, “Configuration dependent output characteristics with Fabry–Perot and random lasers from dye-doped liquid crystals within glass cells,” Photonics Res. 6, 403–408 (2018).
[Crossref]

S.-H. Lin, P.-Y. Chen, Y.-H. Li, C.-H. Chen, J.-H. Lin, Y.-H. Chen, S.-Y. Tsay, and J.-J. Wu, “Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells,” IEEE Photonics J. 9, 1–8 (2017).

J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Liang, S.

Lin, J.-H.

J.-H. Lin, Y.-H. Li, S.-H. Lin, and B.-H. Nguyen, “Configuration dependent output characteristics with Fabry–Perot and random lasers from dye-doped liquid crystals within glass cells,” Photonics Res. 6, 403–408 (2018).
[Crossref]

S.-H. Lin, P.-Y. Chen, Y.-H. Li, C.-H. Chen, J.-H. Lin, Y.-H. Chen, S.-Y. Tsay, and J.-J. Wu, “Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells,” IEEE Photonics J. 9, 1–8 (2017).

J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7, 1–9 (2015).

J.-H. Lin, P.-Y. Chen, and J.-J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22, 9932–9941 (2014).
[Crossref] [PubMed]

J.-H. Lin and Y.-L. Hsiao, “Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes,” Opt. Mater. Express 4, 1555–1563 (2014).
[Crossref]

Lin, S.-H.

J.-H. Lin, Y.-H. Li, S.-H. Lin, and B.-H. Nguyen, “Configuration dependent output characteristics with Fabry–Perot and random lasers from dye-doped liquid crystals within glass cells,” Photonics Res. 6, 403–408 (2018).
[Crossref]

S.-H. Lin, P.-Y. Chen, Y.-H. Li, C.-H. Chen, J.-H. Lin, Y.-H. Chen, S.-Y. Tsay, and J.-J. Wu, “Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells,” IEEE Photonics J. 9, 1–8 (2017).

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7, 1–9 (2015).

Lin, T.-Y.

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Reports 4, 6736 (2014).
[Crossref]

Lin, Y.-C.

J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Liu, L.

Luan, F.

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Luo, Y.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Miao, B.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Ming, H.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Mitchell, A.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13, 2342–2345 (2012).
[Crossref]

Moreels, I.

F. Di Stasio, A. Polovitsyn, I. Angeloni, I. Moreels, and R. Krahne, “Broadband amplified spontaneous emission and random lasing from Wurtzite cdse/cds “giant-shell” nanocrystals,” ACS Photonics 3, 2083–2088 (2016).
[Crossref]

Morris, S. M.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Moura, A. L.

Mujumdar, S.

R. Uppu and S. Mujumdar, “Lévy exponents as universal identifiers of threshold and criticality in random lasers,” Phys. Rev. A 90, 025801 (2014).
[Crossref]

R. Uppu, A. K. Tiwari, and S. Mujumdar, “Identification of statistical regimes and crossovers in coherent random laser emission,” Opt. Lett. 37, 662–664 (2012).
[Crossref]

Nguyen, B.-H.

J.-H. Lin, Y.-H. Li, S.-H. Lin, and B.-H. Nguyen, “Configuration dependent output characteristics with Fabry–Perot and random lasers from dye-doped liquid crystals within glass cells,” Photonics Res. 6, 403–408 (2018).
[Crossref]

Ning, S.

Nolan, J. P.

J. P. Nolan, “Numerical calculation of stable densities and distribution functions,” Commun. S. Stoch. Models 13, 759–774 (1997).
[Crossref]

Pincheira, P. I.

Polovitsyn, A.

F. Di Stasio, A. Polovitsyn, I. Angeloni, I. Moreels, and R. Krahne, “Broadband amplified spontaneous emission and random lasing from Wurtzite cdse/cds “giant-shell” nanocrystals,” ACS Photonics 3, 2083–2088 (2016).
[Crossref]

Prasad, P. N.

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Qasim, M. M.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Qiu, Z.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “Random lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Reports 7, 8385 (2017).
[Crossref]

Raposo, E. P.

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Sauvain, E.

N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

Schierle, S.

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

Seelig, E.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Shi, L.

Silva, A. F.

Smith, C. L.

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

Song, Q.

Stewart, R.

R. Dhanker, A. Brigeman, A. Larsen, R. Stewart, J. Asbury, and N. Giebink, “Random lasing in organo-lead halide perovskite microcrystal networks,” Appl. Phys. Lett. 105, 151112 (2014).
[Crossref]

Tiwari, A. K.

Tsay, S.-Y.

J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

S.-H. Lin, P.-Y. Chen, Y.-H. Li, C.-H. Chen, J.-H. Lin, Y.-H. Chen, S.-Y. Tsay, and J.-J. Wu, “Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells,” IEEE Photonics J. 9, 1–8 (2017).

Uppu, R.

R. Uppu and S. Mujumdar, “Lévy exponents as universal identifiers of threshold and criticality in random lasers,” Phys. Rev. A 90, 025801 (2014).
[Crossref]

R. Uppu, A. K. Tiwari, and S. Mujumdar, “Identification of statistical regimes and crossovers in coherent random laser emission,” Opt. Lett. 37, 662–664 (2012).
[Crossref]

Vannahme, C.

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

Wan, Y.

Wang, C.-S.

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Reports 4, 6736 (2014).
[Crossref]

Wang, D.

Wang, L.

Wang, P.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Wang, Q.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Wang, Y.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “Random lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Reports 7, 8385 (2017).
[Crossref]

Wang, Z.

Wen, S.

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

White, I. H.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Wiersma, D. S.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

Wilkinson, T. D.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Wu, J.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “Random lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Reports 7, 8385 (2017).
[Crossref]

Wu, J.-J.

S.-H. Lin, P.-Y. Chen, Y.-H. Li, C.-H. Chen, J.-H. Lin, Y.-H. Chen, S.-Y. Tsay, and J.-J. Wu, “Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells,” IEEE Photonics J. 9, 1–8 (2017).

J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7, 1–9 (2015).

J.-H. Lin, P.-Y. Chen, and J.-J. Wu, “Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser,” Opt. Express 22, 9932–9941 (2014).
[Crossref] [PubMed]

Wu, Y.

Wu, Z.

Xiang, T.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “Random lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Reports 7, 8385 (2017).
[Crossref]

Xiao, S.

Xu, L.

Yaroshchuk, O.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

Yong, K.-T.

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Zhang, D.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “Random lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Reports 7, 8385 (2017).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13, 2342–2345 (2012).
[Crossref]

Zhang, P.

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “Random lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Reports 7, 8385 (2017).
[Crossref]

Zhang, Q.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Zhao, X.

Zhao, Y.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Zhong, H.

Zhou, X.

Zou, G.

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

ACS Photonics (1)

F. Di Stasio, A. Polovitsyn, I. Angeloni, I. Moreels, and R. Krahne, “Broadband amplified spontaneous emission and random lasing from Wurtzite cdse/cds “giant-shell” nanocrystals,” ACS Photonics 3, 2083–2088 (2016).
[Crossref]

Adv. Mater. (1)

S. Krämmer, C. Vannahme, C. L. Smith, T. Grossmann, M. Jenne, S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen, and H. Kalt, “Random-cavity lasing from electrospun polymer fiber networks,” Adv. Mater. 26, 8096–8100 (2014).
[Crossref] [PubMed]

Appl. Phys. Express (1)

J.-H. Lin, S.-C. Chang, Y.-H. Li, C.-Y. Chien, C.-H. Chen, Y.-C. Lin, J.-J. Wu, S.-Y. Tsay, and Y.-H. Chen, “Investigation of laser speckle noise suppression by using polymer-stabilized liquid crystals within twisted nematic cell,” Appl. Phys. Express 10, 031701 (2017).
[Crossref]

Appl. Phys. Lett. (2)

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

R. Dhanker, A. Brigeman, A. Larsen, R. Stewart, J. Asbury, and N. Giebink, “Random lasing in organo-lead halide perovskite microcrystal networks,” Appl. Phys. Lett. 105, 151112 (2014).
[Crossref]

Commun. S. Stoch. Models (1)

J. P. Nolan, “Numerical calculation of stable densities and distribution functions,” Commun. S. Stoch. Models 13, 759–774 (1997).
[Crossref]

IEEE Photonics J. (2)

S.-H. Lin, P.-Y. Chen, Y.-H. Li, C.-H. Chen, J.-H. Lin, Y.-H. Chen, S.-Y. Tsay, and J.-J. Wu, “Manipulation of polarized random lasers from dye-doped twisted nematic liquid crystals within wedge cells,” IEEE Photonics J. 9, 1–8 (2017).

J.-H. Lin, Y.-L. Hsiao, B.-Y. Ciou, S.-H. Lin, Y.-H. Chen, and J.-J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7, 1–9 (2015).

Nano Today (1)

F. Luan, B. Gu, A. S. Gomes, K.-T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10, 168–192 (2015).
[Crossref]

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Nature (1)

N. M. Lawandy, R. Balachandran, A. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436 (1994).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. Express (1)

Org. Electron. (1)

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13, 2342–2345 (2012).
[Crossref]

Photonics Res. (1)

J.-H. Lin, Y.-H. Li, S.-H. Lin, and B.-H. Nguyen, “Configuration dependent output characteristics with Fabry–Perot and random lasers from dye-doped liquid crystals within glass cells,” Photonics Res. 6, 403–408 (2018).
[Crossref]

Phys. Rev. A (1)

R. Uppu and S. Mujumdar, “Lévy exponents as universal identifiers of threshold and criticality in random lasers,” Phys. Rev. A 90, 025801 (2014).
[Crossref]

Phys. Rev. Lett. (3)

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
[Crossref]

Z. Hu, Q. Zhang, B. Miao, Q. Fu, G. Zou, Y. Chen, Y. Luo, D. Zhang, P. Wang, H. Ming, and et al., “Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime,” Phys. Rev. Lett. 109, 253901 (2012).
[Crossref]

Sci. Reports (2)

Y. Wang, Z. Duan, Z. Qiu, P. Zhang, J. Wu, D. Zhang, and T. Xiang, “Random lasing in human tissues embedded with organic dyes for cancer diagnosis,” Sci. Reports 7, 8385 (2017).
[Crossref]

C.-S. Wang, T.-Y. Chang, T.-Y. Lin, and Y.-F. Chen, “Biologically inspired flexible quasi-single-mode random laser: An integration of pieris canidia butterfly wing and semiconductors,” Sci. Reports 4, 6736 (2014).
[Crossref]

Sov. J. Exp. Theor. Phys. (1)

V. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. J. Exp. Theor. Phys. 26, 835 (1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic setup for the (a) excitation of DDLC-RL inside CF by the pump of a Q-switched laser at different applied ac voltages (Inset shows a picture of the DDLC-RL pump by the Q-switched laser), and (b) POM image and light scattering spectrum measurements of DDLC-RL inside CF in combination of polarization optical microscopy and a spectrometer (Inset shows the POM image of CF without and with infilling of LCs).
Fig. 2
Fig. 2 Evolution of emission spectra from DDLC-RL with a core diameter of about (a) 20 μm, and (b) 30 μm as VAC increases from 0 V to 100 V (Insets show the cross section of CF by the SEM).
Fig. 3
Fig. 3 The POM image (upper row) and related light scattering spectra (lower row) with (a) VAC = 0 V, (b) VAC = 40 V, (c) VAC = 60 V, (d) VAC = 80 V, (e) VAC = 120 V and (f) VAC = 140 V.
Fig. 4
Fig. 4 Schematic illustration of the alignment of DDLCs and recurrent light scattering inside the CF (a) without and (b) with applied voltage. (c) Peak intensity (IRan, blue squares) of DDLC-RL and integrated intensity (Iscat, red circles) from light scattering spectrum as a function of applied voltage.
Fig. 5
Fig. 5 Evolution of emission spectra of DDLC-RL inside CF as pump energy Ep increased from 1.12 μJ to 8.01 μJ with (a) VAC = 0 V and (b) VAC = 60 V. (c) Peak intensity of DDLC-RL as a function of Ep as VAC increased from 0 to 100 V, and (d) PFT of emission spectra from DDLC-RL at different applied voltages.
Fig. 6
Fig. 6 Histogram of intensity distribution from DDLC-RL at λ = 593 nm with red solid fitting curve by the α-stable distribution (inset shows the time-varying intensity for the emission wavelength λ = 593 nm) with (a) VAC = 0 V and (b) VAC = 60V.

Metrics